

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 781

An Efficient Model for Prediction Based Optimization in Mobile Cloud

Task Offloading in TORO

G. Amirthayogam1*, B. Thanikaivel2, G.Renuga Devi3
, J. Venkatarangan4, M. Sujaritha5,

N. Kumaran6

Submitted: 19/01/2024 Revised: 28/02/2024 Accepted: 05/03/2024

Abstract: Mobile Cloud Computing (MCC) is a booming field with the high usage of smart devices to overcome the on-demand resource

availability to improve performance. The humans are migrating faster for their work but due to the portable mobile devices cause resource

migrating problem which degrades the performance of MCC. The smart devices are capable of operating various kinds of day-to-day

applications such E-Commerce, Banking, Education Healthcare etc. In this paper, Task Offloading and Resource Optimization (TORO)

architecture is proposed to handle the migration problem by optimizing the resource with supporting operations such as resource demand

prediction, cloudlet resource discovery with reliability, task partitioning, task scheduling and task offloading. The implementation and

evaluation are carried by simulating the proposed TORO architecture and comparing with the existing FDCO algorithm and mCloud model.

Further, the evaluation results depict the proposed TORO architecture executes the tasks faster with multiple operations integrated together

to provide better performance when compared with the existing FDCO algorithm and mCloud model.

Keywords: On-demand prediction, Resource discovery, Reliable Resource, context-awareness, Partitioning, Scheduling, Task offloading,

Resource allocation, Resource optimization

1. Introduction

Mobile Cloud Computing (MCC) is the new technology

which took the world under the people’s hand with smart devices

such as watches, mobiles, laptop, and tablets etc. Smart devices are

capable of operating various kinds of day-to-day applications such

E-Commerce, Banking, Education Healthcare etc. The smart

devices also called as mobile devices which are highly portable in

nature and limited with computing resources. Further, to execute

the complex application in mobile device it uses the MCC

technology [1] which dynamic in nature to overcome the resource

limitation as shown in Fig.1 where user or client request the service

from local mobile cloud called cloudlet, if the resource availability

in cloudlet is not enough it uses the public cloud resource.

Moreover, providing resources to users is not a matter in

MCC but it should not degrade the execution performance of task

[2] by unreliable resource and delay caused during the resource

allocation to the tasks. So, this paper we consider the performance

degradation problem in MCC during resource allocation and

optimization process. Further we also addressed the additional

challenges in various operations like task offloading, task

partitioning, scheduling task and resource reallocation to make the

resource optimization an effective in MCC.

Fig. 1 General representation of MCC

1Associate Professor, Department of Information Technology,

Department of Information Technology, Hindustan Institute of

Technology and Science (Deemed to be University), Chennai, Tamil

Nadu, India-603103. Email: amir.yogam@gmail.com
2Assistant Professor, Department of Information Technology, Hindustan

Institute of Technology and Science (Deemed to be University), Chennai,

Tamil Nadu, India-603103. Email: thanikaicse@gmail.com
3Assistant Professor, Department of Computer Science and

Engineering,, P.S.R.Engineering College,Sivakasi, Tamil Nadu, India.

Email:renugag0304@gmail.com

 4Assistant professor, Department of Computer Science and Design, St

Martin’s Engineering College, Secunderbad, Telangana, India-500100,

Email: venkatarangan1986@gmail.com
5Professor, Sri Krishna College of Engineering and Technology,

Kuniyamuthur, Tamil Nadu 641008, India. Email:

sujaritham@skcet.ac.in
6Assistant professor, Department of Mathematics, Vel Tech Rangarajan

Dr.Sagunthala R &D Institute of science and technology, Avadi,
Chennai - 600062.Email: nkumaran@veltech.edu.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 782

Further MCC resource allocation operation processes the

tasks from various users are offloaded for computation where

offloading process need to identify the reliable resources.

Moreover, identifying the reliable resource and taking the decision

[3] is a challenging factor which affects the performance of MCC.

The size of task need to be considered during task offloading

process due to the bandwidth limitation and traffic overhead where

the big size task got delayed and small size task is offloaded faster

[4]. Therefore, fixing task size for offload process is a challenging

factor which reduces the transmission delay by monitoring the

mobile cloud network also needs to be addressed for effective task

offloading. Next, continuous execution of the tasks [5] is needed

for computing environment which reduces the overall execution

time and make resource utilization an effective one, which is to be

addressed for performance improvement in MCC.

 The virtual resource required by task need to be formed

as collateral which provide the computing environment called

Virtual Machine (VM). The temporary formation of VM is

challenging thing which is handled by hypervisor [6]. The

hypervisor is the heart of the MCC which identifies the suitable

resource to form VM for a task execution; it is like mapping of

resource to the task. The challenge faced by hypervisor is to take

decision for identifying the VM resources which is to be mapped

for tasks to provide high performance MCC. Moreover, the

allocated resource to tasks also be migrated and become

unavailable, for such case the allocated resources are also need to

be monitored which is a challenging operation. Thus, we handle

the reallocation process for migrated and unavailable resources

which is mapped to task which is challenging operation for

resource optimization. The handling resource migration and

mobile user migration is also a challenging operation which is to

be monitored continuously. Thus, the MCC performance

improvements by resource allocation and optimization are

complex during task offloading which are the inter linked process

addressed in this paper by proposed Task Offloading and Resource

Optimization (TORO) architecture.

In this paper we contribute, we integrate the task offloading,

resource allocation and optimization process in TORO architecture

to reduce the complexity of task execution process and the

literatures about the existing works are analysed and reviews are

discussed in Sect. 2. In Section.3 the proposed TORO architecture.

The mathematical model and algorithms are developed in Sect. 4.

The implementation and evaluation are shown in Section 5.

Finally, Section. 6 concludes the proposed research work.

2.Literature Review

Smart Virtual Machine [7] offloads the task in cloud

environment which improves the efficiency of offloading by

applying decision model to select the better performance level. But

collecting the context information in dynamic environment

changes frequently and unreliable, needs more updates to take

better decision for optimized resource allocation. Hermes et al., in

[8] proposed an application task tree graph offloading technique

which constructs the subset of problem to reduce the complexity.

