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Abstract: Mining big data is difficult. Problems require an efficient algorithm and software computer for computation in big datasets The 

FP Growth Algorithm needs a lot of memory and requires a long time for computation and extract result. In this work, we propose 

modifications to the workings of the FP-Growth algorithm. The suggested algorithm will reduce the time in mining and decrease the 

number of frequently created items, yielding a significant reduction in decision-making in big datasets through our use of the proposed 

matrix OFIM instead of the tree used in those algorithms. The matrix OFIM allows for efficient storage and retrieval of frequent itemsets, 

resulting in faster computation and extraction of results compared to the traditional tree-based approach. Additionally, our algorithm 

optimizes memory usage by minimizing the number of frequently created items, further enhancing its performance in handling big datasets. 
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1. Introduction 

Methods that can facilitate the collection of extremely large 

data sets are necessary as a result of the development of 

information technology in the modern era, which has 

generated significant advancements that greatly improve the 

amount of data that can be gathered and stored in a very 

large database [1]. Programs for big data analytics have 

significantly changed how individuals live their daily lives. 

As interest in data-driven decision making has grown, an 

extensive array of big data analytics solutions has been 

developed [2].Data mining is a technology that can be 

applied. The process of searching through selected data for 

intriguing patterns or information is known as data 

mining[3][4]. Data mining is also referred to as knowledge 

discovery in databases (KDD). KDD [5] encompasses both 

the collection of data and its utilization to identify 

relationships or patterns within vast data volumes. 

Data from the physical world often comprises sets of 

objects, such as assemblages of products that were 

purchased together at a supermarket. For example, a 

frequent itemset refers to a collection of items that manifest 

a recurring pattern within a transaction dataset. The 

following definitions apply to the frequent itemset:- 

Let L=L1, L2, L3,.In represent a collection of items. Since 

D is the collection of database transactions, and since each 

transaction T is made up of a set of objects, L contains T. 

For each transaction A contained in L, A can be referred to 

be the item set if and only if the transaction T completes A. 

The support count of an item set refers to the frequency with 

which the item set A appears in the transactions of database 

D. The itemset A is commonly known as the frequent 

itemset, and the provided support count is considered as the 

minimum support count (minsup) if the support count of 

itemset A is equal to or exceeds the specified support count. 

The support count is a crucial metric in association rule 

mining as it helps identify frequent itemsets. By setting a 

minimum support count (minsup), we can filter out 

infrequent itemsets and focus on those that occur frequently 

in the database transactions. This allows us to uncover 

meaningful associations and patterns among the items in the 

dataset.  

     The FP-Growth (Frequent Pattern Growth) method was 

created from the Apriori method [6]. The idea of creating a 

tree, known as the FP-Tree, is how the FP Growth approach 

finds common item sets [7]. The FP-Tree idea makes the FP-

Growth process more efficient.The first effective tree-based 

approach for mining the frequent item sets is called FP-

Growth. [8]. In order to reduce the size of the resulting 

conditional FP-tree, a divide and conquer strategy is 

implemented with careful consideration. For this, the 

datasets must be scanned twice. The FP-tree is a condensed 

representation of the transactions. FP-Growth is impeded by 

the prospective combinatorial quantity of candidate item 

sets, which a compact representation does not diminish [9]. 

Furthermore, the main memory is incapable of 

accommodating the large database structure as a 

consequence of the potentially immense size of the resulting 

tree [10]. As a result, the proposed method makes use of a 

novel, two-dimensional array structure based on the FP-

Growth algorithm termed the Ordered Frequent Itemsets 

Matrix (OFIM). With the help of in this novel structure, a 

transactional database is compressed to produce an 

environment that is favorable for efficient mining of 
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frequent itemsets. 

The structure of the remainder of the document is as follows: 

There is related material in Section 2. The FP-Growth 

algorithm is described in its original form in Section 3.   In 

Section 4, an algorithm proposal is presented. In Section 5, 

an account of the experimental results and interrelated 

discussions is presented. Section 6 contains the concluding 

remarks. 

2. Related Work 

Some of the current algorithms for mining frequent itemsets 

are presented in this section. There are numerous frequent 

itemsets mining algorithms given in [8][11][13]. 

