
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791  |  781 

An Efficient Model for Prediction Based Optimization in Mobile Cloud 

Task Offloading in TORO   

 

G. Amirthayogam1*, B. Thanikaivel2, G.Renuga Devi3
, J. Venkatarangan4, M. Sujaritha5,  

N. Kumaran6 

 

Submitted: 19/01/2024    Revised: 28/02/2024     Accepted: 05/03/2024       

Abstract: Mobile Cloud Computing (MCC) is a booming field with the high usage of smart devices to overcome the on-demand resource 

availability to improve performance. The humans are migrating faster for their work but due to the portable mobile devices cause resource 

migrating problem which degrades the performance of MCC. The smart devices are capable of operating various kinds of day-to-day 

applications such E-Commerce, Banking, Education Healthcare etc. In this paper, Task Offloading and Resource Optimization (TORO) 

architecture is proposed to handle the migration problem by optimizing the resource with supporting operations such as resource demand 

prediction, cloudlet resource discovery with reliability, task partitioning, task scheduling and task offloading. The implementation and 

evaluation are carried by simulating the proposed TORO architecture and comparing with the existing FDCO algorithm and mCloud model. 

Further, the evaluation results depict the proposed TORO architecture executes the tasks faster with multiple operations integrated together 

to provide better performance when compared with the existing FDCO algorithm and mCloud model. 

Keywords: On-demand prediction, Resource discovery, Reliable Resource, context-awareness, Partitioning, Scheduling, Task offloading, 
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1. Introduction 

Mobile Cloud Computing (MCC) is the new technology 

which took the world under the people’s hand with smart devices 

such as watches, mobiles, laptop, and tablets etc. Smart devices are 

capable of operating various kinds of day-to-day applications such 

E-Commerce, Banking, Education Healthcare etc. The smart 

devices also called as mobile devices which are highly portable in 

nature and limited with computing resources. Further, to execute 

the complex application in mobile device it uses the MCC 

technology [1] which dynamic in nature to overcome the resource 

limitation as shown in Fig.1 where user or client request the service 

from local mobile cloud called cloudlet, if the resource availability 

in cloudlet is not enough it uses the public cloud resource.  

Moreover, providing resources to users is not a matter in 

MCC but it should not degrade the execution performance of task 

[2] by unreliable resource and delay caused during the resource 

allocation to the tasks. So, this paper we consider the performance 

degradation problem in MCC during resource allocation and 

optimization process. Further we also addressed the additional 

challenges in various operations like task offloading, task 

partitioning, scheduling task and resource reallocation to make the 

resource optimization an effective in MCC. 

 

 

Fig.  1 General representation of MCC 
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Further MCC resource allocation operation processes the 

tasks from various users are offloaded for computation where 

offloading process need to identify the reliable resources. 

Moreover, identifying the reliable resource and taking the decision 

[3] is a challenging factor which affects the performance of MCC. 

The size of task need to be considered during task offloading 

process due to the bandwidth limitation and traffic overhead where 

the big size task got delayed and small size task is offloaded faster 

[4]. Therefore, fixing task size for offload process is a challenging 

factor which reduces the transmission delay by monitoring the 

mobile cloud network also needs to be addressed for effective task 

offloading. Next, continuous execution of the tasks [5] is needed 

for computing environment which reduces the overall execution 

time and make resource utilization an effective one, which is to be 

addressed for performance improvement in MCC.  

 The virtual resource required by task need to be formed 

as collateral which provide the computing environment called 

Virtual Machine (VM). The temporary formation of VM is 

challenging thing which is handled by hypervisor [6]. The 

hypervisor is the heart of the MCC which identifies the suitable 

resource to form VM for a task execution; it is like mapping of 

resource to the task. The challenge faced by hypervisor is to take 

decision for identifying the VM resources which is to be mapped 

for tasks to provide high performance MCC. Moreover, the 

allocated resource to tasks also be migrated and become 

unavailable, for such case the allocated resources are also need to 

be monitored which is a challenging operation. Thus, we handle 

the reallocation process for migrated and unavailable resources 

which is mapped to task which is challenging operation for 

resource optimization. The handling resource migration and 

mobile user migration is also a challenging operation which is to 

be monitored continuously. Thus, the MCC performance 

improvements by resource allocation and optimization are 

complex during task offloading which are the inter linked process 

addressed in this paper by proposed Task Offloading and Resource 

Optimization (TORO) architecture.  

 

In this paper we contribute, we integrate the task offloading, 

resource allocation and optimization process in TORO architecture 

to reduce the complexity of task execution process and the 

literatures about the existing works are analysed and reviews are 

discussed in Sect. 2. In Section.3  the proposed TORO architecture. 

The mathematical model and algorithms are developed in Sect. 4. 

The implementation and evaluation are shown in Section 5. 

Finally, Section. 6 concludes the proposed research work.   

 

2.Literature Review 

Smart Virtual Machine [7] offloads the task in cloud 

environment which improves the efficiency of offloading by 

applying decision model to select the better performance level. But 

collecting the context information in dynamic environment 

changes frequently and unreliable, needs more updates to take 

better decision for optimized resource allocation. Hermes et al., in 

[8] proposed an application task tree graph offloading technique 

which constructs the subset of problem to reduce the complexity. 

