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Abstract: Despite being an essential part of the world's agricultural economy, grapes are prone to a number of illnesses that can negatively 

affect crops quality and productivity. In recent years, application of Deep Learning (DL) techniques in agricultural practices has shown 

promise in disease prediction and early detection. This study investigates the effectiveness of Convolutional Neural Networks (CNN), 

Efficient Net, and Residual Networks (ResNet) in predicting diseases in grapevines. The study makes use of a database that includes high-

resolution photos of both good and diseased grape leaves, including black rot, leaf blight, and grapevine measles. To standardize and 

enhance data sets for model training and evaluation, methods for pre-processing are used. Three DL classifiers, namely CNN, Efficient 

Net, and ResNet, are implemented and fine-tuned using transfer learning. To evaluate the models' performance in disease categorization, 

a subset of the dataset is used for training, and another subset is used for validation. Assessment criteria includes accuracy, recall, precision 

and F1-score are utilized to measure the ability to forecast the methods. The outcomes of the experiments demonstrate the comparative 

performance of CNN, Efficient Net, and ResNet. In this CNN shows the accuracy of 90%, the Efficient Net with an accuracy of 97%, and 

finally the ResNet with the maximum efficiency of 98%. 

Keywords: Convolutional Neural Networks; Efficient Net; ResNet; Deep Learning. 

1. Introduction 

Advances in technology have drastically revolutionized 

traditional methods in today's agriculture, bringing new and 

inventive ways to boost crop yield and reduce hazards [1]. 

Grapes are a significant contributor to global agricultural 

yield among the many crops that contribute to the total 

global agricultural yield. They are essential in the 

production of wine, juices, and a range of gastronomic 

delights [2]. But in the context of grape agriculture, illnesses 

of plants can significantly affect both quantity and quality. 

Deep learning, a subfield of artificial intelligence fashioned 

after the neural networks of the human brain, has 

demonstrated extraordinary successes in a variety of 

domains, ranging from picture recognition to natural 

language processing [3]. Its ability to alter agriculture is 

based on its ability to analyse large data sets, discern 

intricate trends, and forecast outcomes with unmatched 

accuracy. When applied to grape farming, DL for disease 

prediction offers the possibility of recognizing difficulties 

early, reacting quickly, and eventually increasing crop 

health [4]. 

The global demand for premium grape-related products and 

the grape industry's economic significance make the fusion 

of technology and agriculture all the more pertinent [5]. The 

majority of conventional illness identification techniques 

rely on visual inspections, which can be a time-consuming 

and inaccurate process. Using DL models in grape 

cultivation offers a more reliable and efficient way to 

identify illnesses. This gives farmers the ability to better 

optimize their production and proactively handle possible 

hazards [6]. 

Using cutting-edge technology, particularly those with 

sophisticated DL algorithms, has emerged as a viable 

solution to this problem. These algorithms are at the 

forefront of a revolution in grape plant disease prediction. 

This work explores the use of Residual Networks (ResNets), 

Efficient Nets, and Convolutional Neural Networks (CNNs) 

as powerful tools for disease prediction and identification in 

grape plants. 

The CNN, a fundamental framework in DL for analysing 

images, dissects images into smaller parts to identify 

specific patterns [7].Efficient Net, recognized for its 

exceptional efficiency and precision, employs a compound 

scaling approach to maintain a balance between model 

depth, width, and resolution [8]. Conversely, ResNet applies 

residual learning, allowing the construction of significantly 

deeper networks while addressing the challenge of the 

vanishing gradient problem [9].  

The research compares and assesses how well various 

classifiers use picture information to forecast illnesses in 

grape plants. Images of both good and diseased grapevines 

shall be used in the training and testing of classifiers on this 
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dataset. Evaluation metrics includes recall, precision, 

accuracy, and F1-score will be utilized to assess every 

classifier. 

Through analysing the outcomes generated by these 

classifiers, this research seeks to pinpoint the most reliable 

classifier for predicting grape plant diseases. These findings 

not only promise to enhance agricultural techniques but also 

offer valuable insights for creating strong and effective 

models to identify infections in other crops. 

