

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 508

Developing an Efficient FP-Growth Algorithm using Ordered Frequent

Itemsets Matrix for Big Data

Abdulkader Mohammed Abdulla Al-Badani*1, Abdualmajed Ahmed Ghaleb Al-Khulaidi1

Submitted: 26/01/2024 Revised: 04/03/2024 Accepted: 12/03/2024

Abstract: Mining big data is difficult. Problems require an efficient algorithm and software computer for computation in big datasets The

FP Growth Algorithm needs a lot of memory and requires a long time for computation and extract result. In this work, we propose

modifications to the workings of the FP-Growth algorithm. The suggested algorithm will reduce the time in mining and decrease the

number of frequently created items, yielding a significant reduction in decision-making in big datasets through our use of the proposed

matrix OFIM instead of the tree used in those algorithms. The matrix OFIM allows for efficient storage and retrieval of frequent itemsets,

resulting in faster computation and extraction of results compared to the traditional tree-based approach. Additionally, our algorithm

optimizes memory usage by minimizing the number of frequently created items, further enhancing its performance in handling big datasets.

Keywords: Big Data, Aprioiri Algorithm, FP-Growth Algorithm, Support Count.

1. Introduction

Methods that can facilitate the collection of extremely large

data sets are necessary as a result of the development of

information technology in the modern era, which has

generated significant advancements that greatly improve the

amount of data that can be gathered and stored in a very

large database [1]. Programs for big data analytics have

significantly changed how individuals live their daily lives.

As interest in data-driven decision making has grown, an

extensive array of big data analytics solutions has been

developed [2].Data mining is a technology that can be

applied. The process of searching through selected data for

intriguing patterns or information is known as data

mining[3][4]. Data mining is also referred to as knowledge

discovery in databases (KDD). KDD [5] encompasses both

the collection of data and its utilization to identify

relationships or patterns within vast data volumes.

Data from the physical world often comprises sets of

objects, such as assemblages of products that were

purchased together at a supermarket. For example, a

frequent itemset refers to a collection of items that manifest

a recurring pattern within a transaction dataset. The

following definitions apply to the frequent itemset:-

Let L=L1, L2, L3,.In represent a collection of items. Since

D is the collection of database transactions, and since each

transaction T is made up of a set of objects, L contains T.

For each transaction A contained in L, A can be referred to

be the item set if and only if the transaction T completes A.

The support count of an item set refers to the frequency with

which the item set A appears in the transactions of database

D. The itemset A is commonly known as the frequent

itemset, and the provided support count is considered as the

minimum support count (minsup) if the support count of

itemset A is equal to or exceeds the specified support count.

The support count is a crucial metric in association rule

mining as it helps identify frequent itemsets. By setting a

minimum support count (minsup), we can filter out

infrequent itemsets and focus on those that occur frequently

in the database transactions. This allows us to uncover

meaningful associations and patterns among the items in the

dataset.

 The FP-Growth (Frequent Pattern Growth) method was

created from the Apriori method [6]. The idea of creating a

tree, known as the FP-Tree, is how the FP Growth approach

finds common item sets [7]. The FP-Tree idea makes the FP-

Growth process more efficient.The first effective tree-based

approach for mining the frequent item sets is called FP-

Growth. [8]. In order to reduce the size of the resulting

conditional FP-tree, a divide and conquer strategy is

implemented with careful consideration. For this, the

datasets must be scanned twice. The FP-tree is a condensed

representation of the transactions. FP-Growth is impeded by

the prospective combinatorial quantity of candidate item

sets, which a compact representation does not diminish [9].

Furthermore, the main memory is incapable of

accommodating the large database structure as a

consequence of the potentially immense size of the resulting

tree [10]. As a result, the proposed method makes use of a

novel, two-dimensional array structure based on the FP-

Growth algorithm termed the Ordered Frequent Itemsets

Matrix (OFIM). With the help of in this novel structure, a

transactional database is compressed to produce an

environment that is favorable for efficient mining of

1Faculty of Computer Science & Information Systems, Sana’a University,

Sana’a, Yemen.

ORCID ID : 0009-0005-6772-370X

* Corresponding Author Email: Abdulkaderbadani@su.edu.ye

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 509

frequent itemsets.