The handling of subset problem for time-sensitive application 

needs reliability and fastness. A cooperative runtime offloading 

decision algorithm [9, 10] optimize the task offloading decision 

making process by applying the machine learning technique 

combined with genetic algorithm in cooperative manner to reduce 

resources utilization and time. Moreover, decision making using 

context information moves frequently which is complex to be 

handled. Mobile Offloading System [11] is a mobility-aware with 

centralized network controller with seamless offloading operations 

in wireless network. The distributed of network controller in 

offloading process can be applied more effectively in mobile cloud 

network. A fast hybrid multi-site computation offloading [12] 

technique with Optimized Multi-site Branch & Bound algorithm 

provides optimal solution by reduced search space during 

convergence and the most suited nearby partitioning of application 

in timely manner is provided by Optimized Multi-site PSO 

algorithm [34]. Further authors stated that decision making along 

with available bandwidth will be designed.  

 

Agent-based MCC framework [13] coordinates the tasks and 

mobile devices to generate result faster. Further, Dynamic 

Programming after filtering algorithm in agent optimizes the 

offloading process by taking decision to response quickly. Further 

it is stated that offloading the complicated tasks based on 

relationship will be designed. A heterogeneity-aware task 

allocation algorithm [14] uses MAC controller to take offload 

decision to minimize the execution time in mobile ad hoc cloud. 

Moreover, analyzing the MAC information with unreliable context 

information is not easy in dynamic environment. A fully 

distributed computation offloading algorithm [15] takes multi-user 

decision to minimize execution time by identifying the Nash 

Equilibrium Point without any information exchange in 

homogenous distributed cloud network. The authors stated that 

new algorithm will be designed to take offloading decision in 

heterogeneous cloud environment with minimum information 

exchange. Full offloading method [16] improves the performance 

of task computation for small sized task and big size task where 

the offloading decision is taken based on priority and completion 

time. But minimizing the communication cost of the big size task 

is complicated which is to handled. Advanced decision model [17] 

integrates the RED algorithm to take better decision in congested 

network where request is dropped based on the moving average 

weight in offloading process to effectively utilize the resource. In 

fast migrating environment calculating the moving average weight 

is tedious and the advance predication technique can improve the 

effectiveness. Network Cloud Mapping [18] offloads the task with 

required QoS level in heterogeneous cloud environment to 

improve the performance and efficiency of computation by 

minimize the resource and communication cost. The decision 

making process during offloading process is complex and can be 

reduced. Context Sensitive Model for Offloading System 

(CoSMOS) [19] takes decision by considering the execution time 

and energy consumption during task offloading to improve 

performance, resource usage and energy consumption. Further 

authors planned to enhance the CoSMOS with more parameters to 

take decision in wide range of environment. 

 

A Software Defined Task Offloading (SDTO) [20] optimize 

the task offloading process by transforming the offloading process 

into two sub-problems such as task placement and resource 

allocation problem where the task duration and computational 

resource utilizations are minimized. Moreover, dynamic 

computation environment decision need to be taken frequently 

with varying distributed computing resource where SDTO task 

placement and resource allocation are handled separately which 

lacks in reliability and performance. A data driven MEC 

management optimization framework [21] optimizes the task 
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placement by choosing the computing edge to minimize the 

computation cost and improve QoS. The optimization in task 

placement is carried by collecting the information from all mobile 

edges and orchestration process in dynamic environment is 

complex. A better method can be developed to collect computation 

and communication resource information with frequent updating 

and orchestrated. A multi objective genetic algorithm [22] handles 

the resource scheduling problem by using K-mean clustering 

method combined with genetic algorithm by considering priority, 

energy consumption and load balancing. The resource required by 

the user is estimated by the Radial Basis Function Neural Network.  

Authors stated that the multi objective genetic algorithm will be 

enhanced to improve the performance for large scale problem with 

complex constraint. A cross-layer resource allocation model [23] 

handles the resource allocation problem jointly with elastic service 

scaling and beam formation with remote radio head (RRH) 

considered as a mixed integer nonlinear programming for 

optimization with combinatorial NP-hard. The low complexity 

shaping and pruning algorithm developed in the model identifies 

the RRH set for user request. Moreover, pruning technique can be 

further enhanced to improve the QoS of the cloud network with 

low complexity. Mobile Edge Computing- Wireless Power 

Transmission [24] optimizes the task offloading process with 

multi-antenna AP to minimize the latency using Time Division 

Multiple Access for multi-user. But the processing capacity or 

computation resource availability should meet the number of user 

requests received in Mobile edge with dropping the request in the 

intermediate state of computation. Further predicting the number 

requests received on time and making the resource available 

without request drop in offloading process is complex. 