2. Literature Survey 

Poonam Dhiman et al [10] suggested a deep neural network 

model can detect citrus fruit disease at various degrees of 

severity is trained and pre-processed using a citrus fruit 

dataset. Combining broad search with graph-based 

segmentation, the model makes use of tagged images and a 

selective search methodology. 98% of high severity levels, 

96% of low severity levels, and 96% of healthy situations 

are predicted by the model. In terms of identifying medium 

severity levels, the model similarly demonstrates 97% 

accuracy.  According to the research, the citrus fruit disease 

has four different intensity degrees, and the suggested 

approach is both valid and effective for diagnosing it. 

Xiaoyue Xie et al [11] suggested use of deep CNN as an 

actual detector for grape leaf diseases. By applying digital 

image processing technology, Grape Leaf Disease dataset 

(GLDD) is enlarged. A Faster DR-IACNN model, 

established on DL, is presented that has a greater capacity 

for feature extraction. The model achieves 15.01 FPS 

detection speed and 81.1% mAP precision on GLDD. It 

appears from this study that the Faster DR-IACNN gives a 

workable approach for diagnosing grape leaf disease and 

guidance for other plant diseases. 

Four grapevine illness, leaf blight, black rot, stable, and 

black measles—were examined by Prabhjot Kaur et al. [12]. 

Even while earlier ML techniques were limited to detecting 

one or two diseases, none of them offered a comprehensive 

diagnosis. The study retrains the EfficientNet B7 deep 

architecture with transfer learning, down sample structures 

with Logistic Regression, and detects discriminant qualities 

with a constant accuracy of 98.7% after 92 epochs. The 

paper recommends a suitable classifier for this application 

and validates the effectiveness of the suggested technique in 

comparison to existing procedures. 

Sammy V. Militante et al [13] developed a technique to 

recognize numerous illnesses in a wide range of plant 

species, such as tomato, sugarcane, corn, apple, potato, and 

grapes. 35,000 images of both good and bad leaves are used 

in the process. DL simulations with a 96.5% accuracy rate 

were trained to identify and diagnose various illnesses. The 

technology can detect and recognize plant variety and 

disease type with up to 100% accuracy. 

Feng Jiang et al [14] used CNNs for extracting attributes 

from pictures of rice leaf disease. Next, the particular 

disease is classified and predicted using SVM method. The 

optimal SVM model parameters are determined using the 

10-fold cross validation method. Studies show that the rice 

disease recognition model that utilizes DL and SVM has an 

average correct identification rate of 96.8% when penalty 

parameter C = 1 and the kernel parameter g = 50. Compared 

to standard back propagation neural network designs, this 

accuracy is superior. This work offers a novel method for 

future crop illness diagnostics research utilizing DL.   

Miaomiao Ji et al [15] presented UnitedModel, a united 

CNN architecture intended to distinguish between fresh and 

diseased grape leaves, including those with isariopsis leaf 

spot, black rot, and esca. The model employs multiple 

CNNs to extract complementing discriminative 

characteristics, hence improving its representativeness. 

With an average validation accuracy of 99.17% and a test 

accuracy of 98.57%, the algorithm was evaluated and 

contrasted with other CNN algorithms on the PlantVillage 

dataset, demonstrating its usefulness as a decision support 

instrument for agriculturalists. 

Javed Rashid et al [16] utilizing the YoLOv5 image 

segmentation method, leaves were extracted from plant 

pictures to develop a multi-level DL algorithm for 

identifying potato leaf illness. A unique DL method using a 

CNN was developed to identify both earlier and later blight 

potato illnesses from leaf pictures. With the use of a 4062-

image datas from Central Punjab region of Pakistan, the 

algorithm was trained and assessed, and it demonstrated 

99.75% accuracy. When the performance was evaluated 

against modern algorithms utilizing the Plant Village 

dataset, significant enhancements in accuracy and 

computational cost were observed. 