The structure of the remainder of the document is as follows:

There is related material in Section 2. The FP-Growth

algorithm is described in its original form in Section 3. In

Section 4, an algorithm proposal is presented. In Section 5,

an account of the experimental results and interrelated

discussions is presented. Section 6 contains the concluding

remarks.

2. Related Work

Some of the current algorithms for mining frequent itemsets

are presented in this section. There are numerous frequent

itemsets mining algorithms given in [8][11][13].

On the basis of a linear table, they have presented a novel

frequent itemset mining algorithm. The linear table has the

capacity to store more shared data while requiring fewer

scans of the original dataset [14].

A divide-and-conquer technique based on an FP-Growth

Tree to build a node-tree structure that is first sorted so that

the most prominent patterns are accessible throughout the

tree development process [15]. It has put out a novel

frequent pattern mining algorithm based on the FP- Growth

idea that pulls out frequent patterns using bit matrices and

linked list structures [16].

Distributed Frequent Pattern Analysis In Big Data is

proposed in [2]. This study uses the FP growth algorithm to

find common item sets in a database without the need for

candidate generation, and incremental FP-Growth analysis

is suggested to create the least redundant tree structure

possible. As a result, the database will undergo fewer scans,

which will lower latency. A brand-new mining algorithm for

accurate pattern determination in massive amounts of data

is proposed [17][18]. A combination of calculations based

on Map, Map Reduce Frame, and Hadoop opensource

implementation are suggested for this usage.

This study introduces FP-Growth algorithm optimization

against a backdrop of cloud computing and computer big

data [18]. A parallel mining algorithm is discussed in this

work. The enhanced technique is utilized by each node

machine to generate fragmentary frequent itemsets via

parallel mining. Subsequently, all frequent itemsets are

retrieved through summarization [19]. Following the

extraction of transaction databases in accordance with each

frequent item, a corresponding projection database is

generated for each such item.

 Signature-based Tree for Finding Frequent Itemsets in

[20]. In this study, the authors suggest a brand-new tree-

based structure that places a stronger emphasis on

transactions than itemsets. As a result, we steer clear of the

issue of support values that have an adverse effect on the

tree that is produced. Numerous strategies have been

proposed to attain frequent item sets mining, which is

founded on the fp-growth algorithm, while also ensuring

privacy, utility, and efficacy [21].

A framework for an intriguing association rule mining

technique for big data that is incrementally parallel is

provided. During the mining process, the suggested

framework combines interestingness measures [22]. The

suggested framework processes incremental data, which

typically arrives at various intervals, allowing the user's

critical knowledge to be explored solely through the

processing of new data, rather than starting over from

scratch.

In the present study, they propose incremental maximal

frequent itemset mining techniques that, throughout the

mining stage, take into account the subjective

interestingness requirement [23]. The proposed framework

is specifically engineered to incorporate incremental data,

which typically arrives at varying intervals.

3. FP-Growth Algorithm

FP-Growth is an alternative method for determining the

most prevalent itemset in a data collection. FP-growth

adopts a different paradigm from the one used by the Apriori

algorithm. FP-Growth is an alternative method for

determining the most frequent collection of data sets in a

data set. The FP-Growth algorithm was created by

modifying the Apriori algorithm. FP-growth is one method

that frequently results in a mining itemset without a

candidate Generation. It creates an extremely dense data

structure (FP-tree) to condense the initial transaction

database. This dense data structure allows for efficient and

fast mining of frequent itemsets. By compressing the

transaction database into the FP-tree, FP-growth eliminates

the need for candidate generation, which can be

computationally expensive in large datasets. Additionally,

the FP-tree structure enables quick and effective pattern

matching, making it a popular choice for frequent itemset

mining tasks.

Mining all frequent itemsets just requires two dataset scans

with the FP-Growth algorithm. The first scan counts how

many times each item appears. The first FP-tree, which

contains all of the frequency data from the original dataset,

is built during the second scan. The FP-tree is then mined

instead of the dataset. By mining the FP-tree, the algorithm

can efficiently identify and extract all frequent itemsets

without having to repeatedly scan the original dataset. This

approach significantly reduces the computational time and

resources required for frequent itemset mining.