 

An Edge Computing IoT (ECIoT) model [25] improves the 

performance of task computation by applying the lyapunov 

dynamic stochastic optimization by decomposing the problem into 

three sub-problems. The stochastic optimization process combines 

the neural network for executing the decomposed problem with 

better decision to minimize response time. The run time problem 

classifying is a tedious process which is to be handled. A User 

Level Online Offloading framework (ULOOF) [26] takes decision 

by predicting the execution time and bandwidth of the offloading 

task. The authors stated that accuracy of prediction [35] can be 

improved by applying the supervised learning technique for the 

mobility behaviour of the user. A Student Project Allocation model 

[27] finds the better match between user and resources to provide 

close optimal performance by minimizing the latency of task 

offloaded in distributed environment. Further optimal solution can 

generated for worst case offloaded tasks. The task offloading 

technique [28] minimizes the execution time with two algorithms: 

Minimum Offloading Time for Mobile device (MOTM) and 

Minimum Execution Time for Cloud data centre (METC). The 

MOTM selects the offloading link and METC selects the physical 

resource as per application requested. The classification of 

application is better choice but the classification of task for single 

application and multiple applications makes computation parallel 

thereby performance of MCC will be improved. Cloudlet assisted 

ad-hoc mobile cloud model [29] jointly optimizes the resource 

utilization and QoS. The stackelberg game formulated finds the 

optimal solution based on the current context information. Thus, 

the context information of the node in MCC needs to be updated 

frequently to take better offloading decision. 

 

A hybrid genetic algorithm - Ant Colony Optimization 

algorithm [30] minimizes the mean completion time along with 

Queue based Decision Maker algorithm which reduces the drop 

rate and balances the cloudlet load with maximize the resource 

utilization of task offloading process. A Genetic Algorithm for 

Hybrid Granularity Resource Optimization algorithm [31] 

minimizes the computation cost using chromosome where 

relationship between tasks are found and scheduled to execute in 

timely manner. Further, optimization can be improved by 

implementing the parallelization technique to execute the related 

task. A decision theoretical approach [32] improves the throughput 

and reduces the latency using the channel state information (CSI) 

problem in MCC. The rate allocation scheme is applied during task 

offloading to decide the transmission rate of user requested by 

applying the decision-making technique. Further, the Wifi channel 

transmission is found to be effective and reduces the computation 

cost. A resource scheduling method [33] uses particle swarm 

optimization (PSO) algorithm to find the optimal solution using 

oriented matrix with fast convergence speed which improves the 

performance of MCC by offloading the task with requested time 

delay. Further, PSO algorithm makes proximity optimal solution 

which can be improved further to utilize the resource effectively.  

From the literatures discussed, the performance 

improvement in MCC can be made by integrated way of handling 

task offloading, resource allocation and optimization. The 

optimization of resource can be done by reallocation with 

continuous monitoring of allocated resources and tasks. Further, 

the context information about the mobile cloud network and user 

are collected to efficiently carry the resource optimization process. 

The task execution can also help the resource optimization process 

by parallelizing the task to be executed in sequential order. 

. 

3. Proposed Methodology 

In this paper, the proposed Task Offloading and 

Resource Optimization TORO architecture represented in Fig. 2 

contains three layers where each layer perform a specific set of 

operations which overcomes the resource management complexity 

in MCC. The layers along with the operational components are 

discussed below. 

 

3.1 Mobile Cloud Users (MCU) 

MCU are peoples who use mobile devices with various 

applications to carry the daily tasks such as online ticket booking, 

Mobile banking, Email, Online data storage space, Geographical 

Positioning System (GPS) and Image processing. The 

applications listed are few but MCU makes the mobile devices to 

operator all kinds of applications with limited resource capacity. 

So, MCU requests the MCC system to efficient handle all kind of 

application execution. 

 

3.2 Multiple Request Handler (MRH) 

In MCC, MRH receives requests from the mobile cloud 

users and arrange them to provide mobile cloud service where this 

N numbers of services are needed to be provided on-demand. 

Further, the requests are forwarded to the Cloudlet Resource 

Discovery Procedure (CRDP) as discussed in Algorithm 1 which 

checks the resource availability of the requested service and 

intimates them to arrangement the resources in advance. 
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Fig 1: Task Offloading and Resource Optimization Architecture 

3.3 Mobile Cloudlet Resource (MCR) 

MCRL contains MCC resources which are discovered 

dynamically and user to provide resources on-demand. In MCRL, 

cloudlet is a main element which has local pool of resources, 

Metropolitan Area Network (MAN) which is private cloud where 

the resource are available in multiple location of single 

management, Wide Area Network (WAN) which is public cloud 

network where resource are available globally by connecting 

multi resource management service. The resource for the user 

requests are allocated from MCRL which is based on the 

availability and providing uninterrupted service using MAN and 

WAN.    

 

3.3.1 Cloudlet 

The local mobile computing resource are pooled together 

to form a Cloudlet which is connected and accessed by Access 

Point (AP). Each cloudlet contain Base Resource (BR) and 

Additional Shared Resource (ASR) where the BR is fixed which 

can be upgraded later. The ASR is dynamically collected resources 

from different resource provider with the particular range of 

cloudlet distance which is discussed in Algorithm 1. In each 

cloudlet, the proposed TORO architecture maintains a Local 

Resource Index Management Table (LRIMT) data structure which 

makes resource to access in distributed manner, stores the cloudlet 

resource information which are newly discovered and forwarding 

the migrated resource information from one LRIMT to other 

LRIMT. The update is also carried in the Centre Resource Index 

Management Table (CRIMT) which accesses the resource in 

centralized manner for carrying better optimization in resource 

reallocation. 