3. Research Methodology 

This research looks into a number of diseases that affect 

grape leaves, including black rot, leaf roll disease, and 

grapevine measles. Globally, these conditions present 

serious difficulties for vineyards. A fungus called black rot 

causes brown patches on leaves that eventually get darker 

and smaller. This damage to the fruit finally leads to its 

decomposition and withering. Grapevine measles causes 

colour changes and curling of the leaves, which interferes 

with photosynthesis and lowers fruit quality. Different fungi 

or bacteria can produce leaf blight, which results in sporadic 

brown patches on leaves and may eventually cause the vines 

to weaken and lose some of their leaves. 

Strategies that work are essential in the fight against chronic 

illnesses. Fungicides, good hygiene, and cultivating disease-

resistant grape varietals are all necessary to keep grapevines 

healthy and productive. The focus of this work is to use a 

collection of grape leaves and sophisticated image 
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processing based on DLto identify these diseases. 

Comparing different DLplatforms such as CNN, Efficient 

Net, and ResNet is necessary to find the most efficient 

model for illness diagnosis. This comparison aids in 

developing better methods for the industry's management of 

grapevine diseases. The process flow diagram for this 

procedure is shown in Figure 1. 

 

Fig. 1 Work Flow Chart 

3.1. Pre-Processing 

Data preparation serves as the foundation for fine-tuning the 

initial leaf dataset and is essential for forecasting grape leaf 

diseases. Prior to entering the data into a machine learning 

model for in-depth analysis, this complex process entails 

careful stages. Data cleaning is the first and most important 

step in this procedure. Here, the dataset is carefully 

examined to look for anomalies, discrepancies, or missing 

data. This crucial stage ensures the accuracy and 

dependability of the dataset by correcting mistakes and 

discrepancies. 

3.1.1. Grey scale conversion 

Grayscale conversion is similar to taking a painting's vibrant 

colour range and replacing it with a world of black, white, 

and numerous hues in between. Every pixel becomes less 

vibrant, changing from a wide variety of hues to a number 

of tones that make up the grayscale range. The unique 

qualities that were formerly characterized by vivid colours 

are now apparent through modest adjustments to brightness 

and contrast. Highlights get more noticeable, while shadows 

take on a richer, deeper tone. This monochrome world is 

fascinating because the lack of colour draws attention to the 

image's core, which is the underlying structure, 

arrangement, and interaction of light and dark that colours 

usually hide [18]. The schematics of grey scale conversion 

has been shown in Figure.2. 

 

Fig. 2 Grey scale image 

3.1.2. Image enhancement 

Enhancing a picture's quality to make it more suitable for 

analysis or human perception is the aim of pre-processing 

strategies for enhancing images. These methods include a 

variety of filters and algorithms that highlight details, cut 

down on noise, and enhance clarity overall. They include 

adjustments to colour balance and saturation for better 

visual representation, contrast to accentuate details by 

enhancing the contrast between light and dark areas, 

sharpening to highlight edges and finer elements, and noise 

reduction to remove unwanted pixel irregularities that 

distort the image. By using these pre-processing techniques, 

photos are improved and more suitable for further 

inspection or analysis. This makes it easier to understand 

and analyse visual content [19]. The schematics of image 

enhancement has been shown in Figure.3. 

 

Fig. 3 Image enhancement 

3.1.3. Image resizing 

Resize or alter an image's dimensions is one of several 

crucial initial steps in computer vision. This is an essential 

step to ensure consistency in size, shape, and quality before 

inspecting or modifying photos. It has benefits in that it 

helps computers process images quickly while consuming 

less memory. It also contributes to the creation of a uniform 

image collection that is used to train models, increasing the 

effectiveness of machine learning algorithms. Resizing 

requires careful treatment in order to maintain the key 

qualities of the image and avoid distortion or loss of 

important information [20]. The schematics of Image 

resizing has been shown in Figure.4. 
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Fig. 4 Image resizing 

3.2. DL Models 

3.2.1. Convolutional neural network: 

A CNN, a DL model frequently employed for tasks 

involving images, is recommended as a solution for this 

task. CNNs are created by neurons with programmable 

weights and biases, just like CNNs. After processing several 

inputs from unprocessed picture matrices, a neuron applies 

an activation function, computes a weighted total, and 

produces an output. The network operates under a loss 

function that diminishes progressively with each iteration, 

aiding the network in learning a specific set of parameters 

ideal for the classification task. Ultimately, the outcome is a 

vector displaying probabilities for each class. Unlike 

conventional neural networks that handle flat vectors as 

input, CNNs manage multi-channel images. During a 

convolution operation, a filter (e.g., 5x5x3) moves across 

the entire image, performing dot product computations 

among the filter and segments of input image [21]. Figure 5 

depicts the layout of the suggested CNN, offering detailed 

insights into its layers and the steps involved in the CNN 

process. 