The handling of subset problem for time-sensitive application

needs reliability and fastness. A cooperative runtime offloading

decision algorithm [9, 10] optimize the task offloading decision

making process by applying the machine learning technique

combined with genetic algorithm in cooperative manner to reduce

resources utilization and time. Moreover, decision making using

context information moves frequently which is complex to be

handled. Mobile Offloading System [11] is a mobility-aware with

centralized network controller with seamless offloading operations

in wireless network. The distributed of network controller in

offloading process can be applied more effectively in mobile cloud

network. A fast hybrid multi-site computation offloading [12]

technique with Optimized Multi-site Branch & Bound algorithm

provides optimal solution by reduced search space during

convergence and the most suited nearby partitioning of application

in timely manner is provided by Optimized Multi-site PSO

algorithm [34]. Further authors stated that decision making along

with available bandwidth will be designed.

Agent-based MCC framework [13] coordinates the tasks and

mobile devices to generate result faster. Further, Dynamic

Programming after filtering algorithm in agent optimizes the

offloading process by taking decision to response quickly. Further

it is stated that offloading the complicated tasks based on

relationship will be designed. A heterogeneity-aware task

allocation algorithm [14] uses MAC controller to take offload

decision to minimize the execution time in mobile ad hoc cloud.

Moreover, analyzing the MAC information with unreliable context

information is not easy in dynamic environment. A fully

distributed computation offloading algorithm [15] takes multi-user

decision to minimize execution time by identifying the Nash

Equilibrium Point without any information exchange in

homogenous distributed cloud network. The authors stated that

new algorithm will be designed to take offloading decision in

heterogeneous cloud environment with minimum information

exchange. Full offloading method [16] improves the performance

of task computation for small sized task and big size task where

the offloading decision is taken based on priority and completion

time. But minimizing the communication cost of the big size task

is complicated which is to handled. Advanced decision model [17]

integrates the RED algorithm to take better decision in congested

network where request is dropped based on the moving average

weight in offloading process to effectively utilize the resource. In

fast migrating environment calculating the moving average weight

is tedious and the advance predication technique can improve the

effectiveness. Network Cloud Mapping [18] offloads the task with

required QoS level in heterogeneous cloud environment to

improve the performance and efficiency of computation by

minimize the resource and communication cost. The decision

making process during offloading process is complex and can be

reduced. Context Sensitive Model for Offloading System

(CoSMOS) [19] takes decision by considering the execution time

and energy consumption during task offloading to improve

performance, resource usage and energy consumption. Further

authors planned to enhance the CoSMOS with more parameters to

take decision in wide range of environment.

A Software Defined Task Offloading (SDTO) [20] optimize

the task offloading process by transforming the offloading process

into two sub-problems such as task placement and resource

allocation problem where the task duration and computational

resource utilizations are minimized. Moreover, dynamic

computation environment decision need to be taken frequently

with varying distributed computing resource where SDTO task

placement and resource allocation are handled separately which

lacks in reliability and performance. A data driven MEC

management optimization framework [21] optimizes the task

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 783

placement by choosing the computing edge to minimize the

computation cost and improve QoS. The optimization in task

placement is carried by collecting the information from all mobile

edges and orchestration process in dynamic environment is

complex. A better method can be developed to collect computation

and communication resource information with frequent updating

and orchestrated. A multi objective genetic algorithm [22] handles

the resource scheduling problem by using K-mean clustering

method combined with genetic algorithm by considering priority,

energy consumption and load balancing. The resource required by

the user is estimated by the Radial Basis Function Neural Network.

Authors stated that the multi objective genetic algorithm will be

enhanced to improve the performance for large scale problem with

complex constraint. A cross-layer resource allocation model [23]

handles the resource allocation problem jointly with elastic service

scaling and beam formation with remote radio head (RRH)

considered as a mixed integer nonlinear programming for

optimization with combinatorial NP-hard. The low complexity

shaping and pruning algorithm developed in the model identifies

the RRH set for user request. Moreover, pruning technique can be

further enhanced to improve the QoS of the cloud network with

low complexity. Mobile Edge Computing- Wireless Power

Transmission [24] optimizes the task offloading process with

multi-antenna AP to minimize the latency using Time Division

Multiple Access for multi-user. But the processing capacity or

computation resource availability should meet the number of user

requests received in Mobile edge with dropping the request in the

intermediate state of computation. Further predicting the number

requests received on time and making the resource available

without request drop in offloading process is complex.

An Edge Computing IoT (ECIoT) model [25] improves the

performance of task computation by applying the lyapunov

dynamic stochastic optimization by decomposing the problem into

three sub-problems. The stochastic optimization process combines

the neural network for executing the decomposed problem with

better decision to minimize response time. The run time problem

classifying is a tedious process which is to be handled. A User

Level Online Offloading framework (ULOOF) [26] takes decision

by predicting the execution time and bandwidth of the offloading

task. The authors stated that accuracy of prediction [35] can be

improved by applying the supervised learning technique for the

mobility behaviour of the user. A Student Project Allocation model

[27] finds the better match between user and resources to provide

close optimal performance by minimizing the latency of task

offloaded in distributed environment. Further optimal solution can

generated for worst case offloaded tasks. The task offloading

technique [28] minimizes the execution time with two algorithms:

Minimum Offloading Time for Mobile device (MOTM) and

Minimum Execution Time for Cloud data centre (METC). The

MOTM selects the offloading link and METC selects the physical

resource as per application requested. The classification of

application is better choice but the classification of task for single

application and multiple applications makes computation parallel

thereby performance of MCC will be improved. Cloudlet assisted

ad-hoc mobile cloud model [29] jointly optimizes the resource

utilization and QoS. The stackelberg game formulated finds the

optimal solution based on the current context information. Thus,

the context information of the node in MCC needs to be updated

frequently to take better offloading decision.

A hybrid genetic algorithm - Ant Colony Optimization

algorithm [30] minimizes the mean completion time along with

Queue based Decision Maker algorithm which reduces the drop

rate and balances the cloudlet load with maximize the resource

utilization of task offloading process. A Genetic Algorithm for

Hybrid Granularity Resource Optimization algorithm [31]

minimizes the computation cost using chromosome where

relationship between tasks are found and scheduled to execute in

timely manner. Further, optimization can be improved by

implementing the parallelization technique to execute the related

task. A decision theoretical approach [32] improves the throughput

and reduces the latency using the channel state information (CSI)

problem in MCC. The rate allocation scheme is applied during task

offloading to decide the transmission rate of user requested by

applying the decision-making technique. Further, the Wifi channel

transmission is found to be effective and reduces the computation

cost. A resource scheduling method [33] uses particle swarm

optimization (PSO) algorithm to find the optimal solution using

oriented matrix with fast convergence speed which improves the

performance of MCC by offloading the task with requested time

delay. Further, PSO algorithm makes proximity optimal solution

which can be improved further to utilize the resource effectively.