 

3.3.2 MAN Cloud 

MAN cloud is a private cloud in different geographical 

area where clouds are formed by interconnecting multiple local 

cloud resources. The MAN cloud resource is used only when the 

local cloud resource are unavailable or in overloaded condition. 

But the MAN cloud resources are costlier and degrade the MCC 

performance due to long distance and mostly not considered for 

resource allocation.  

 

3.3.3 WAN Cloud 

WAN cloud is a public cloud which is available globally 

with interconnection of giant cloud systems. The cloudlets and 

MAN cloud resource are not sufficient to provide the service WAN 

cloud resource is used. The WAN cloud resources are more costly 

and degrade the MCC performance it is not considered mostly in 

the proposed TORO architecture.  

 

3.3.4 CRIMT 

CRIMT data structure interconnects all LRIMT in 

cloudlets to make centralized access of resources and further 

reallocate the resource in fast migrating environment. The CRIMT 

monitors the resources with allocated task and its movement where 

the task execution stages are monitored. When the final stage of 

task execution is identified, CRIMT will not take of care of further 

resource reallocation step for that task thereby concentrating the 

other task to execute in optimized way. 

3.4 Task Management Layer (TML)  

TML is a part of TORO architecture as shown in Fig.2. 

TML perform three operations such as task offloading with Task 

Resource Demand Predictor (TRDP), Task partitioning and Task 

scheduling. The components of TML along with its operations are 

discussed as follow. 

 

3.4.1 TRDP 

The scheduled request from MRH is forwarded for 

offloading process where the task from MRH first received by 

TRDP. Here, decision is taken using TRDP where the requested 

resource by task is available in the MCR if not available initiate 

the dynamic resource discovery process using Algorithm 1. 

 

3.4.2. Task scheduler 

Task scheduler receives all partitioned task in group and 

scheduled them in the multi-level queue based on task completion 

time where each level of queue handle different GoT. 

 

3.5 Mobile Hypervisor Layer (MHL) 

MHL handles the Resource allocation is an important 

process in TORO architecture. Further MHL decomposed into 

three operations such as hypervisor (or) mapping, VM synthesizer 

and VM Optimizer.   

 

3.5.1 Hypervisor 

Hypervisor is an important component in TORO 

architecture where decision is taken to allocate which resource to 

task and freeze that resource as discussed in Algorithm 5. The 

decision is taken by considering proximity between task (X, Y, Z) 

and resource (X, Y, Z). Further, resource identified to map the task 

is collateral in to VM. 

 

3.5.2. VM Synthesizer 

VM synthesizer analyzes the allocated resource to VM 

whether the proximity between tasks is high. The resource 

collateral with VM is checked for proximity using proximity 

checker which is discussed in Algorithm 2. Thus for the resources 
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proximity checker identify which resource is to be reallocated and 

that resource detail along with VM is repeated. 

  

3.5.3    VM Optimizer 

VM Optimizer performs resource reallocation where the 

VM resources reported by it pauses the task execution by the VM 

synthesizer as discussed in Algorithm 6. Further, during 

reallocation process VM optimizer reallocate the non-proximitized 

resource where to newly proximitized resource and restart the task 

execution of the GoT or BoT.  

 

3.6 Mobility Management Layer (MML) 

 

MML perform two operations such as MCU information 

collection and storing MCU information. The components of 

MML are described as follow. 

 

3.6.1 Mobile Cloud User Information Management Table 

(MCUIMT) 

MCUIMT has data structure to store MCU information 

which is collected frequently in dynamic environment which also 

includes the newly modified resource requirement of task. 

 

3.6.2    Mobile Migration Manager (MMM) 

MMM monitors the MCU movement and also gets the 

information about the new requirement for already executing task 

to reallocate the resources as discussed in Algorithm 6. The 

continuous monitoring is carried for all users who have provide the 

mobile cloud service and frequent information are collected for a 

period of time around for 30 sec. 

4. Mathematical model and Algorithms  

4.1. Resource Discovery Process (RDP)  

The users (U) and their requests (R) are paired as P (U, 

R) = {p (u1, r1), p (u2, r2)….. p (uN, rK)} in MCC. In Proposed TORO 

architecture, local cloudlet C is collected from different 

independent cloudlet resource {C1, C2, C3….C∞} which ranges 

from 1 to ∞ which depends on the situation. Further, TRDP is 

carried by checking resource availability (R_Avail) as shown in 

Eq. (1) to project (∏) R_Avail for each Ri with function f in C. Eq. 

(2) represents the function f applied in Eq. (1) where (⁆) denotes 

existence of cloudlet resources (C_Res) in C for Ri. The R_Avail 

has two case shown in Eq. (3) – (4) where the Eq. (3) specify the 

satisfaction of resource requirement (R_Req) of Ri for 

computation, further the resource migration process for dynamic 

resource migration optimization is initiated using DRMP 

Algorithm 1 which is described in 4.2.  The Eq. (4) specifies the 

insufficient R_Req for Ri and to make enough resource availability 

in dynamic environment it uses cloudlet resource discover process 

(CRDP) which is discussed in Algorithm 1. 