On the basis of a linear table, they have presented a novel 

frequent itemset mining algorithm. The linear table has the 

capacity to store more shared data while requiring fewer 

scans of the original dataset [14]. 

A divide-and-conquer technique based on an FP-Growth 

Tree to build a node-tree structure that is first sorted so that 

the most prominent patterns are accessible throughout the 

tree development process [15]. It has put out a novel 

frequent pattern mining algorithm based on the FP- Growth 

idea that pulls out frequent patterns using bit matrices and 

linked list structures [16]. 

Distributed Frequent Pattern Analysis In Big Data is 

proposed in [2]. This study uses the FP growth algorithm to 

find common item sets in a database without the need for 

candidate generation, and incremental FP-Growth analysis 

is suggested to create the least redundant tree structure 

possible. As a result, the database will undergo fewer scans, 

which will lower latency. A brand-new mining algorithm for 

accurate pattern determination in massive amounts of data 

is proposed [17][18]. A combination of calculations based 

on Map, Map Reduce Frame, and Hadoop opensource 

implementation are suggested for this usage. 

This study introduces FP-Growth algorithm optimization 

against a backdrop of cloud computing and computer big 

data [18]. A parallel mining algorithm is discussed in this 

work. The enhanced technique is utilized by each node 

machine to generate fragmentary frequent itemsets via 

parallel mining. Subsequently, all frequent itemsets are 

retrieved through summarization [19]. Following the 

extraction of transaction databases in accordance with each 

frequent item, a corresponding projection database is 

generated for each such item. 

    Signature-based Tree for Finding Frequent Itemsets in 

[20]. In this study, the authors suggest a brand-new tree-

based structure that places a stronger emphasis on 

transactions than itemsets. As a result, we steer clear of the 

issue of support values that have an adverse effect on the 

tree that is produced. Numerous strategies have been 

proposed to attain frequent item sets mining, which is 

founded on the fp-growth algorithm, while also ensuring 

privacy, utility, and efficacy [21]. 

A framework for an intriguing association rule mining 

technique for big data that is incrementally parallel is 

provided. During the mining process, the suggested 

framework combines interestingness measures [22]. The 

suggested framework processes incremental data, which 

typically arrives at various intervals, allowing the user's 

critical knowledge to be explored solely through the 

processing of new data, rather than starting over from 

scratch. 

In the present study, they propose incremental maximal 

frequent itemset mining techniques that, throughout the 

mining stage, take into account the subjective 

interestingness requirement [23]. The proposed framework 

is specifically engineered to incorporate incremental data, 

which typically arrives at varying intervals. 

3. FP-Growth Algorithm 

FP-Growth is an alternative method for determining the 

most prevalent itemset in a data collection. FP-growth 

adopts a different paradigm from the one used by the Apriori 

algorithm. FP-Growth is an alternative method for 

determining the most frequent collection of data sets in a 

data set. The FP-Growth algorithm was created by 

modifying the Apriori algorithm. FP-growth is one method 

that frequently results in a mining itemset without a 

candidate Generation. It creates an extremely dense data 

structure (FP-tree) to condense the initial transaction 

database. This dense data structure allows for efficient and 

fast mining of frequent itemsets. By compressing the 

transaction database into the FP-tree, FP-growth eliminates 

the need for candidate generation, which can be 

computationally expensive in large datasets. Additionally, 

the FP-tree structure enables quick and effective pattern 

matching, making it a popular choice for frequent itemset 

mining tasks.  

Mining all frequent itemsets just requires two dataset scans 

with the FP-Growth algorithm. The first scan counts how 

many times each item appears. The first FP-tree, which 

contains all of the frequency data from the original dataset, 

is built during the second scan.  The FP-tree is then mined 

instead of the dataset.  By mining the FP-tree, the algorithm 

can efficiently identify and extract all frequent itemsets 

without having to repeatedly scan the original dataset. This 

approach significantly reduces the computational time and 

resources required for frequent itemset mining. 

Additionally, the FP-Growth algorithm is particularly 

effective in handling large datasets with a high number of 

transactions, making it a popular choice in data mining 

tasks.  The FP-Growth method for a transaction database's 

pseudo code is shown below [11]. 