Additionally, the FP-Growth algorithm is particularly

effective in handling large datasets with a high number of

transactions, making it a popular choice in data mining

tasks. The FP-Growth method for a transaction database's

pseudo code is shown below [11].

An input consists of a minsup threshold and a transaction

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 510

database (DB).

Results: FP-tree.

Procedure:-

step 1: Extract the support count for each item from the

transactional DB.

Step 2: Discard the item if item_id is less than the support.

Step3: generate an I-list header table to store the frequently

occurring item sets. The item sets should be arranged in a

decreasing order according to support and node link.

 Step 4:Create the FP-Growth tree initially. The algorithm

begins by constructing an FP-Growth tree and assigns it the

value "null" in the initial phase. Additionally, create a

branch for each item in each transaction after reading it. If a

prefix was previously shared by each node, increment the

value by one; otherwise, create a new node.

Step 5: Each item in the header table is linked to its

corresponding instance in the tree via a single link list,

represented by dashed lines.

Step 6: Create the mine FP tree, also referred to as the FP-

Growth tree.

The fp-tree is coupled with a header table. In decreasing

order of frequency, the header table stores single objects and

their counts.

An example of a transactional dataset is shown in Table 1,

and the FP-tree produced from this dataset using the FP-

Growth algorithm is shown in Figure 1.

Table 1. A dataset containing nine transactions is shown.

TID List of items

D1 K1,K2,K5

D2 K2,K4

D3 K2,K3

D4 K1,K2,K4

D5 K1,K3

D6 K2,K3

D7 K1,K3

D8 K1,K2,K3,K5

D9 K1,K2,K3

Fig 1. A minsup=50% FP-tree example.

Table 2 displays the derived frequent itemsets..

Header Table

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 511

Table 2. lists the frequent item sets that the FP-Growth algorithm identified.

TID Conditional FP-tree Frequent itemsets

K5 <K2:2,K1:2> {K2,K5:2}, {K1,K5:2}, {K2,K

1,K5:2}

K4 <K:2> {K2,K4:2}

K3 <K2:4,K1:2>,<K1:2> {K2,K3:4},{K1,K3:4},{K2,K1,

K3:2}

K1 <K2:4> {K2,Kl:4}

4. The Proposed Algorithm

The basic FP-Growth algorithm can be applied to small data

sets, but not to enormous data because building an FP-tree

and finding many frequent itemsets take a lot of time.

Therefore, and is affected by the growing FP-tree, which

might not fit in the main memory. The OFIM and a minsup

threshold are inputs used in the process of finding frequently

occurring itemsets. The OFIM, or One-Itemset-at-a-Time

Mining, approach addresses the memory limitation by two-

dimensional array and updating it as new itemsets are

discovered. This allows for efficient processing of large

datasets without requiring excessive memory usage.

Additionally, the minsup threshold determines the

minimum support level that an itemset must meet to be

considered frequent, allowing for customization based on

specific data mining goals and requirements.

The transactional database is summarized using a two-

dimensional array called the Ordered Frequent Itemset

Matrix (OFIM), which contains all frequent itemsets and is

sorted in support of decreasing order. The OFIM is

composed of the longest number of often ordered

commodities (Y) and the number of transactions (X). The

OFIM allows for efficient and easy retrieval of frequent

itemsets based on their support values. It provides a concise

representation of the transactional database, making it easier

to analyze and identify patterns in the data. Additionally, the

OFIM can be used to generate association rules and make

predictions about future transactions based on past patterns.

The suggested algorithm searches the transactional dataset

to provide a list of often occurring items, with the items

listed in decreasing order of frequency. This arrangement is

crucial since it will determine how OFIM is built. Ordered

frequent itemsets lists (OFILs) are collections of candidate

item sets for a transaction whose occurrence frequencies

surpass the minsup threshold and are subsequently added to

the list of frequent itemsets. OFILs play a significant role in

constructing OFIM as they provide valuable insights into

the most frequently occurring itemsets. By organizing the

items in decreasing order of frequency, the algorithm

ensures that the most relevant and important itemsets are

prioritized for further analysis and decision-making. The

final few candidate item sets are taken away. The sequence

of frequently occurring items in each transaction is

presented in the column labelled "Right-Most" of Table 3.