 

𝑅_Avail ⇐ (∏ 𝑅𝑖
 𝑓 
→   ∑ 𝐶𝑖∞

𝑖=1𝑅𝑒 𝑠 )                   (1)

 
  

𝑓: (∃𝐶_Res𝑖 → ∑ 𝐶𝑖∞
𝑖=1 )                                     (2) 

 

Case 1: Resource Requirement satisfied. 

 

(𝑅𝑗. 𝑅_Req ≈ 𝑅_Avail) → 𝐷𝑅𝑀𝑃()
          (3)

 

Case 2: Resource Requirement not satisfied. 

(𝑅𝑗. 𝑅_Req ≠ 𝑅_Avail) → 𝐶𝑅𝐷𝑃()
           (4)

 

 

In cloudlet resource discovery process (CRDP), the Eq. 

(5) represents available C_Res from C in the proposed TORO 

architecture. Moreover, the CRDP with expand and shrink state 

where expand state dynamically discovers the ASR within center 

point CP= 0 to range r=50 meters as shown in Eq. (6). The Eq. (7) 

denotes the shrink state where the unreliable resource is released 

from Ci within CP= 0 to r=50 meters to effectively manage the 

resources. 

 

 𝐶_Res ← ∑ 𝐶𝑖
∞
𝑖=1

 

 

  Expand state: 𝐶𝑖 ← ∫ (𝐵𝑅𝑖 + ∑ 𝐴𝑆𝑅𝑗
∞
𝑗=1 )

50

𝑟=0

          

(6) 

 

  Shrink state:   𝐶𝑖 ← ∫ (𝐵𝑅𝑖 −∑ 𝐴𝑆𝑅𝑗
𝑀
𝑗=1 )

50

𝑟=0
         (7) 

4.5 Task offloading  

The task offloading operation is mentioned in the Eqs. 

(8) - (10). Eq. (8) denotes the resource allocation process in the 

form of VM where proximity σ(p-res) of Cj thereby Ri is mapped to  

Cj..𝑉𝑀𝑖 = {𝜎(𝑝−𝑟𝑒𝑠)𝐶𝑗/𝑅𝑖
 𝑓 
→   𝐶𝑗}, (8) 

 

 Eq. (9) mention the single group offloading of similar task S-taskGi 

to VMi where execution (Ej) takes place. Eq. (10) represents non-

similar task offloading NS-task to VMj for execution (Ep) take 

place.    

 _ ,
i

j iE = S task VM
G
→     (9) 

𝐸𝑘 = {𝑁𝑆_𝑡𝑎𝑠𝑘 → 𝑉𝑀𝑗}.                   (10) 

 

Algorithm 1: Task offloading process.  

Input: VM= {VM1, VM2...VMn}, NS_task, S_task  

Output: Execution time (ETi), OVM= {OVM1, OVM2...OVMk},  

Begin Task Offloading process   

Get (S_taski) <-PQueue1 (S_task) 

Get (NS_taski) <-PQueue2(NS_task) 

For NS_taskj j=0 to sizeOf (NS_task) 

Get (p_res) <-pair (NSj,Cj) 

VMj<- using p_resj 

Map (VMj, NS_taskj) 

Ej<- ResourceOptimization(run(NS_taskj)) 

End  

For S_taskk k=0 to sizeOf(S_task) 

Get (p_res) <-pair (Sk,Ck)   

If ((G_id of S_taskk-1)! = (G_id of S_taskk)) 

VMk<- using p_resk 

Map (VMk, S_taskk) 

 Ek<- Optimization(run(S_taskk)) 

Else 

Map (VMk, S_taskk) 

Ek<- Optimization(run(S_taskk)) 

EndIf 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791  |  786 

End 

End Task Offloading Process 

 

 Algorithm 5 is developed using Eqs (8-10) where the 

execution of S_taskk and NS_taskj are separately processed in the 

queue. The p_res for taski(x, y) position is identified and paired 

P(Si, Ck). VM for taskk is created using the p_res of Ck. The S_task 

will be executed sequentially based on same group id (G_id) in 

same VM and parallel execution is carried by another VM for 

S_task with different G_id. Moreover, simultaneously parallel 

execution of NS_task is done. The execution time (E) noted for all 

ATi. The task offloading in TORO architecture using algorithm 4 

executes the tasks sequentially and parallel. 

4.6 Resource optimization process 

Resource optimization for allocated resource in TORO 

architecture is performed by Eqs. (11-14). Eq. (11) denotes the VM 

optimization Opt(VMi) in VMi  where the performance degrades to 

the required QoS level (Ri.QoS). The optimization of VM is done 

using three cases; in case1, the performance degradation is due to 

the addition resource requirement of VM for task execution as 

given in Eq. (12) for optimized Opt_VM. In case 2, optimization 

for intra cloudlet is performed using Eq. (13) where the 

performance degradation happens due to mobility of the VMi 

resource and the reallocation done to reform Opt_VM. In case 3, 

optimization for inter cloudlet is performed as mentioned in Eq. 

(14) where the performance degradation happens due to the 

mobility of VMi resource and handover operation is done for VMi 

reallocation to different Cj.  

 

𝑂𝑝𝑡(𝑉𝑀) = {𝑉𝑀𝑖 → 𝑂𝑝𝑡_𝑉𝑀𝑖/𝑃(𝑉𝑀) < 𝑅𝑖 . 𝑄𝑜𝑆}.  