From the literatures discussed, the performance

improvement in MCC can be made by integrated way of handling

task offloading, resource allocation and optimization. The

optimization of resource can be done by reallocation with

continuous monitoring of allocated resources and tasks. Further,

the context information about the mobile cloud network and user

are collected to efficiently carry the resource optimization process.

The task execution can also help the resource optimization process

by parallelizing the task to be executed in sequential order.

.

3. Proposed Methodology

In this paper, the proposed Task Offloading and

Resource Optimization TORO architecture represented in Fig. 2

contains three layers where each layer perform a specific set of

operations which overcomes the resource management complexity

in MCC. The layers along with the operational components are

discussed below.

3.1 Mobile Cloud Users (MCU)

MCU are peoples who use mobile devices with various

applications to carry the daily tasks such as online ticket booking,

Mobile banking, Email, Online data storage space, Geographical

Positioning System (GPS) and Image processing. The

applications listed are few but MCU makes the mobile devices to

operator all kinds of applications with limited resource capacity.

So, MCU requests the MCC system to efficient handle all kind of

application execution.

3.2 Multiple Request Handler (MRH)

In MCC, MRH receives requests from the mobile cloud

users and arrange them to provide mobile cloud service where this

N numbers of services are needed to be provided on-demand.

Further, the requests are forwarded to the Cloudlet Resource

Discovery Procedure (CRDP) as discussed in Algorithm 1 which

checks the resource availability of the requested service and

intimates them to arrangement the resources in advance.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 784

Fig 1: Task Offloading and Resource Optimization Architecture

3.3 Mobile Cloudlet Resource (MCR)

MCRL contains MCC resources which are discovered

dynamically and user to provide resources on-demand. In MCRL,

cloudlet is a main element which has local pool of resources,

Metropolitan Area Network (MAN) which is private cloud where

the resource are available in multiple location of single

management, Wide Area Network (WAN) which is public cloud

network where resource are available globally by connecting

multi resource management service. The resource for the user

requests are allocated from MCRL which is based on the

availability and providing uninterrupted service using MAN and

WAN.

3.3.1 Cloudlet

The local mobile computing resource are pooled together

to form a Cloudlet which is connected and accessed by Access

Point (AP). Each cloudlet contain Base Resource (BR) and

Additional Shared Resource (ASR) where the BR is fixed which

can be upgraded later. The ASR is dynamically collected resources

from different resource provider with the particular range of

cloudlet distance which is discussed in Algorithm 1. In each

cloudlet, the proposed TORO architecture maintains a Local

Resource Index Management Table (LRIMT) data structure which

makes resource to access in distributed manner, stores the cloudlet

resource information which are newly discovered and forwarding

the migrated resource information from one LRIMT to other

LRIMT. The update is also carried in the Centre Resource Index

Management Table (CRIMT) which accesses the resource in

centralized manner for carrying better optimization in resource

reallocation.

3.3.2 MAN Cloud

MAN cloud is a private cloud in different geographical

area where clouds are formed by interconnecting multiple local

cloud resources. The MAN cloud resource is used only when the

local cloud resource are unavailable or in overloaded condition.

But the MAN cloud resources are costlier and degrade the MCC

performance due to long distance and mostly not considered for

resource allocation.

3.3.3 WAN Cloud

WAN cloud is a public cloud which is available globally

with interconnection of giant cloud systems. The cloudlets and

MAN cloud resource are not sufficient to provide the service WAN

cloud resource is used. The WAN cloud resources are more costly

and degrade the MCC performance it is not considered mostly in

the proposed TORO architecture.

3.3.4 CRIMT

CRIMT data structure interconnects all LRIMT in

cloudlets to make centralized access of resources and further

reallocate the resource in fast migrating environment. The CRIMT

monitors the resources with allocated task and its movement where

the task execution stages are monitored. When the final stage of

task execution is identified, CRIMT will not take of care of further

resource reallocation step for that task thereby concentrating the

other task to execute in optimized way.

3.4 Task Management Layer (TML)

TML is a part of TORO architecture as shown in Fig.2.

TML perform three operations such as task offloading with Task

Resource Demand Predictor (TRDP), Task partitioning and Task

scheduling. The components of TML along with its operations are

discussed as follow.

3.4.1 TRDP

The scheduled request from MRH is forwarded for

offloading process where the task from MRH first received by

TRDP. Here, decision is taken using TRDP where the requested

resource by task is available in the MCR if not available initiate

the dynamic resource discovery process using Algorithm 1.

3.4.2. Task scheduler

Task scheduler receives all partitioned task in group and

scheduled them in the multi-level queue based on task completion

time where each level of queue handle different GoT.

3.5 Mobile Hypervisor Layer (MHL)

MHL handles the Resource allocation is an important

process in TORO architecture. Further MHL decomposed into

three operations such as hypervisor (or) mapping, VM synthesizer

and VM Optimizer.

3.5.1 Hypervisor

Hypervisor is an important component in TORO

architecture where decision is taken to allocate which resource to

task and freeze that resource as discussed in Algorithm 5. The

decision is taken by considering proximity between task (X, Y, Z)

and resource (X, Y, Z). Further, resource identified to map the task

is collateral in to VM.

3.5.2. VM Synthesizer

VM synthesizer analyzes the allocated resource to VM

whether the proximity between tasks is high. The resource

collateral with VM is checked for proximity using proximity

checker which is discussed in Algorithm 2. Thus for the resources

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 785

proximity checker identify which resource is to be reallocated and

that resource detail along with VM is repeated.

3.5.3 VM Optimizer

VM Optimizer performs resource reallocation where the

VM resources reported by it pauses the task execution by the VM

synthesizer as discussed in Algorithm 6. Further, during

reallocation process VM optimizer reallocate the non-proximitized

resource where to newly proximitized resource and restart the task

execution of the GoT or BoT.

3.6 Mobility Management Layer (MML)

MML perform two operations such as MCU information

collection and storing MCU information. The components of

MML are described as follow.

3.6.1 Mobile Cloud User Information Management Table

(MCUIMT)

MCUIMT has data structure to store MCU information

which is collected frequently in dynamic environment which also

includes the newly modified resource requirement of task.