The "Right-Most" column in Table 3 provides valuable

insights into the patterns and trends of frequently occurring

items in each transaction. By analyzing this sequence,

researchers can identify the most popular and commonly

purchased items, helping businesses make informed

decisions about product placement and marketing strategies.

Additionally, this column allows for a better understanding

of customer preferences and can be used to optimize

inventory management systems. This listing of frequent

items allows for easy identification of the most popular and

frequently occurring items in each transaction. Analyzing

this information can provide valuable insights into customer

preferences and purchasing patterns, aiding in strategic

decision-making and targeted marketing efforts.

Table 3. OFILs-based transactional dataset.

TID List of items OFILs.

D1 K1,K2,K5 K2,K1,K5

D2 K2,K4 K2,K4

D3 K2,K3 K2,K3

D4 K1,K2,K4 K2,K1,K4

D5 K1,K3 K1.K3

D6 K2,K3 K2,K3

D7 K1,K3 K1,K3

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 512

D8 K1,K2,K3,K5 K2,K1,K3,K5

D9 K1,K2,K3 K2,K1,K3

It is important to note that the frequent items of the

transaction are presented in the same order that they appear

in the inventory of frequent items. According to Table 3, the

OFIL for transaction K1,K2,K5 is K2,K1,K5. For X and Y,

an empty OFIM initialization value of "0" is present.

Throughout the process of constructing the matrix, each

OFIL is read individually. The method extracts items from

each individual list. The elements are subsequently

appended in a sequential manner to the rows and

corresponding columns of the matrix. Each enumeration

within the OFILs is subjected to this process once more.

Upon perusing the entirety of the OFILs, as presented in

Table 3, Table 4 delineates the OFIM in its entirety.

Table 4 provides a comprehensive representation of the

OFIM after extracting and appending elements from each

individual list in the OFILs. The resulting matrix showcases

the sequential arrangement of items across rows and

columns, with an initial empty initialization value of "0" for

X and Y.

Table 4. The OFIM..

D1 K2 K1 K5 0

D2 K2 K4 0 0

D3 K2 K3 0 0

D4 K2 K1 K4 0

D5 K1 K3 0 0

D6 K2 K3 0 0

D7 K1 K3 0 0

D8 K2 K1 K3 K5

D9 K2 K1 K3 0

The proposed technique begins scanning from the final

column and computes the support for each item in each

column in OFIM, except for the sets of items that did not

achieve support., we will discard them, and each item that

has achieved support in the last column, we will compute

the number of occurrences of the previous itemsets linked

with it and similar ones in its records, and we consider them

frequent itemsets, and we delete them from OFIM, In this

way, we get rid of the tree and reduce the time and

operations of generating the frequent itemsets, So,

compared to the FP-Growth algorithm, performance is

substantially better. The OFIM algorithm efficiently

eliminates non-frequent itemsets by discarding them early

on. By only considering itemsets that have achieved

support, it reduces the computational burden and processing

time required to generate frequent itemsets. This improved

performance makes it a more efficient alternative to the FP-

Growth algorithm. The following are extensive descriptions

of the suggested algorithm:-

A DB of transactions and a minsup threshold constitute the

inputs.

Output: identified recurring item sets.

1.Perform a database scan after each transaction. Compile

F, the frequent item sets of F, and F's supporters. Sort F in

descending order as OFIL, the list of frequently sorted

items. During this phase, every set of infrequent items is

eliminated.

2.Create the OFIM. Every item ordered frequently used in

the OFIL is individually entered into the corresponding

columns for each row associated with the OFIL.

3- Generation of frequent itemsets.

 3.1- Assume that the OFIM column number is c.

3.2- For (c= M; c>=1; c--)

{

If c=1 Then Do

{

The current column (c) and the columns that came before it

compare the collection of frequently occurring items and

compile their supporters. Let the output be [r, f: n | OFIL]

where f is the current frequent item in column (c) and r is

the parent frequent item of the preceding columns.

We take the matching rows of item r from the collection of

frequent items and compile the previous columns of item f

from the current column's (c) supporters. Remove these

rows from the OFIM as well.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 513

}

Else Do

{

Go to column (c) before, compare the collection of

frequently used items, and gather the supporters who

support each item. Let the output be [r, f: n | OFIL] where f

is the current frequent item in column (c) and r is the parent

frequent item of the preceding columns.