An input consists of a minsup threshold and a transaction 
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database (DB). 

Results: FP-tree. 

Procedure:- 

step 1: Extract the support count for each item from the 

transactional DB. 

Step 2: Discard the item if item_id is less than the support. 

Step3: generate an I-list header table to store the frequently 

occurring item sets. The item sets should be arranged in a 

decreasing order according to support and node link. 

 Step 4:Create the FP-Growth tree initially. The algorithm 

begins by constructing an FP-Growth tree and assigns it the 

value "null" in the initial phase. Additionally, create a 

branch for each item in each transaction after reading it. If a 

prefix was previously shared by each node, increment the 

value by one; otherwise, create a new node. 

Step 5: Each item in the header table is linked to its 

corresponding instance in the tree via a single link list, 

represented by dashed lines. 

Step 6: Create the mine FP tree, also referred to as the FP-

Growth tree. 

The fp-tree is coupled with a header table. In decreasing 

order of frequency, the header table stores single objects and 

their counts. 

An example of a transactional dataset is shown in Table 1, 

and the FP-tree produced from this dataset using the FP-

Growth algorithm is shown in Figure 1.

 

Table 1. A dataset containing nine transactions is shown. 

 

TID List of items 

D1 K1,K2,K5 

D2 K2,K4 

D3 K2,K3 

D4 K1,K2,K4 

D5 K1,K3 

D6 K2,K3 

D7 K1,K3 

D8 K1,K2,K3,K5 

D9 K1,K2,K3 

 

 

Fig 1. A minsup=50% FP-tree example. 

Table 2 displays the derived frequent itemsets.. 

Header  Table 
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Table 2. lists the frequent item sets that the FP-Growth algorithm identified. 

TID Conditional FP-tree Frequent itemsets  

K5 <K2:2,K1:2> {K2,K5:2}, {K1,K5:2}, {K2,K 

1,K5:2} 

K4 <K:2> {K2,K4:2} 

K3 <K2:4,K1:2>,<K1:2> {K2,K3:4},{K1,K3:4},{K2,K1,

K3:2} 

K1 <K2:4> {K2,Kl:4} 

 

4. The Proposed Algorithm 

The basic FP-Growth algorithm can be applied to small data 

sets, but not to enormous data because building an FP-tree 

and finding many frequent itemsets take a lot of time. 

Therefore, and is affected by the growing FP-tree, which 

might not fit in the main memory.  The OFIM and a minsup 

threshold are inputs used in the process of finding frequently 

occurring itemsets. The OFIM, or One-Itemset-at-a-Time 

Mining, approach addresses the memory limitation by two-

dimensional array and updating it as new itemsets are 

discovered. This allows for efficient processing of large 

datasets without requiring excessive memory usage. 

Additionally, the minsup threshold determines the 

minimum support level that an itemset must meet to be 

considered frequent, allowing for customization based on 

specific data mining goals and requirements.  

The transactional database is summarized using a two-

dimensional array called the Ordered Frequent Itemset 

Matrix (OFIM), which contains all frequent itemsets and is 

sorted in support of decreasing order. The OFIM is 

composed of the longest number of often ordered 

commodities (Y) and the number of transactions (X). The 

OFIM allows for efficient and easy retrieval of frequent 

itemsets based on their support values. It provides a concise 

representation of the transactional database, making it easier 

to analyze and identify patterns in the data. Additionally, the 

OFIM can be used to generate association rules and make 

predictions about future transactions based on past patterns. 

The suggested algorithm searches the transactional dataset 

to provide a list of often occurring items, with the items 

listed in decreasing order of frequency. This arrangement is 

crucial since it will determine how OFIM is built. Ordered 

frequent itemsets lists (OFILs) are collections of candidate 

item sets for a transaction whose occurrence frequencies 

surpass the minsup threshold and are subsequently added to 

the list of frequent itemsets. OFILs play a significant role in 

constructing OFIM as they provide valuable insights into 

the most frequently occurring itemsets. By organizing the 

items in decreasing order of frequency, the algorithm 

ensures that the most relevant and important itemsets are 

prioritized for further analysis and decision-making. The 

final few candidate item sets are taken away. The sequence 

of frequently occurring items in each transaction is 

presented in the column labelled "Right-Most" of Table 3. 