 

Fig. 5 CNN Layers 

3.2.1.1. Convolutional layers  

The convolutional layer is a crucial part of CNN. This layer 

is made up of several different filters. Through convolution, 

every filter works independently on the picture to produce 

unique feature maps. Typically, when convolving an M x N-

sized image with a w×h-sized filter, it produces an output 

feature map of size σw×σh, as represented in Equation 1. 

𝑜𝑤 =
𝑀−𝑤+2𝑝𝑤

𝑠𝑤
+ 1

𝑜ℎ =
𝑁−ℎ+2𝑝𝑘

𝑠ℎ
+ 1

 (1) 

The symbols 𝑝F and 𝑝h denote the zero-padding applied in 

the width and height dimensions, while 𝑠𝑤  and 𝑠ℎ indicate 

stride in horizontal and vertical directions.  Figure 5 displays 

convolutional process where a 7x7 input map is passed 

through a 3x3 filter. 

After applying a linear filter for convolution, adding a bias 

term, and applying a non-linear function—usually 

represented by the formula in Eq. 2—the final feature map 

is produced from the input maps. 

𝑋𝑗
𝑑 = 𝑓 (∑  𝑖∈𝑙𝑗

 𝑋𝑖
𝑖−1 ∗ 𝑊𝑖𝑗

𝑖 + 𝑏𝑗
𝐼) (2) 

In this context, the convolutional layer within a CNN 

achieves scale invariance by utilizing various elements: the 

layer number denoted as 'l', the convolutional kernel 

expressed as 𝑊𝑖𝑗, the bias represented by 𝑏𝑗, the input map 

set denoted as 𝑙𝑗, and the activation function denoted as 𝑓 . 

This combination allows the network to operate 

independently of scale. 

In a convolutional neural network, the activation function is 

crucial because it allows the network to learn to handle 

complex tasks. These functions operate as the nonlinear 

modifications that are applied to the input to ascertain 

whether the data that is received is pertinent to the task at 

hand. The rectified linear unit (ReLU), hyperbolic tangent 

(tanh), and sigmoid (logistic) are examples of frequently 

used activation functions. The nonlinear transformation for 

this project is the ReLU activation function. 

Due to its nonlinear nature, the ReLU function makes error 

back propagation simple and can activate neurons across 

numerous layers. Its ability to selectively activate neurons 

rather than all of them at once gives it a major edge over 

other activation processes. Because of this, a sparse network 

that is computationally efficient is produced, in which only 

a small number of neurons fire at any given time. One 

drawback is that it may result in dead neurons, which stop 

updating weights when back propagation occurs because 

there is a gradient of zero for negative inputs. Fig. 6 shows 

the representation of the ReLU function, and Eq. 3 gives its 

formula. 

𝑓(𝑋) = max(0, 𝑋) 𝑓(𝑋) = {
𝑋, 𝑋 ≥ 0
0, 𝑋 < 0

 (3) 

The initial convolutional layer captures various basic 

features like edges, lines, and corners, while adding more of 

these layers enables the network to grasp higher-level, 

broader features. In this study, we've employed two 

convolutional layers to facilitate this process. 

 

Fig. 6 ReLU activation function 
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3.2.1.2. Pooling layers 

At times, between consecutive convolutional layers in a 

CNN, a pooling layer is inserted. Its role is to gradually 

shrink spatial dimensions of representation. This reduction 

in size curbs excessive parameters and computations in the 

network, thereby reigning in over fitting. Additionally, 

pooling layers confer translation invariance to the CNN. 