3.6.2 Mobile Migration Manager (MMM)

MMM monitors the MCU movement and also gets the

information about the new requirement for already executing task

to reallocate the resources as discussed in Algorithm 6. The

continuous monitoring is carried for all users who have provide the

mobile cloud service and frequent information are collected for a

period of time around for 30 sec.

4. Mathematical model and Algorithms

4.1. Resource Discovery Process (RDP)

The users (U) and their requests (R) are paired as P (U,

R) = {p (u1, r1), p (u2, r2)….. p (uN, rK)} in MCC. In Proposed TORO

architecture, local cloudlet C is collected from different

independent cloudlet resource {C1, C2, C3….C∞} which ranges

from 1 to ∞ which depends on the situation. Further, TRDP is

carried by checking resource availability (R_Avail) as shown in

Eq. (1) to project (∏) R_Avail for each Ri with function f in C. Eq.

(2) represents the function f applied in Eq. (1) where (⁆) denotes

existence of cloudlet resources (C_Res) in C for Ri. The R_Avail

has two case shown in Eq. (3) – (4) where the Eq. (3) specify the

satisfaction of resource requirement (R_Req) of Ri for

computation, further the resource migration process for dynamic

resource migration optimization is initiated using DRMP

Algorithm 1 which is described in 4.2. The Eq. (4) specifies the

insufficient R_Req for Ri and to make enough resource availability

in dynamic environment it uses cloudlet resource discover process

(CRDP) which is discussed in Algorithm 1.

𝑅_Avail ⇐ (∏ 𝑅𝑖
 𝑓
→ ∑ 𝐶𝑖∞

𝑖=1𝑅𝑒 𝑠) (1)

𝑓: (∃𝐶_Res𝑖 → ∑ 𝐶𝑖∞
𝑖=1) (2)

Case 1: Resource Requirement satisfied.

(𝑅𝑗. 𝑅_Req ≈ 𝑅_Avail) → 𝐷𝑅𝑀𝑃()
 (3)

Case 2: Resource Requirement not satisfied.

(𝑅𝑗. 𝑅_Req ≠ 𝑅_Avail) → 𝐶𝑅𝐷𝑃()
 (4)

In cloudlet resource discovery process (CRDP), the Eq.

(5) represents available C_Res from C in the proposed TORO

architecture. Moreover, the CRDP with expand and shrink state

where expand state dynamically discovers the ASR within center

point CP= 0 to range r=50 meters as shown in Eq. (6). The Eq. (7)

denotes the shrink state where the unreliable resource is released

from Ci within CP= 0 to r=50 meters to effectively manage the

resources.

 𝐶_Res ← ∑ 𝐶𝑖
∞
𝑖=1

 Expand state: 𝐶𝑖 ← ∫ (𝐵𝑅𝑖 + ∑ 𝐴𝑆𝑅𝑗
∞
𝑗=1)

50

𝑟=0

(6)

 Shrink state: 𝐶𝑖 ← ∫ (𝐵𝑅𝑖 −∑ 𝐴𝑆𝑅𝑗
𝑀
𝑗=1)

50

𝑟=0
 (7)

4.5 Task offloading

The task offloading operation is mentioned in the Eqs.

(8) - (10). Eq. (8) denotes the resource allocation process in the

form of VM where proximity σ(p-res) of Cj thereby Ri is mapped to

Cj..𝑉𝑀𝑖 = {𝜎(𝑝−𝑟𝑒𝑠)𝐶𝑗/𝑅𝑖
 𝑓
→ 𝐶𝑗}, (8)

 Eq. (9) mention the single group offloading of similar task S-taskGi

to VMi where execution (Ej) takes place. Eq. (10) represents non-

similar task offloading NS-task to VMj for execution (Ep) take

place.

 _ ,
i

j iE = S task VM
G
→ (9)

𝐸𝑘 = {𝑁𝑆_𝑡𝑎𝑠𝑘 → 𝑉𝑀𝑗}. (10)

Algorithm 1: Task offloading process.

Input: VM= {VM1, VM2...VMn}, NS_task, S_task

Output: Execution time (ETi), OVM= {OVM1, OVM2...OVMk},

Begin Task Offloading process

Get (S_taski) <-PQueue1 (S_task)

Get (NS_taski) <-PQueue2(NS_task)

For NS_taskj j=0 to sizeOf (NS_task)

Get (p_res) <-pair (NSj,Cj)

VMj<- using p_resj

Map (VMj, NS_taskj)

Ej<- ResourceOptimization(run(NS_taskj))

End

For S_taskk k=0 to sizeOf(S_task)

Get (p_res) <-pair (Sk,Ck)

If ((G_id of S_taskk-1)! = (G_id of S_taskk))

VMk<- using p_resk

Map (VMk, S_taskk)

 Ek<- Optimization(run(S_taskk))

Else

Map (VMk, S_taskk)

Ek<- Optimization(run(S_taskk))

EndIf

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 786

End

End Task Offloading Process

 Algorithm 5 is developed using Eqs (8-10) where the

execution of S_taskk and NS_taskj are separately processed in the

queue. The p_res for taski(x, y) position is identified and paired

P(Si, Ck). VM for taskk is created using the p_res of Ck. The S_task

will be executed sequentially based on same group id (G_id) in

same VM and parallel execution is carried by another VM for

S_task with different G_id. Moreover, simultaneously parallel

execution of NS_task is done. The execution time (E) noted for all

ATi. The task offloading in TORO architecture using algorithm 4

executes the tasks sequentially and parallel.

4.6 Resource optimization process

Resource optimization for allocated resource in TORO

architecture is performed by Eqs. (11-14). Eq. (11) denotes the VM

optimization Opt(VMi) in VMi where the performance degrades to

the required QoS level (Ri.QoS). The optimization of VM is done

using three cases; in case1, the performance degradation is due to

the addition resource requirement of VM for task execution as

given in Eq. (12) for optimized Opt_VM. In case 2, optimization

for intra cloudlet is performed using Eq. (13) where the

performance degradation happens due to mobility of the VMi

resource and the reallocation done to reform Opt_VM. In case 3,

optimization for inter cloudlet is performed as mentioned in Eq.

(14) where the performance degradation happens due to the

mobility of VMi resource and handover operation is done for VMi

reallocation to different Cj.