 (11)           

Case 1:  

𝑃(𝑉𝑀) = {𝑂𝑝𝑡_𝑉𝑀𝑖 ← 𝑉𝑀𝑖 + 𝑆𝑅}.  

 

(12)  

Case 2: 

𝑃(𝑉𝑀) = {𝑂𝑝𝑡_𝑉𝑀𝑖 ← 𝑅𝑒 𝑎 𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑉𝑀𝑖)}.
 

(13) 

 

Case 3: 

𝑃(𝑉𝑀) = {𝑂𝑝𝑡_𝑉𝑀𝑖 ← 𝐻𝑎𝑛𝑑𝑜𝑣𝑒𝑟(𝑉𝑀𝑖)}.
 

(14) 

 

Algorithm 6 is developed based on the Eqs. (25-28) where the 

hypervisor monitors the VM by checking three conditions: 

additional resource required to execute the task in specified VM 

and the proximity value (PV) between allocated resource with VM 

for intra cloud and handle over of VM to inter cloud. In the first 

condition, it allocates ASR to VMi. In the second condition, it 

reallocates the VMi resource. In third condition, handover process 

is carried out due the user (U) migration to different location after 

offloading of resources. 

 

Algorithm 2: Resource Optimization process 

Input: single VMi   

Output: Opt_VMi 

Begin Optimization 

If (VM.performance < Ri.QoS_requested level)  

If (VMi requires ASR)   

Opt_VMi←VMi+ASRj 

Elseif ((current PVi of VMi) > (initial PVi VMi)) 

Opt_VMi←Reallocate(VMi)  

//Intracloudlet communication 

Elseif ((current PVi of VMi & Ui)> Threshold_PV  

VMj <- Handover(VMi )  

//Intercloudlet communication 

EndIf 

EndIf 

Begin Reallocate 

If ((Rk->VMk)&&(VMK->Ci)) 

Foreach j=1 to M 

If (Ci.cp<=VMk.ASRj(X,Y,Z)<Ci.r) 

Ci← ASRj(X,Y,Z) 

Elseif (Ci.cp < VMk.ASRj(X,Y,Z) <= Ci.r) 

ASRj= new ASR 

Ci ←ASRj(X,Y,Z)  

Endif 

End 

Endif 

End Reallocate 

Begin Handover 

If(((Ci.r<Uj(X,Y,Z)<Ci+N.cp))  

MCUIMT ← (Uj(X,Y,Z) near to Ci+N.LRIMT ) 

Ci+N.VMj←Reallocate(Rj to Ci+N) 

End Handover 

End Optimization 

 

 
 

Fig. 2  TORO Flowchart 
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The proposed TORO, existing FDCO [15] and mCloud 

[40] model are simulated with CloudExp simulator [39] for 

performance comparison. The proposed TORO is simulated as per 

the data flow shown in Figure 3. The MCU have multiple users 

who request services from MCC to handle the MCR. After 

receiving the requests from MCR, the RDP is initially processed 

by checking the resource availability of requests by Algorithm 1. 

Table 1 LRIMT 

 

In TRDP process, if the resources are sufficiently 

available it calls the RMM procedure for reliable resource 

maintenance and if resources are insufficient CRDP procedure is 

called to discover on-demand resource for requests. The cloudlet 

parameters as shown in LRIMT Table 1 which collected during 

discover resources process. The C_id uniquely represents the 

cloudlet with pool of resource, N_id mentioned denotes the mobile 

node which provides ASR. The node with energy level above 60% 

and the signal strength above 3 levels are considered as reliable 

ASR. The number of processing cores is depicted as P_core and 

P_MIPS represents the total number of instructions handled. 

Computational memory is denoted by RAM. The secondary 

memory to store the data is mentioned as Storage. The C_range 

denotes the cloudlet covering area. BW represents data rate for task 

offloading.  

Table 2 Mobile node 

 

Table2 represents the mobile node parameters which 

provide ASR. The N_id uniquely identify the mobile node, P_core 

denotes the number of execution units, P_MIPS represents the 

number of instructions per cycle, RAM denotes the memory size 

and Storage represents the secondary memory. The mobile node 

parameters are variable based on the individual configuration. 

Further, N (x, y, z) represents the mobile nodes current location 

which is monitored by MMM process and detailed information is 

maintained in the MCUIMT. The BW represents the transmission 

data rate in network. The RMM process monitors the discovered 

resources for migration by Algorithm 2 to make effective and 

efficient way of resource allocation and helps the resource 

optimization by communicating between cloudlets with updating 

the locality information in LRIMT shown in Table 1 and CRIMT 

shown in Table 3.  

Table 3 parameters are T_Cloudlet which mention the 

total number of cloudlet available in the TORO system, C_id 

uniquely denotes the individual cloudlet. T_Node represents the 

total number of mobile node who provides ASR. The T_P_core 

depicts the total number of CPU core and T_P_MIPS represent the 

number of instruction handled. The total computational memory is 

denoted by RAM. 

 

Table 3 CRIMT 

 

The Storage denotes the capacity of secondary memory. 

The T_C_range specifies the range of cloudlet area covered. 