They autonomously operate on each input layer, resizing it 

spatially through pooling operations. A common pooling 

layer employs a 2 x 2 filter with a stride of 2, downsizing 

each depth slice in input by 2 along both width and height, 

discarding 75% of activations. Spatial pooling take various 

forms: max, min, average, sum, etc. In max pooling, for 

instance, a 2 x 2 window is defined as the spatial 

neighbourhood, and the major element from feature map 

within that window is selected.  For two reasons, max 

pooling produces better results: initially, it removes non-

maximal values from upper layers' computations, and 

secondly, it adds a type of translation variance [22]. Because 

of the way that this variance supports positional robustness, 

max pooling is a clever way to lower dimensionality of 

intermediate illustrations. 

3.2.1.3. Fully connected layers 

All neurons in current layer are linked to all neurons in prior 

layer when a neuron is said to be fully connected. Their 

activations are calculated by multiplying matrices and then 

adding bias. The last fully connected layer has identical 

amount of neurons as the prediction classes; output layer 

size in standard LeNet design for digit recognition is 10. The 

output layer size in our research, which tackles a four-class 

problem, is four. Convolutional and subsampling layer 

features are useful for classification, but together, they can 

produce even better outcomes. All of the retrieved features 

from earlier convolutional and subsampling layers are 

combined in fully connected layer. The softmax activation 

function, an extended logistic function frequently used in 

multi-class classification, is applied in this last fully linked 

layer [23]. 

3.2.2. Efficient Net: 

The inception of convolutional neural networks marked a 

significant advancement in deep learning, evolving from the 

basic architecture of LeNet, AlexNet, and VGG-16, which 

comprised convolutional, pooling, and fully connected 

layers. The progression continued with more sophisticated 

models like ResNet, Inception, and GoogleNet. Increasing 

network depth and widening channel size enhanced 

complexity of network, leading to improved recognition 

accuracy and richer fine-grained features in image data. 

However, this expansion also introduced challenges, 

notably the high computational cost associated with 

gradient explosion parameters. 

Efficient Net addresses these issues by integrating features 

from various networks. It achieves this by carefully setting 

composite ratio coefficients to balance network's width, 

depth, and resolution. This balanced approach results in an 

improved model performance across 3D of network.  The 

following is the formula to determine the composite 

proportion coefficient: 

{

depth: 𝑑 = 𝛼𝜙

width: 𝑤 = 𝛽𝜙

resolution: 𝑟 = 𝛾𝜙

  s.t. 𝛼 ⋅ 𝛽2 ⋅ 𝛾2 ≈ 2 

For α, β, and γ, each greater than or equal to 1, values of w, 

d, and r are employed to scale network's width, depth, and 

resolution coefficients. The provided ϕ determines the 

extent of effective resource expansion in the model. 

Constants α, β, and γ play a crucial role in distributing these 

resources across network's depth, width, and resolution 

dimensions [24]. Refer to Fig.7 for an illustration of the 

Efficient Net architecture. 

Table 1. Efficient net-B0 network parameter table 
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e 
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#Channe
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32 1 
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MBConv6, 
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MBConv6, 

 
 

112 3 

7 
MBConv6, 

 
 

192 4 

8 
MBConv6, 

 
 

320 1 

9 

Conv1 1 

&Pooling&F

C 
 

1280 1 

 

 

Fig. 7 Efficient Net Architecture. 
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3.2.3. ResNet 50 

ResNet50 represents a significant CNN architecture with 50 

layers organized into residual blocks. Its innovative 

approach incorporates skip connections, which address the 

issue of vanishing gradients often encountered in deep 

networks. With 48 convolutional layers, 1 MaxPool, and 1 

Average Pool layer, ResNet50's design aligns perfectly with 

our objectives in the diabetic retinopathy application. This 

architecture enables later layers to focus on learning more 

specific and refined features by leveraging foundational 

semantic information captured in the initial layers. 

Using a 3 × 3 filter for spatial convolution, along with 

subsequent max-pooling, greatly contributes to the model's 

effectiveness. This strategic setup aids in reducing spatial 

dimensions while retaining crucial features. Figure 5 offers 

a clear visualization of the ResNet50 model's complex 

structure, illustrating its 48 convolution layers intricately 

linked with 16 skip connections. This interconnected layout 

facilitates efficient information flow and gradient 

propagation across different depths, empowering the model 

to discern intricate patterns vital for detecting and analysing 

diabetic retinopathy [25]. 