Extract these rows for the recurring parent items. For the

repeated item, f, it is processed according to its order. And

delete these rows from OFIM.

}

}

The proposed algorithm Generation of frequent itemsets as

follows : start from compute the support for each item from

the last column of the OFIM. and the other (previous)

column is used to distinguish the items of current

column.The support is compute for the different items in

the current column that achieves the support is taken as the

frequent itemsets,and these rows are deleted from the

OFIM, Then the previous column is moved from the current

column. Repeat the previous steps for each column...

Table 5 displays the created frequent item sets.

Table 5. Displays the created frequent item sets.

Frequent itemsets

{K2,K3:2}, {K1,K3:2},

{K2,K1,K3:2}

The FP-Growth method produces more frequent item sets

than the suggested algorithm, according to Tables 1 and 2.

5. Results and Discussions

We implemented the method provided on databases

containing numbers. The efficacy of the suggested

methodology is evaluated by employing real-world datasets

acquired from the UCI Machine Learning Repository. This

compilation of benchmark and real-world datasets is

frequently employed in the fields of KDD and data mining

[24]. These datasets cover a wide range of domains and have

been extensively studied by researchers. By using these

datasets, we can ensure the generalizability and reliability of

our results. Additionally, the UCI Machine Learning

Repository provides detailed documentation and

preprocessing guidelines for these datasets, which further

enhances the validity of our evaluation. The effectiveness of

the suggested approach is assessed and contrasted with the

widely recognized FP-Growth algorithm with regards to the

time needed to identify frequent item sets and the quantity

of frequent item sets extracted from the given datasets.

Furthermore, we conducted experiments on multiple

datasets with varying characteristics to ensure the

robustness of our findings. Our evaluation also takes into

account the impact of different parameters and settings on

the performance of the suggested approach, providing a

comprehensive analysis of its effectiveness. Each

experiment is executed on a laptop equipped with 64GB of

RAM, Windows 10 64-bit, C++, and a 3.20 GHz Intel (R)

coreTM i7-8700 processor. The datasets utilized for this

side-by-side comparison are categorized statistically in

Table 6. The datasets used in this study are carefully

selected to represent a diverse range of real-world scenarios.

They encompass different industries, demographics, and

geographical locations to ensure the generalizability of our

findings. The statistical categorization in Table 6 provides a

clear overview of the dataset characteristics, such as size,

complexity, and distribution, allowing for a comprehensive

understanding of the experimental setup.

Table 6. Test dataset characteristics .

Datasets Size #Transactions

Data8277 77.7MB 5029922

QtyT40I10D100K 44.9MB 3960457

The subsequent illustrations illustrate the comparative

performance of the proposed algorithm and the FP-Growth

algorithm on the specified datasets:-

5.1. First Experiment one

Data8277 was used for this experiment's dataset. It includes

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 514

transactions that are manipulated as big data for the 2006,

2013, and 2018 Censuses (RC, TA, SA2, DHB) census night

population counts. A multitude of experiments were

conducted utilizing different values of minsup and

compared to the original FP-Growth algorithm in order to

precisely determine the superior performance of the

suggested technique. The obtained outcomes, categorized

by the quantity of frequent itemsets and the execution time

required to locate them for various minsup values (10%,

20%, 30%, and 50%), are presented in Table 7. The results

in Table 7 clearly demonstrate the impact of different

minsup values on the performance of the suggested

technique. It can be observed that as the minsup value

increases, the number of frequent itemsets decreases while

the execution time increases. This provides valuable

insights for selecting an appropriate minsup value in future

implementations.

Table 7. Results of a comparison using different minsup criteria for the Data8277 dataset are shown.

Discovered Frequent itemsets Execution time per seconds (s)

minsup

New
FP-Growth

New
FP-Growth

No.

algorithm algorithm

14 97 100.918 194.184 10% 1

11 88 92.167 178.649 20% 2

10 84 91.26 178.022 30% 3

8 78 90.638 159.288 50% 4

As the value of minsup increases, the execution time of both

methods and the quantity of identified frequent item sets

tend to decrease.