The "Right-Most" column in Table 3 provides valuable 

insights into the patterns and trends of frequently occurring 

items in each transaction. By analyzing this sequence, 

researchers can identify the most popular and commonly 

purchased items, helping businesses make informed 

decisions about product placement and marketing strategies. 

Additionally, this column allows for a better understanding 

of customer preferences and can be used to optimize 

inventory management systems. This listing of frequent 

items allows for easy identification of the most popular and 

frequently occurring items in each transaction. Analyzing 

this information can provide valuable insights into customer 

preferences and purchasing patterns, aiding in strategic 

decision-making and targeted marketing efforts. 

Table 3. OFILs-based transactional dataset. 

  

TID List of items OFILs. 

D1 K1,K2,K5 K2,K1,K5 

D2 K2,K4 K2,K4 

D3 K2,K3 K2,K3 

D4 K1,K2,K4 K2,K1,K4 

D5 K1,K3 K1.K3 

D6 K2,K3 K2,K3 

D7 K1,K3 K1,K3 
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D8 K1,K2,K3,K5 K2,K1,K3,K5 

D9 K1,K2,K3 K2,K1,K3 

 

It is important to note that the frequent items of the 

transaction are presented in the same order that they appear 

in the inventory of frequent items. According to Table 3, the 

OFIL for transaction K1,K2,K5 is K2,K1,K5. For X and Y, 

an empty OFIM initialization value of "0" is present.    

Throughout the process of constructing the matrix, each 

OFIL is read individually. The method extracts items from 

each individual list. The elements are subsequently 

appended in a sequential manner to the rows and 

corresponding columns of the matrix. Each enumeration 

within the OFILs is subjected to this process once more. 

Upon perusing the entirety of the OFILs, as presented in 

Table 3, Table 4 delineates the OFIM in its entirety. 

Table 4 provides a comprehensive representation of the 

OFIM after extracting and appending elements from each 

individual list in the OFILs. The resulting matrix showcases 

the sequential arrangement of items across rows and 

columns, with an initial empty initialization value of "0" for 

X and Y. 

Table 4. The OFIM.. 

 

D1 K2 K1 K5 0 

D2 K2 K4 0 0 

D3 K2 K3 0 0 

D4 K2 K1 K4 0 

D5 K1 K3 0 0 

D6 K2 K3 0 0 

D7 K1 K3 0 0 

D8 K2 K1 K3 K5 

D9 K2 K1 K3 0 

 

The proposed technique begins scanning from the final 

column and computes the support for each item in each 

column in OFIM, except for the sets of items that did not 

achieve support., we will discard them, and each item that 

has achieved support in the last column, we will compute 

the number of occurrences of the previous itemsets  linked 

with it and similar ones in its records, and we consider them 

frequent itemsets, and we delete them from OFIM, In this 

way,  we get rid of the tree and reduce the time and 

operations of generating the frequent itemsets, So, 

compared to the FP-Growth algorithm, performance is 

substantially better. The OFIM algorithm efficiently 

eliminates non-frequent itemsets by discarding them early 

on. By only considering itemsets that have achieved 

support, it reduces the computational burden and processing 

time required to generate frequent itemsets. This improved 

performance makes it a more efficient alternative to the FP-

Growth algorithm. The following are extensive descriptions 

of the suggested algorithm:- 

A DB of transactions and a minsup threshold constitute the 

inputs. 

Output: identified recurring item sets. 

1.Perform a database scan after each transaction. Compile 

F, the frequent item sets of F, and F's supporters. Sort F in 

descending order as OFIL, the list of frequently sorted 

items. During this phase, every set of infrequent items is 

eliminated. 

2.Create the OFIM. Every item ordered frequently used in 

the OFIL is individually entered into the corresponding 

columns for each row associated with the OFIL. 

3- Generation of frequent itemsets. 

 3.1- Assume that the OFIM column number is c. 

3.2- For (c= M; c>=1; c--) 

{  

If c=1 Then Do 

{ 

The current column (c) and the columns that came before it 

compare the collection of frequently occurring items and 

compile their supporters. Let the output be [r, f: n | OFIL] 

where f is the current frequent item in column (c) and r is 

the parent frequent item of the preceding columns. 