 

Fig. 8 ResNet Architecture 

4. Result and Discussion 

This part delves into the full results gathered and provides a 

detailed analysis of the outcomes for a deeper 

comprehension. 

4.1. Dataset and tools used 

The leaf dataset utilized for this analysis was sourced from 

Kaggle. To execute the proposed models, Python was the 

chosen platform, operating on a Windows 11 system with 

8GB of RAM. This environment was selected to ensure 

robust implementation and accurate results. The dataset 

description has been displayed in Table.2. 

 

 

 

 

Table 2: Dataset Description 

 Black 

rot 

Grape 

vine 

Measle 

Leaf 

Blight 

Healthy 

leaves 

Number 

of Images 

1180 1383 1076 783 

 

4.2. Result obtained by cnn model 

A CNN model's performance throughout 25 epochs in terms 

of training and validation accuracy is displayed in Fig. 9.  

Over the course of these epochs, the model exhibits a 

remarkable accuracy rate of 90%, showcasing its 

proficiency in learning patterns and making correct 

predictions. Notably, the validation accuracy—a crucial 

metric reflecting the model's generalization ability on 

unseen data—follows a similar trajectory as the training 

accuracy, indicating that the model effectively learns 

without over fitting to the training set. 

 

Fig. 9 Training and Validation Graph for CNN Model 

Additionally, the minimal loss of 10% achieved by the 

model signifies its efficiency in minimizing errors during 

the learning process. Lower loss values correspond to better 

performance, suggesting that the model effectively 

minimizes discrepancies between predicted and actual 

values. This graph's portrayal of consistently high accuracy 

coupled with low loss underscores the model's robustness 

and effectiveness in learning complex patterns within the 

data, making it a promising solution for various tasks and 

applications. 

 

Fig. 10 Output from CNN Model 
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4.2.1. Performance metrics for CNN model 

The Table.2 evaluates disease classification performance in 

four categories: Black Rot, Grapevine Measle, Leaf Blight, 

and Healthy Leaves. The model shows a low rate of false 

positives and high recall, with a balanced performance of 

0.83 for Black Rot and 0.85 for Grapevine Measle. The 

model also has a strong ability to correctly classify positive 

cases, with a F1-score of 0.87 for Leaf Blight and 0.87 for 

Healthy Leaves. Leaf Blight has exceptional precision, 

recall, and F1-score values, with 95 instances. Healthy 

Leaves, the absence of disease, also shows high precision at 

0.98, a low rate of false positives, and a perfect recall of 

1.00, indicating the model effectively identifies all true 

negative instances. The F1-score for Healthy Leaves is 0.99, 

with 41 instances. 

Table 3: Performance Metrics for CNN model 

DISEAS

ES 

PRECISI

ON 

RECA

LL 

F1-

SCOR

E 

SUPPO

RT 

Black 

Rot 

0.83 0.87 0.85 123 

Grapevi

ne 

measle 

0.89 0.85 0.87 148 

Leaf 

Blight 

0.99 0.99 0.99 95 

Healthy 

leaves 

0.98 1.00 0.99 41 

 

4.3. Result obtained by efficient net model: 

The Fig 11 and fig 12 illustrates the performance of an 

Efficient Net model across 25 epochs, showcasing both 

training and validation accuracy. Throughout training 

process, this model exhibits substantial progress, reaching 

an impressive accuracy rate of 97% on validation dataset. 

Simultaneously, it maintains a remarkably low loss, 

bottoming out at a minimal 3%.  This graph represents an 

important milestone in the model's training process by 

demonstrating its strong learning capacity and good 

generalization to new input. 