T_BW represents available data rate. Total resource availability on 

the TORO system cloudlets is accessed using this information. The 

DRCR process described in Algorithm 3 is implemented for 

provisioning reliable ASR where the energy level (EL) and signal 

strength (SS) is to be above the threshold level as described in 

Table 2. After making the resource availability for the demanded 

requests, each request task is analyzed by Algorithm 4 for task 

scheduling and prioritization where IFS value for each request is 

generated to partition the task in to subtasks. Further, subtasks are 

grouped by application and operational similarity where similar 

application tasks are scheduled in S_task queue and tasks without 

application similarity are separately scheduled in NS_task queue. 

The S_task and NS_task are multilevel queue, based on the 

completion time tasks are scheduled in ascending order.  

 

Table 4 NEXCUS5 VM 

 

After scheduling the NS_tasks and S_tasks separately in 

multilevel queue, the resource allocation and offloading process is 

implemented using Algorithm 5. Moreover, sub-tasks are 

offloaded in sequence from scheduler to hypervisor for resource 

allocation where the hypervisor identify the resource which is close 

to the user task by creating temporary virtual machine (VM) based 

on the proximity between the user and resource, VM image used is 

Nexcus5. Table 4 describe the Nexcus 5 parameters where image 

represent the storage capacity, RAM denotes the primary memory, 

P_MIPS represent the number of instructions executed in a single 

cycle frequency, P_core denotes the number of execution unit in 

VM and finally the BW represents the data transfer rate. 

 

Parameters Value 

C_id 

N_id 

P_core 

P_MIPS(GB) 

RAM(GB) 

Storage(GB) 

C_range (Meters) 

BW(GB) 

EL (%) 

SS (level) 

Auto 

Auto 

2-8 

1-3 

2-8 

8-512 

50(Appro) 

1-2 

0-100% (60 is threshold) 

1-6 (3 is threshold) 

Parameters Value 

N_id 

P_core 

P_MIPS(GB) 

RAM(GB) 

Storage(GB) 

N (x, y, z) 

BW(GB) 

EL (%) 

SS (level) 

Auto 

Variable 

Variable 

Variable 

Variable 

Dynamic 

1-2 

0-100% (60 is threshold) 

1-6 (3 is threshold) 

Parameters Value 

T_Cloudlet 

C_id 

T_Node 

T_P_core 

T_P_MIPS(GB) 

T_RAM(GB) 

T_Storage(GB) 

T_C_range (Meters) 

T_BW(GB) 

Auto 

Auto 

Auto 

2-8 

1-3 

2-8 

8-512 

50(Appro) 

1-2 

Parameters Value 

Image (GB) 10 

RAM(GB) 15 

P_MIPS(MHz) 250 

BW(GB) 1 

P_core 4 
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Table 5: Mapping 

Table 5 represents the VM and task mapping parameters. 

The C_id identify the unique cloudlet. The G_id represents the 

group id where S_task are mapped to VM, if need parallel 

execution in done in another VM to execute the tasks in parallel 

and sequential manner in allocated VM. The S-task and NS-task 

are uniquely identified using T_id. The NS_task are mapped to 

separate VM and executed in parallel. The VM_id is used to 

identify the allocated resource to the tasks. The NS_task and 

S_task are executed in parallel with different VMs. Moreover, 

allocated resource to tasks and users are monitored by MMM for 

periodically update the proximity and reliability information about 

users maintained in MCUIMT. The resource syntheser takes 

decision for optimization by checking the proximity distance 

between resources and users with the help of MCUIMT 

information. Then the resource syntheser send the command to 

resource optimizer which is implemented using Algorithm 2 to 

reallocate the allocated resource of VM with considering the cases 

specified in the Eq. (11) – (15) where the proximity distance 

between the user and resource are low. Finally the executed task 

time is recorded for analyzing the performance of MCC by TORO 

architecture.The existing FDCO algorithm and mCloud model 

execution data flow in are also simulated. The cloudlet is created 

as of in proposed TORO architecture except ASR operation. The 

request from the application is forwarded and decision is taken by 

decision engine to select the effective resource type such as 3G, 

Bluetooth and wifi to offload the task to VM. Further, offloaded 

information are stored in the database by the task manager for 

evaluation. 

                                 

5.Result and Discussion 

The evaluation of the proposed TORO architecture is compared 

with the existing FDCO algorithm and mCloud model which 

shows the performance improvement with the result generated for 

four different workloads as given in Table 6. Here, BTH denotes 

the big tasks which need high computation, BTL denotes big tasks 

which need low computation, STH represents small tasks which 

require high computation and STL represents small task which 

needs low computation. Further, the image size and MIPS of four 

workloads differs in size. The workloads are executed separately 

in the simulation environment and results are compared by plotting 

graphs. In graph, the execution time and resource utilization cost 

for tasks are analyzed for proposed TORO architecture and the 

existing FDCO and mCloud model. 

 

S.No Workloads No. of 

tasks 

Image MIPS 

1 BTH 500 3000 30 

2 BTL 500 3750 17 

3 STH 500 650 24 

4 STL 500 725 6 

Table 6 Workload 

 

Figure4 BTH workloads in TORO, FDCO and mCloud 

Figure 4 represent the execution time for the workload 

BTH.  The graph plotted shows the execution time of the proposed 

TORO architecture where tasks are executed fast when compared 

to existing FDCO and mCloud model. The overall optimization is 

applied in proposed TORO architecture to compute workload 

faster in dynamic environment.  