The point at which the proposed method surpasses the FP-

Growth algorithm is unequivocally demonstrated through

the execution time comparisons of two algorithms for

various minsup values (10%, 20%, and 30%) as shown in

Figure 2. Constructing a substantial quantity of conditional

sub-trees and consequential frequent item sets requires

considerable time and memory. This is particularly evident

when the minsup value is set to a higher percentage, such as

30%. The proposed method, on the other hand, efficiently

handles the construction of conditional sub-trees and

frequent item sets, resulting in significantly reduced

execution time and memory usage.

Fig. 2. A comparison of the Data8277 dataset's execution time and minsup threshold results.

5.2. Second Experiment two

The dataset QtyT40I10D100K was utilized for this

experiment. This collection has 4 attributes and 3960457

records that can be manipulated as big data. Table 8

displays the FP-Growth and the proposed algorithm's

execution times as well as the number of frequent itemsets

that were discovered for various minsup criteria, including

10%, 20%, 30%, and 50%.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 515

Table 8. Results of comparisons using different minsup thresholds for the QtyT40I10D100K dataset are shown.

Discovered Frequent

itemsets

Execution time per

seconds (s)

minsup

New FP-

Growth

New FP-

Growth

No.

algorithm algorithm

147 434 302.164 980.964 10% 1

130 223 267.354 566.875 20% 2

126 145 151.296 386.94 30% 3

103 105 93.176 287.364 50% 4

According to Table 8, the suggested approach's execution

time and the quantity of frequent item sets discovered are

both less than those of the FP-Growth algorithm. Figure 3

displays the comparison findings for the QtyT40I10D100K

dataset's minsup thresholds and execution times for the two

algorithms.Figure 3 compares the performance of the two

algorithms using 4 different minsup thresholds and displays

the results.

Fig. 3. : A comparison of the QtyT40I10D100K dataset's execution time and minsup threshold results.

6. Conclusion

To increase the effectiveness of big data mining,An

enhanced FP-Growth method is suggested in this study for

effective mining of frequent itemsets. The suggested

approach increases the efficiency of mining in the big data

environment by using OFILs to build the OFIM. As a result,

the suggested technique creates fewer frequent itemsets

after using OFIM to extract the set of frequent items.

In order to reduce execution time and memory consumption,

the proposed method accurately deletes infrequently

accessed objects. This deletion process is based on a

thorough analysis of the object's usage patterns and

relevance to the current system requirements. By removing

these infrequently accessed objects, the method optimizes

the overall performance and resource utilization of the

system. The execution time of two algorithms for various

minsup values in order to determine their efficacy. It

unequivocally demonstrates how significantly the proposed

algorithm outperforms the FP-Growth algorithm. Prior to

generating a substantial quantity of frequent item sets, the

FP-Growth algorithm is required to construct a considerable

number of conditional sub-trees. This process is time-

consuming and memory intensive.

In contrast, the proposed algorithm efficiently generates

frequent item sets without the need for constructing

conditional sub-trees. This not only reduces the execution

time but also minimizes the memory usage, making it a

more efficient and scalable solution compared to the FP-

Growth algorithm. Additionally, the performance

improvement of the proposed algorithm becomes more

pronounced as the minsup values increase, further

highlighting its superiority over FP-Growth.

References

[1] S. P. Tamba, M. Sitanggang, B. C. Situmorang, G. L.

Panjaitan, and M. Nababan, “Application of data

mining to determine the level of fish sales in pt. trans

retail with fp-growth method,” INFOKUM, 2022, pp.

905–913.

[2] T. Patil, R. Rana, and P. Singh, “Distributed frequent

pattern analysis in big data.”International Research

Journal of Modernization in Engineering Technology

and Science ,2022,pp.1-3.

[3] A. Ayu, A. P. Windarto, and D. Suhendro,

“Implementasi data mining dengan metode fp-growth

terhadap data penjualan barang sebagai strategi

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 508–516 | 516

penjualan pada cv. a & a copier,” Resolusi: Rekayasa

Teknik Informatika dan Informasi, 2021, pp. 67–75.