𝑂𝑝𝑡(𝑉𝑀) = {𝑉𝑀𝑖 → 𝑂𝑝𝑡_𝑉𝑀𝑖/𝑃(𝑉𝑀) < 𝑅𝑖 . 𝑄𝑜𝑆}.

 (11)

Case 1:

𝑃(𝑉𝑀) = {𝑂𝑝𝑡_𝑉𝑀𝑖 ← 𝑉𝑀𝑖 + 𝑆𝑅}.

(12)

Case 2:

𝑃(𝑉𝑀) = {𝑂𝑝𝑡_𝑉𝑀𝑖 ← 𝑅𝑒 𝑎 𝑙𝑙𝑜𝑐𝑎𝑡𝑒(𝑉𝑀𝑖)}.

(13)

Case 3:

𝑃(𝑉𝑀) = {𝑂𝑝𝑡_𝑉𝑀𝑖 ← 𝐻𝑎𝑛𝑑𝑜𝑣𝑒𝑟(𝑉𝑀𝑖)}.

(14)

Algorithm 6 is developed based on the Eqs. (25-28) where the

hypervisor monitors the VM by checking three conditions:

additional resource required to execute the task in specified VM

and the proximity value (PV) between allocated resource with VM

for intra cloud and handle over of VM to inter cloud. In the first

condition, it allocates ASR to VMi. In the second condition, it

reallocates the VMi resource. In third condition, handover process

is carried out due the user (U) migration to different location after

offloading of resources.

Algorithm 2: Resource Optimization process

Input: single VMi

Output: Opt_VMi

Begin Optimization

If (VM.performance < Ri.QoS_requested level)

If (VMi requires ASR)

Opt_VMi←VMi+ASRj

Elseif ((current PVi of VMi) > (initial PVi VMi))

Opt_VMi←Reallocate(VMi)

//Intracloudlet communication

Elseif ((current PVi of VMi & Ui)> Threshold_PV

VMj <- Handover(VMi)

//Intercloudlet communication

EndIf

EndIf

Begin Reallocate

If ((Rk->VMk)&&(VMK->Ci))

Foreach j=1 to M

If (Ci.cp<=VMk.ASRj(X,Y,Z)<Ci.r)

Ci← ASRj(X,Y,Z)

Elseif (Ci.cp < VMk.ASRj(X,Y,Z) <= Ci.r)

ASRj= new ASR

Ci ←ASRj(X,Y,Z)

Endif

End

Endif

End Reallocate

Begin Handover

If(((Ci.r<Uj(X,Y,Z)<Ci+N.cp))

MCUIMT ← (Uj(X,Y,Z) near to Ci+N.LRIMT)

Ci+N.VMj←Reallocate(Rj to Ci+N)

End Handover

End Optimization

Fig. 2 TORO Flowchart

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 787

The proposed TORO, existing FDCO [15] and mCloud

[40] model are simulated with CloudExp simulator [39] for

performance comparison. The proposed TORO is simulated as per

the data flow shown in Figure 3. The MCU have multiple users

who request services from MCC to handle the MCR. After

receiving the requests from MCR, the RDP is initially processed

by checking the resource availability of requests by Algorithm 1.

Table 1 LRIMT

In TRDP process, if the resources are sufficiently

available it calls the RMM procedure for reliable resource

maintenance and if resources are insufficient CRDP procedure is

called to discover on-demand resource for requests. The cloudlet

parameters as shown in LRIMT Table 1 which collected during

discover resources process. The C_id uniquely represents the

cloudlet with pool of resource, N_id mentioned denotes the mobile

node which provides ASR. The node with energy level above 60%

and the signal strength above 3 levels are considered as reliable

ASR. The number of processing cores is depicted as P_core and

P_MIPS represents the total number of instructions handled.

Computational memory is denoted by RAM. The secondary

memory to store the data is mentioned as Storage. The C_range

denotes the cloudlet covering area. BW represents data rate for task

offloading.

Table 2 Mobile node

Table2 represents the mobile node parameters which

provide ASR. The N_id uniquely identify the mobile node, P_core

denotes the number of execution units, P_MIPS represents the

number of instructions per cycle, RAM denotes the memory size

and Storage represents the secondary memory. The mobile node

parameters are variable based on the individual configuration.

Further, N (x, y, z) represents the mobile nodes current location

which is monitored by MMM process and detailed information is

maintained in the MCUIMT. The BW represents the transmission

data rate in network. The RMM process monitors the discovered

resources for migration by Algorithm 2 to make effective and

efficient way of resource allocation and helps the resource

optimization by communicating between cloudlets with updating

the locality information in LRIMT shown in Table 1 and CRIMT

shown in Table 3.

Table 3 parameters are T_Cloudlet which mention the

total number of cloudlet available in the TORO system, C_id

uniquely denotes the individual cloudlet. T_Node represents the

total number of mobile node who provides ASR. The T_P_core

depicts the total number of CPU core and T_P_MIPS represent the

number of instruction handled. The total computational memory is

denoted by RAM.

Table 3 CRIMT

The Storage denotes the capacity of secondary memory.

The T_C_range specifies the range of cloudlet area covered.

T_BW represents available data rate. Total resource availability on

the TORO system cloudlets is accessed using this information. The

DRCR process described in Algorithm 3 is implemented for

provisioning reliable ASR where the energy level (EL) and signal

strength (SS) is to be above the threshold level as described in

Table 2. After making the resource availability for the demanded

requests, each request task is analyzed by Algorithm 4 for task

scheduling and prioritization where IFS value for each request is

generated to partition the task in to subtasks. Further, subtasks are

grouped by application and operational similarity where similar

application tasks are scheduled in S_task queue and tasks without

application similarity are separately scheduled in NS_task queue.

The S_task and NS_task are multilevel queue, based on the

completion time tasks are scheduled in ascending order.

Table 4 NEXCUS5 VM

After scheduling the NS_tasks and S_tasks separately in

multilevel queue, the resource allocation and offloading process is

implemented using Algorithm 5. Moreover, sub-tasks are

offloaded in sequence from scheduler to hypervisor for resource

allocation where the hypervisor identify the resource which is close

to the user task by creating temporary virtual machine (VM) based

on the proximity between the user and resource, VM image used is

Nexcus5. Table 4 describe the Nexcus 5 parameters where image

represent the storage capacity, RAM denotes the primary memory,

P_MIPS represent the number of instructions executed in a single

cycle frequency, P_core denotes the number of execution unit in

VM and finally the BW represents the data transfer rate.