We take the matching rows of item r from the collection of  

frequent items and compile the previous columns of item f 

from the current column's (c) supporters. Remove these 

rows from the OFIM as well. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 |  513 

} 

Else Do 

{ 

Go to column (c) before, compare the collection of 

frequently used items, and gather the supporters who 

support each item. Let the output be [r, f: n | OFIL] where f 

is the current frequent item in column (c) and r is the parent 

frequent item of the preceding columns. 

Extract these rows for the recurring parent items. For the 

repeated item, f, it is processed according to its order. And 

delete these rows from OFIM. 

} 

} 

The proposed algorithm Generation of frequent itemsets as 

follows : start  from compute the support for each item from 

the last column of the OFIM. and the other (previous) 

column is used to distinguish the items of current 

column.The support is compute for the different items  in 

the current column that achieves the support is taken as the 

frequent itemsets,and these rows are deleted from the 

OFIM, Then the previous column is moved from the current 

column. Repeat the previous steps for each column... 

Table 5 displays the created frequent item sets. 

Table 5.  Displays the created frequent item sets. 

Frequent itemsets  

{K2,K3:2}, {K1,K3:2}, 

{K2,K1,K3:2} 

 

The FP-Growth method produces more frequent item sets 

than the suggested algorithm, according to Tables 1 and 2. 

5.  Results and Discussions 

We implemented the method provided on databases 

containing numbers. The efficacy of the suggested 

methodology is evaluated by employing real-world datasets 

acquired from the UCI Machine Learning Repository.  This 

compilation of benchmark and real-world datasets is 

frequently employed in the fields of KDD and data mining 

[24]. These datasets cover a wide range of domains and have 

been extensively studied by researchers. By using these 

datasets, we can ensure the generalizability and reliability of 

our results. Additionally, the UCI Machine Learning 

Repository provides detailed documentation and 

preprocessing guidelines for these datasets, which further 

enhances the validity of our evaluation. The effectiveness of 

the suggested approach is assessed and contrasted with the 

widely recognized FP-Growth algorithm with regards to the 

time needed to identify frequent item sets and the quantity 

of frequent item sets extracted from the given datasets. 

Furthermore, we conducted experiments on multiple 

datasets with varying characteristics to ensure the 

robustness of our findings. Our evaluation also takes into 

account the impact of different parameters and settings on 

the performance of the suggested approach, providing a 

comprehensive analysis of its effectiveness. Each 

experiment is executed on a laptop equipped with 64GB of 

RAM, Windows 10 64-bit, C++, and a 3.20 GHz Intel (R) 

coreTM i7-8700 processor. The datasets utilized for this 

side-by-side comparison are categorized statistically in 

Table 6. The datasets used in this study are carefully 

selected to represent a diverse range of real-world scenarios. 

They encompass different industries, demographics, and 

geographical locations to ensure the generalizability of our 

findings. The statistical categorization in Table 6 provides a 

clear overview of the dataset characteristics, such as size, 

complexity, and distribution, allowing for a comprehensive 

understanding of the experimental setup.

 

Table 6.  Test dataset characteristics . 

Datasets Size #Transactions 

Data8277  77.7MB  5029922 

QtyT40I10D100K  44.9MB 3960457 

 

The subsequent illustrations illustrate the comparative 

performance of the proposed algorithm and the FP-Growth 

algorithm on the specified datasets:- 

5.1. First Experiment one 

Data8277 was used for this experiment's dataset. It includes 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 |  514 

transactions that are manipulated as big data for the 2006, 

2013, and 2018 Censuses (RC, TA, SA2, DHB) census night 

population counts. A multitude of experiments were 

conducted utilizing different values of minsup and 

compared to the original FP-Growth algorithm in order to 

precisely determine the superior performance of the 

suggested technique. The obtained outcomes, categorized 

by the quantity of frequent itemsets and the execution time 

required to locate them for various minsup values (10%, 

20%, 30%, and 50%), are presented in Table 7. The results 

in Table 7 clearly demonstrate the impact of different 

minsup values on the performance of the suggested 

technique. It can be observed that as the minsup value 

increases, the number of frequent itemsets decreases while 

the execution time increases. This provides valuable 

insights for selecting an appropriate minsup value in future 

implementations.