 

Fig. 11 Training and Validation curve for Efficient Net 

Model 

 

Fig. 12 Output from Efficient Net Model 

4.3.1. Performance metrics for efficient net model: 

The Table.3 presents performance metrics for identifying 

diseases affecting grapevines and a category for healthy 

leaves. The model is assessed on precision, recall, F1-score, 

and support. "Black Rot" category has a high precision of 

0.98, demonstrating a strong ratio of correctly identified 

cases. However, it might miss some instances. The F1-score 

that combines both precision and recall, is 0.94, suggesting 

a balanced performance. The "Grapevine Measles" category 

has a precision of 0.92, indicating a slightly lower ratio of 

correctly identified cases compared to Black Rot. However, 

its recall is higher at 0.98, implying a better ability to capture 

most actual instances. The "Leaf Blight" category has a 

perfect score of 1.00, indicating accurate identification of all 

instances without false positives or negatives. The "Healthy 

Leaves" category also displays flawless performance, with 

perfect scores across all evaluation metrics. Overall, the 

classification model shows impressive accuracy and 

reliability, particularly in identifying Leaf Blight and 

Healthy Leaves. 

Table 4: Performance metrics for Efficient Net 

DISEAS

ES 

PRECISI

ON 

RECA

LL 

F1-

SCOR

E 

SUPPO

RT 

Black 

Rot 

0.98 0.91 0.94 237 

Grapevi

ne 

measle 

0.92 0.98 0.95 258 

Leaf 

Blight 

1.00 1.00 1.00 232 

Healthy 

leaves 

1.00 1.00 1.00 86 

 

4.4. Result obtained by resnet model 

The depicted graph illustrates training and validation 
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accuracy for state-of-the-art ResNet design across 9 epochs. 

Remarkably, this model showcases an outstanding accuracy 

of 98%, reflecting its robust learning capability. 

Concurrently, it achieves an impressively low loss, 

minimizing to a mere 2%. These metrics underline model's 

proficiency in understanding and generalizing complex 

patterns within the dataset, positioning it as a high-

performing solution for the given task. 

 

Fig. 13 Training and Validation curve for ResNet Model. 

 

Fig. 14. Output from ResNet model 

4.4.1. Performance metrics for cnn model 

The Table.4 shows metrics for identifying four plant 

conditions: Black Rot, Grapevine measles, Leaf Blight, and 

Healthy leaves. Black Rot detection had a precision rate of 

96%, indicating high accuracy, while Grapevine measles 

detection had a precision rate of 98% and a recall rate of 

97%. Leaf Blight detection had a perfect precision, recall, 

and F1-score of 100%, indicating flawless identification. 

Healthy leaves had a high precision of 99%, indicating a 

high proportion of accurately classified instances. The 

overall performance for Healthy leaves was 99%, indicating 

excellent overall performance in detecting and 

distinguishing between plant ailments.  These 

measurements offer insightful information on how well 

illness identification methods work. 

 

 

 

Table 1: Performance metrics for ResNet model 

DISEAS

ES 

PRECISI

ON 

RECA

LL 

F1-

SCOR

E 

SUPPO

RT 

Black 

Rot 

0.96 0.98 0.97 237 

Grapevi

ne 

measle 

0.98 0.97 0.97 258 

Leaf 

Blight 

1.00 1.00 1.00 232 

Healthy 

leaves 

0.99 1.00 0.99 86 

 

5. Conclusion 

In the field of viticulture, keeping grapevines healthy and 

productive requires the early identification and control of 

diseases such as black rot, leaf blight, and grapevine 

measles. Utilizing cutting-edge DL models, such as ResNet, 

Efficient Net, and CNN, has greatly improved the precision 

and effectiveness of disease detection and classification in 

grapevines. With a 90% efficiency rate, CNN has shown to 

be a reliable tool for diagnosing diseases in grapevines. Its 

capacity to recognize patterns and characteristics in images 

has made it possible to reliably identify these prevalent 

grape diseases.With its impressive 97% efficiency, Efficient 

Net has shown to be an excellent tool for diagnosing and 

categorizing grape illnesses. Measuring grapevine measles, 

leaf blight, and black rot has become more accurate thanks 

to its scalable architecture and balanced network depth, 

width, and resolution. In addition, ResNet has proven to be 

a reliable solution for grapevine disease identification, with 

a 98% efficiency rate as demonstrated. By addressing the 

problem of disappearing gradients and making complex 

disease-related feature extraction easier, its deep residual 

learning system has produced impressive accuracy rates. 
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