[4] A. Siswandi, A. S. Sunge, and R. Y. Wulandari,

“Analisa data mining dengan metode klasifikasi untuk

produk cacat pada pt. shuangying international

indonesia,” Jurnal SIGMA, 2018, pp. 153–156.

[5] B. Anwar, A. Ambiyar, and F. Fadhilah, “Application

of the fp-growth method to determine drug sales

patterns,” Sinkron: jurnal dan penelitian teknik

informatika, 2023, pp. 405–414.

[6] M. M. Hasan and S. Z. Mishu, “An adaptive method

for mining frequent itemsets based on apriori and fp

growth algorithm,” in 2018 International Conference

on Computer, Communication, Chemical, Material

and Electronic Engineering (IC4ME2). IEEE, 2018,

pp. 1–4.

[7] A. Almira, S. Suendri, and A. Ikhwan, “Implementasi

data mining menggunakan algoritma fp-growth pada

analisis pola pencurian daya listrik,” Jurnal

Informatika Universitas Pamulang,2021, pp. 442–448.

[8] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation,” ACM sigmod record,

2000, no. 2, pp. 1– 12.

[9] F. Wei and L. Xiang, “Improved frequent pattern

mining algorithm based on fp-tree,” in Proceedings of

The Fourth International Conference on Information

Science and Cloud Computing (ISCC2015), 2015, pp.

18–19.

[10] R. Krupali, D. Garg, and K. Kotecha, “An improved

approach of fp-growth tree for frequent itemset mining

using partition projection and parallel projection

techniques,” International Recent and Innovation

Trends in Computing and Communication, 2017, pp.

929–934.

[11] M. Shridhar and M. Parmar, “Survey on association

rule mining and its approaches,” Int J Comput Sci Eng,

2017, no. 3, pp. 129–135.

[12] R. Agrawal, R. Srikant et al., “Fast algorithms for

mining association rules,” in Proc. 20th int. conf. very

large data bases, 1994, pp. 487–499.

[13] H. Khanali and B. Vaziri, “A survey on improved

algorithms for mining association rules,” Int. J.

Comput. Appl, 2017, p. 8887.

[14] J. Lu, W. Xu, K. Zhou, and Z. Guo, “Frequent itemset

mining algorithm based on linear table,” Journal of

Database Management (JDM), 2023, pp. 1–21.

[15] M. Barkhan, R. Ramazani, and A. Kabani, “An

algorithm to create sorted fp-growth tree for extracting

association rules,” Research square, 2022, pp. 1–9.

[16] M. K. Sohrabi and M. H. HASANNEJAD,

“Association rule mining using new fp-linked list

algorithm,” Journal of Advances in Computer

Research,2016, pp. 23–34.

[17] K. BHARATHI and D. B. DEVENDER, “Frequent

itemset mining from big data using fp-growth

algorithm,” Complexity International Journal (CIJ) ,

2020, pp. 582–591.

[18] B. Zhang, “Optimization of fp-growth algorithm based

on cloud computing and computer big data,”

International Journal of System Assurance

Engineering and Management, 2021, pp. 853–863.

[19] S. X. Le Zhang, X. Li, X. Wu, and P.-C. Chang, “An

improved fp-growth algorithm based on projection

database mining in big data,” Journal of Information

Hiding and Multimedia Signal Processing, 2019, pp.

81–90.

[20] M. El Hadi Benelhadj, M. M. Deye, and Y. Slimani,

“Signaturebased tree for finding frequent itemsets,”

Journal of Communications Software and Systems,

2023, pp. 70–80.

[21] S. Bhise and S. Kale, “Effieient algorithms to find

frequent itemset using data mining,” Int. Res. J. Eng.

Technol., 2017, pp. 2645–2648.

[22] A. S. Alhegami and H. A. Alsaeedi, “A framework for

incremental parallel mining of interesting association

patterns for big data,” International Journal of

Computing, 2020, pp. 106–117.

[23] H. A. Alsaeedi and A. S. Alhegami, “An incremental

interesting maximal frequent itemset mining based on

fp-growth algorithm,” Complexity, 2022,

[24] C. J. Merz, “Uci repository of machine learning

databases,” URL: http://www. ics. uci. edu/˜

mlearn/MLRepository. html, 1998