Parameters Value

C_id

N_id

P_core

P_MIPS(GB)

RAM(GB)

Storage(GB)

C_range (Meters)

BW(GB)

EL (%)

SS (level)

Auto

Auto

2-8

1-3

2-8

8-512

50(Appro)

1-2

0-100% (60 is threshold)

1-6 (3 is threshold)

Parameters Value

N_id

P_core

P_MIPS(GB)

RAM(GB)

Storage(GB)

N (x, y, z)

BW(GB)

EL (%)

SS (level)

Auto

Variable

Variable

Variable

Variable

Dynamic

1-2

0-100% (60 is threshold)

1-6 (3 is threshold)

Parameters Value

T_Cloudlet

C_id

T_Node

T_P_core

T_P_MIPS(GB)

T_RAM(GB)

T_Storage(GB)

T_C_range (Meters)

T_BW(GB)

Auto

Auto

Auto

2-8

1-3

2-8

8-512

50(Appro)

1-2

Parameters Value

Image (GB) 10

RAM(GB) 15

P_MIPS(MHz) 250

BW(GB) 1

P_core 4

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 788

Table 5: Mapping

Table 5 represents the VM and task mapping parameters.

The C_id identify the unique cloudlet. The G_id represents the

group id where S_task are mapped to VM, if need parallel

execution in done in another VM to execute the tasks in parallel

and sequential manner in allocated VM. The S-task and NS-task

are uniquely identified using T_id. The NS_task are mapped to

separate VM and executed in parallel. The VM_id is used to

identify the allocated resource to the tasks. The NS_task and

S_task are executed in parallel with different VMs. Moreover,

allocated resource to tasks and users are monitored by MMM for

periodically update the proximity and reliability information about

users maintained in MCUIMT. The resource syntheser takes

decision for optimization by checking the proximity distance

between resources and users with the help of MCUIMT

information. Then the resource syntheser send the command to

resource optimizer which is implemented using Algorithm 2 to

reallocate the allocated resource of VM with considering the cases

specified in the Eq. (11) – (15) where the proximity distance

between the user and resource are low. Finally the executed task

time is recorded for analyzing the performance of MCC by TORO

architecture.The existing FDCO algorithm and mCloud model

execution data flow in are also simulated. The cloudlet is created

as of in proposed TORO architecture except ASR operation. The

request from the application is forwarded and decision is taken by

decision engine to select the effective resource type such as 3G,

Bluetooth and wifi to offload the task to VM. Further, offloaded

information are stored in the database by the task manager for

evaluation.

5.Result and Discussion

The evaluation of the proposed TORO architecture is compared

with the existing FDCO algorithm and mCloud model which

shows the performance improvement with the result generated for

four different workloads as given in Table 6. Here, BTH denotes

the big tasks which need high computation, BTL denotes big tasks

which need low computation, STH represents small tasks which

require high computation and STL represents small task which

needs low computation. Further, the image size and MIPS of four

workloads differs in size. The workloads are executed separately

in the simulation environment and results are compared by plotting

graphs. In graph, the execution time and resource utilization cost

for tasks are analyzed for proposed TORO architecture and the

existing FDCO and mCloud model.

S.No Workloads No. of

tasks

Image MIPS

1 BTH 500 3000 30

2 BTL 500 3750 17

3 STH 500 650 24

4 STL 500 725 6

Table 6 Workload

Figure4 BTH workloads in TORO, FDCO and mCloud

Figure 4 represent the execution time for the workload

BTH. The graph plotted shows the execution time of the proposed

TORO architecture where tasks are executed fast when compared

to existing FDCO and mCloud model. The overall optimization is

applied in proposed TORO architecture to compute workload

faster in dynamic environment.

Figure 5 BTL workloads in TORO, FDCO and mClo

Figure 5 describe the execution time for the workload

BTL. The graph plotted depicts the execution time of proposed

TORO architecture in which tasks are executed fast compared to

existing FDCO and mCloud model. The overall optimization in the

proposed TORO architecture made the workload to compute faster

in dynamic environment.

Parameters Value

C_id

G_id

T_id

VM_id

VM(X, Y,Z)

T (X, Y,Z)

Auto

Auto

Auto

Auto

Dynamic

Dynamic

0.294
0.296
0.298

0.3
0.302
0.304
0.306
0.308

1

6
4

1
2

7

1
9

0

2
5

3

3
1

6

3
7

9

4
4

2

Ex
e

cu
ti

o
n

 t
im

e
(S

e
c)

Tasks

BTH Workload

TORO

FDCO

mcloud

0.293

0.298

0.303

0.308

0.313

0.318

1

5
7

1
1

3

1
6

9

2
2

5

2
8

1

3
3

7

3
9

3

4
4

9

Ex
e

cu
ti

o
n

 t
im

e
 (

Se
c)

Tasks

BTL Workload

TORO

FDCO

mCloud

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 789

Figure 6 STH workloads in TORO, FDCO and mCloud

Figure 6 represent the execution time for the workload

STH. The plotted graph shows the execution time of proposed

TORO architecture where the tasks are executed fast when

compared with the existing FDCO and mCloud model. The overall

optimization in the operations of proposed TORO architecture

made the workload to compute faster in dynamic environment.

Figure 7 STL workloads in TORO, FDCO and mCloud

Figure 7 illustrate the execution time for the workload

STL. The graph plotted shows the execution time of proposed

TORO architecture in which the tasks are executed fast when

compared to the existing FDCO and mCloud model. The overall

optimization done in the operations of proposed TORO

architecture made the workload to compute faster in dynamic

environment.

Figure 8 Performance comparisons between TORO, FDCO and mCloud

The workloads executed in proposed TORO architecture

and the existing FDCO algorithm and mCloud model are compared

based on the execution time to show better performance which is

represented in Figure 8. The execution time of the workload BTH

shown for the proposed TORO architecture is 147.95 sec, the

existing FDCO algorithm have 149.5 sec and mCloud model have

150.18 sec which shows that the proposed TORO architecture

execute faster . The BTL computed in proposed TORO

architecture have 147.99 sec, the existing FDCO have 150.03 sec

and mCloud model have the execution time of 155.2 sec where the

proposed TORO architecture compute faster. The STH computed

in proposed TORO architecture have 141.9 sec, the existing FDCO

have 144.22 sec and mCloud model have execution time 147.2 sec

which indicates that the proposed TORO architecture execute

faster. The workload STL computed in proposed TORO

architecture have 138.9 sec, the existing FDCO have 141.08 sec

and mCloud model have the execution time of 143.93 sec which

shows that the proposed TORO architecture compute faster. Thus,

the evaluation carried with four different workloads shows that the

proposed TORO architecture compute the task faster and improved

the performance of MCC in optimized and integrated way.