 

 

Figure 5 BTL workloads in TORO, FDCO and mClo 

 

Figure 5 describe the execution time for the workload 

BTL.  The graph plotted depicts the execution time of proposed 

TORO architecture in which tasks are executed fast compared to 

existing FDCO and mCloud model. The overall optimization in the 

proposed TORO architecture made the workload to compute faster 

in dynamic environment.  

 

 

 

 

 

 

 

 

 

 

Parameters Value 

C_id 

G_id 

T_id 

VM_id 

VM(X, Y,Z) 

T (X, Y,Z) 

Auto 

Auto 

Auto 

Auto 

Dynamic 

Dynamic 

0.294
0.296
0.298

0.3
0.302
0.304
0.306
0.308

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7

9

4
4

2

Ex
e

cu
ti

o
n
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im
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Tasks

BTH Workload

TORO

FDCO
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0.293

0.298

0.303

0.308

0.313

0.318

1

5
7

1
1

3

1
6

9

2
2

5

2
8

1

3
3

7
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9

3
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9
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Figure 6 STH workloads in TORO, FDCO and mCloud 

 

Figure 6 represent the execution time for the workload 

STH.  The plotted graph shows the execution time of proposed 

TORO architecture where the tasks are executed fast when 

compared with the existing FDCO and mCloud model. The overall 

optimization in the operations of proposed TORO architecture 

made the workload to compute faster in dynamic environment. 

 

 
Figure 7 STL workloads in TORO, FDCO and mCloud 

 

Figure 7 illustrate the execution time for the workload 

STL.  The graph plotted shows the execution time of proposed 

TORO architecture in which the tasks are executed fast when 

compared to the existing FDCO and mCloud model. The overall 

optimization done in the operations of proposed TORO 

architecture made the workload to compute faster in dynamic 

environment. 

 

 
Figure 8 Performance comparisons between TORO, FDCO and mCloud 

 

The workloads executed in proposed TORO architecture 

and the existing FDCO algorithm and mCloud model are compared 

based on the execution time to show better performance which is 

represented in Figure 8. The execution time of the workload BTH 

shown for the proposed TORO architecture is 147.95 sec, the 

existing FDCO algorithm have 149.5 sec and mCloud model have 

150.18 sec which shows that the proposed TORO architecture 

execute faster . The BTL computed in proposed TORO 

architecture have 147.99 sec, the existing FDCO have 150.03 sec 

and mCloud model have the execution time of 155.2 sec where the 

proposed TORO architecture compute faster. The STH computed 

in proposed TORO architecture have 141.9 sec, the existing FDCO 

have 144.22 sec and mCloud model have execution time 147.2 sec 

which indicates that the proposed TORO architecture execute 

faster. The workload STL computed in proposed TORO 

architecture have 138.9 sec, the existing FDCO have 141.08 sec 

and mCloud model have the execution time of 143.93 sec which 

shows that the proposed TORO architecture compute faster. Thus, 

the evaluation carried with four different workloads shows that the 

proposed TORO architecture compute the task faster and improved 

the performance of MCC in optimized and integrated way. 

 

 
Figure 9 Cost comparisons between TORO, FDCO and mCloud 
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The workloads computed in proposed TORO 

architecture and the existing FDCO and mCloud model are 

compared based on the overall resource usage and its cost is shown 

in Figure 9. The average cost of the workload BTH shown for the 

proposed TORO architecture is 1900, existing FDCO algorithm is 

2100 and mCloud model is 2500 where the proposed TORO 

architecture computes the workload is cost effective when 

compared to existing FDCO and mCloud model. The BTL 

computed in proposed TORO architecture have cost around 1200, 

the existing FDCO have 1500 and mCloud model have cost around 

2100 which indicate that the proposed TORO architecture show 

better cost. The STH computed in proposed TORO architecture 

have cost around 650, the existing FDCO have 700 and mCloud 

model have 800 which highlight that the proposed TORO 

architecture have better resource utilization cost. The workload 

STL computed in proposed TORO architecture has 450, the 

existing FDCO have 490 and mCloud model have 550 which 

specify that the proposed TORO architecture have better cost when 

compared to other two models. Thus from the analysis made with 

four different workloads proves that the proposed TORO 

architecture is cost effective to compute the task faster in MCC by 

integrated optimization.  

5. Conclusion and Future work 

In this paper, we proposed TORO architecture which optimization 

the various operations integrated together to the performance of 

MCC. The operations included are resource demand prediction, 

reliable cloudlet resource, task scheduling and partitioning, task 

offloading and optimization. The TORO architecture is simulated 

and evaluated with the FDCO algorithm and mCloud model. The 

evaluation result for various workloads shows that the proposed 

TORO architecture outperforms by executing tasks faster in cost 

effective manner with overall performance improvement when 

compared to the FDCO algorithm and mCloud model. In future, 

the proposed TORO architecture will be used to design a real-time 

mobile cloud operating system in heterogeneous environment. 
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