Table 7. Results of a comparison using different minsup criteria for the Data8277 dataset are shown. 

 

# Discovered Frequent itemsets Execution time per seconds (s) 

  

  

minsup   

New 
FP-Growth 

New 
FP-Growth 

 
No. 

algorithm   algorithm 
  

14 97 100.918 194.184 10% 1 

11 88 92.167 178.649 20% 2 

10 84 91.26 178.022 30% 3 

8 78 90.638 159.288 50% 4 

 

As the value of minsup increases, the execution time of both 

methods and the quantity of identified frequent item sets 

tend to decrease. 

The point at which the proposed method surpasses the FP-

Growth algorithm is unequivocally demonstrated through 

the execution time comparisons of two algorithms for 

various minsup values (10%, 20%, and 30%) as shown in 

Figure 2. Constructing a substantial quantity of conditional 

sub-trees and consequential frequent item sets requires 

considerable time and memory. This is particularly evident 

when the minsup value is set to a higher percentage, such as 

30%. The proposed method, on the other hand, efficiently 

handles the construction of conditional sub-trees and 

frequent item sets, resulting in significantly reduced 

execution time and memory usage. 

 

Fig. 2.  A comparison of the Data8277 dataset's execution time and minsup threshold results. 

5.2. Second  Experiment two 

The dataset QtyT40I10D100K was utilized for this 

experiment. This collection has 4 attributes and 3960457 

records that can be manipulated as big data.  Table 8 

displays the FP-Growth and the proposed algorithm's 

execution times as well as the number of frequent itemsets 

that were discovered for various minsup criteria, including 

10%, 20%, 30%, and 50%. 
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Table 8. Results of comparisons using different minsup thresholds for the QtyT40I10D100K dataset are shown.  

  

# Discovered Frequent 

itemsets 

Execution time per 

seconds (s) 

  

  

minsup  

New FP-

Growth 

New FP-

Growth 

 
No. 

algorithm algorithm 
  

147 434 302.164 980.964 10% 1 

130 223 267.354 566.875 20% 2 

126 145 151.296 386.94 30% 3 

103 105 93.176 287.364 50% 4 

 

According to Table 8, the suggested approach's execution 

time and the quantity of frequent item sets discovered are 

both less than those of the FP-Growth algorithm. Figure 3 

displays the comparison findings for the QtyT40I10D100K 

dataset's minsup thresholds and execution times for the two 

algorithms.Figure 3 compares the performance of the two 

algorithms using 4 different minsup thresholds and displays 

the results. 

 

Fig. 3.  : A comparison of the QtyT40I10D100K dataset's execution time and minsup threshold results. 

6. Conclusion 

To increase the effectiveness of big data mining,An 

enhanced FP-Growth method is suggested in this study for 

effective mining of frequent itemsets. The suggested 

approach increases the efficiency of mining in the big data 

environment by using OFILs to build the OFIM. As a result, 

the suggested technique creates fewer frequent itemsets 

after using OFIM to extract the set of frequent items. 

In order to reduce execution time and memory consumption, 

the proposed method accurately deletes infrequently 

accessed objects. This deletion process is based on a 

thorough analysis of the object's usage patterns and 

relevance to the current system requirements. By removing 

these infrequently accessed objects, the method optimizes 

the overall performance and resource utilization of the 

system. The execution time of two algorithms for various 

minsup values in order to determine their efficacy. It 

unequivocally demonstrates how significantly the proposed 

algorithm outperforms the FP-Growth algorithm. Prior to 

generating a substantial quantity of frequent item sets, the 

FP-Growth algorithm is required to construct a considerable 

number of conditional sub-trees. This process is time-

consuming and memory intensive. 

In contrast, the proposed algorithm efficiently generates 

frequent item sets without the need for constructing 

conditional sub-trees. This not only reduces the execution 

time but also minimizes the memory usage, making it a 

more efficient and scalable solution compared to the FP-

Growth algorithm. Additionally, the performance 

improvement of the proposed algorithm becomes more 

pronounced as the minsup values increase, further 

highlighting its superiority over FP-Growth.  
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