Figure 9 Cost comparisons between TORO, FDCO and mCloud

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 790

The workloads computed in proposed TORO

architecture and the existing FDCO and mCloud model are

compared based on the overall resource usage and its cost is shown

in Figure 9. The average cost of the workload BTH shown for the

proposed TORO architecture is 1900, existing FDCO algorithm is

2100 and mCloud model is 2500 where the proposed TORO

architecture computes the workload is cost effective when

compared to existing FDCO and mCloud model. The BTL

computed in proposed TORO architecture have cost around 1200,

the existing FDCO have 1500 and mCloud model have cost around

2100 which indicate that the proposed TORO architecture show

better cost. The STH computed in proposed TORO architecture

have cost around 650, the existing FDCO have 700 and mCloud

model have 800 which highlight that the proposed TORO

architecture have better resource utilization cost. The workload

STL computed in proposed TORO architecture has 450, the

existing FDCO have 490 and mCloud model have 550 which

specify that the proposed TORO architecture have better cost when

compared to other two models. Thus from the analysis made with

four different workloads proves that the proposed TORO

architecture is cost effective to compute the task faster in MCC by

integrated optimization.

5. Conclusion and Future work

In this paper, we proposed TORO architecture which optimization

the various operations integrated together to the performance of

MCC. The operations included are resource demand prediction,

reliable cloudlet resource, task scheduling and partitioning, task

offloading and optimization. The TORO architecture is simulated

and evaluated with the FDCO algorithm and mCloud model. The

evaluation result for various workloads shows that the proposed

TORO architecture outperforms by executing tasks faster in cost

effective manner with overall performance improvement when

compared to the FDCO algorithm and mCloud model. In future,

the proposed TORO architecture will be used to design a real-time

mobile cloud operating system in heterogeneous environment.

References
[1] B. Varghese, R. Buyya, Next generation cloud computing:

New trends and research directions, Future Generation

Computer Systems, 79 (2018) 849-861.

https://doi.org/10.1016/j.future.2017.09.020.

[2] Jaiswal, A.S., Thakare, V.M. and Sherekar, S.S. (2015) ‘Study

and analysis of architecture components of cloudlets in MCC’,

International Journal of Electronics, Communication and Soft

Computing Science and Engineering (IJECSCSE), pp. 376 –

382.

[3] Chunlin, L., Jing, Z. and Youlong, L. (2018) Cloud-based

mobile service provisioning for system performance

optimization, International Journal of Ad Hoc and Ubiquitous

Computing, Vol. 29, No. 3, pp. 193 – 207.

doi: 10.1504/IJAHUC.2018.095476

[4] X. Lyu, H. Tian, C. Sengul, P. Zhang, Multiuser joint task

offloading and resource optimization in proximate

clouds, IEEE Transactions on Vehicular Technology, 66 (4)

(2017) 3435 – 3447. https://doi.org/10.1109/tvt.2016.2593486.

[5] K. Manbir, K. Kiranbir, K. Lohit, An Efficient Resource

Provisioning Technique in Inter-Cloud Using Peer-to-Peer

Approach, American Journal of Engineering and Applied

Sciences, 10 (2) (2017) 529–539.

https://doi.org/10.3844/ajeassp.2017.529.539.

[6] H. Wen, L. Yang, Z. Wang, ParGen: A Parallel Method for

Partitioning Data Stream Applications in Mobile Edge

Computing, IEEE Access, 6 (2018) 5037-5048.

https://doi.org/10.1109/access.2017.2776358.

[7] Y. Son and Y. Lee, “Offloading Method for Efficient Use of

Local Computational Resources in Mobile Location-Based

Services Using Clouds,” Mobile Information Systems, vol.

2017, pp. 1–9, 2017. https://doi.org/10.1155/2017/1856329

[8] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes:

Latency Optimal Task Assignment for Resource-constrained

Mobile Computing,” IEEE Transactions on Mobile Computing,

vol. 16, no. 11, pp. 3056–3069, Nov. 2017.

https://doi.org/10.1109/tmc.2017.2679712

[9] X. Jin, Z. Wang, and W. Hua, “Cooperative Runtime

Offloading Decision Algorithm for Mobile Cloud Computing,”

Mobile Information Systems, vol. 2019, pp. 1–17, Sep. 2019.

https://doi.org/10.1155/2019/8049804

[10] B. Li, Y. Pei, H. Wu, and B. Shen, “Heuristics to allocate high-

performance cloudlets for computation offloading in mobile ad

hoc clouds,” The Journal of Supercomputing, vol. 71, no. 8, pp.

3009–3036, Apr. 2015. https://doi.org/10.1007/s11227-015-

1425-9

[11] W. Junior, A. França, K. Dias, and J. N. de Souza, “Supporting

mobility-aware computational offloading in mobile cloud

environment,” Journal of Network and Computer Applications,

vol. 94, pp. 93–108, Sep. 2017.

https://doi.org/10.1016/j.jnca.2017.07.008

[12] M. Goudarzi, M. Zamani, and A. T. Haghighat, “A fast hybrid

multi-site computation offloading for mobile cloud computing,”

Journal of Network and Computer Applications, vol. 80, pp.

219–231, Feb. 2017.

https://doi.org/10.1016/j.jnca.2016.12.031

[13] Z. Kuang, S. Guo, J. Liu, and Y. Yang, “A quick-response

framework for multi-user computation offloading in mobile

cloud computing,” Future Generation Computer Systems, vol.

81, pp. 166–176, Apr.

2018. https://doi.org/10.1016/j.future.2017.10.034

[14] I. Yaqoob, E. Ahmed, A. Gani, S. Mokhtar, and M. Imran,

“Heterogeneity-Aware Task Allocation in Mobile Ad Hoc

Cloud,” IEEE Access, vol. 5, pp. 1779–1795, 2017.

https://doi.org/10.1109/access.2017.2669080

[15] H. Cao and J. Cai, “Distributed Multiuser Computation

Offloading for Cloudlet-Based Mobile Cloud Computing: A

Game-Theoretic Machine Learning Approach,” IEEE

Transactions on Vehicular Technology, vol. 67, no. 1, pp. 752–

764, Jan. 2018. https://doi.org/10.1109/tvt.2017.2740724

[16] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance

Guaranteed Computation Offloading for Mobile-Edge Cloud

Computing,” IEEE Wireless Communications Letters, vol. 6,

no. 6, pp. 774–777, Dec. 2017.

https://doi.org/10.1109/lwc.2017.2740927

[17] Z. Yin, H. Chen, and F. Hu, “An advanced decision model

enabling two-way initiative offloading in edge computing,”

Future Generation Computer Systems, vol. 90, pp. 39–48, Jan.

2019. https://doi.org/10.1016/j.future.2018.07.031

[18] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C.

Cervello-Pastor, and A. Monje, “On the optimal allocation of

virtual resources in cloud computing networks,” IEEE

Transactions on Computers, vol. 62, no. 6, pp. 1060–1071, Jun.

2013. https://doi.org/10.1109/tc.2013.31

[19] F. A. Nakahara and D. M. Beder, “A context-aware and self-

adaptive offloading decision support model for mobile cloud

computing system,” Journal of Ambient Intelligence and

Humanized Computing, vol. 9, no. 5, pp. 1561–1572, Apr.

2018. https://doi.org/10.1007/s12652-018-0790-7

[20] M. Chen and Y. Hao, “Task Offloading for Mobile Edge

Computing in Software Defined Ultra-Dense Network,” IEEE

Journal on Selected Areas in Communications, vol. 36, no. 3,

pp. 587–597, Mar. 2018.

https://doi.org/10.1109/jsac.2018.2815360

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 781–791 | 791

[21] A. Ceselli, M. Fiore, M. Premoli, and S. Secci, “Optimized

assignment patterns in Mobile Edge Cloud networks,”

Computers & Operations Research, vol. 106, pp. 246–259, Jun.

2019. https://doi.org/10.1016/j.cor.2018.02.022

[22] G. Peng, H. Wang, J. Dong, and H. Zhang, “Knowledge-Based

Resource Allocation for Collaborative Simulation Development

in a Multi-Tenant Cloud Computing Environment,” IEEE

Transactions on Services Computing, vol. 11, no. 2, pp. 306–

317, Mar. 2018. https://doi.org/10.1109/tsc.2016.2518161

[23] J. Tang, W. P. Tay, and T. Q. S. Quek, “Cross-Layer Resource

Allocation With Elastic Service Scaling in Cloud Radio Access

Network,” IEEE Transactions on Wireless Communications,

vol. 14, no. 9, pp. 5068–5081, Sep. 2015.

https://doi.org/10.1109/twc.2015.2432023

[24] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint Offloading and

Computing Optimization in Wireless Powered Mobile-Edge

Computing Systems,” IEEE Transactions on Wireless

Communications, vol. 17, no. 3, pp. 1784–1797, Mar. 2018.

https://doi.org/10.1109/twc.2017.2785305

[25] S. Li, N. Zhang, S. Lin, L. Kong, A. Katangur, M. K. Khan, M.

Ni, and G. Zhu, “Joint Admission Control and Resource

Allocation in Edge Computing for Internet of Things,” IEEE

Network, vol. 32, no. 1, pp. 72–79, Jan. 2018.

https://doi.org/10.1109/mnet.2018.1700163

[26] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R.

Langar, and S. Secci, “ULOOF: A User Level Online

Offloading Framework for Mobile Edge Computing,” IEEE

Transactions on Mobile Computing, vol. 17, no. 11, pp. 2660–

2674, Nov. 2018. https://doi.org/10.1109/tmc.2018.2815015

[27] Y. Gu, Z. Chang, M. Pan, L. Song, and Z. Han, “Joint Radio

and Computational Resource Allocation in IoT Fog

Computing,” IEEE Transactions on Vehicular Technology, vol.

67, no. 8, pp. 7475–7484, Aug. 2018.

https://doi.org/10.1109/tvt.2018.2820838

[28] F.-H. Tseng, H.-H. Cho, K.-D. Chang, J.-C. Li, and T. K. Shih,

“Application-oriented offloading in heterogeneous networks for

mobile cloud computing,” Enterprise Information Systems, vol.

12, no. 4, pp. 398–413, Feb. 2017.

https://doi.org/10.1080/17517575.2017.1287432

[29] X. Guo, L. Liu, Z. Chang, and T. Ristaniemi, “Data offloading

and task allocation for cloudlet-assisted ad hoc mobile clouds,”

Wireless Networks, vol. 24, no. 1, pp. 79–88, Jun. 2016.

https://doi.org/10.1007/s11276-016-1322-z

[30] S. Rashidi and S. Sharifian, “A hybrid heuristic queue based

algorithm for task assignment in mobile cloud,” Future

Generation Computer Systems, vol. 68, pp. 331–345, Mar.

2017. https://doi.org/10.1016/j.future.2016.10.014

[31] J. Li and C. Wu, “Aviation Logistics Mobile Internet Cloud

Computing Optimization,” International Journal of u- and e-

Service, Science and Technology, vol. 9, no. 7, pp. 369–380,

Jul. 2016. https://doi.org/10.14257/ijunesst.2016.9.7.37

[32] Y. Cai, F. R. Yu, and S. Bu, “Dynamic Operations of Cloud

Radio Access Networks (C-RAN) for Mobile Cloud Computing

Systems,” IEEE Transactions on Vehicular Technology, vol.

65, no. 3, pp. 1536–1548, Mar. 2016.

https://doi.org/10.1109/tvt.2015.2411739

[33] Y. Lin, “Based on Particle Swarm Optimization Algorithm of

Cloud Computing Resource Scheduling in Mobile Internet,”

International Journal of Grid and Distributed Computing, vol.

9, no. 6, pp. 25–34, Jun. 2016.

https://doi.org/10.14257/ijgdc.2016.9.6.03

[34] Joshi, P., Rathnamma, M.V., Srujan Raju, K., Pawar, U. (2021).

Miss Rate Estimation (MRE) an Novel Approach Toward L2

Cache Partitioning Algorithm’s for Multicore System. In:

Satapathy, S., Bhateja, V., Janakiramaiah, B., Chen, YW. (eds)

Intelligent System Design. Advances in Intelligent Systems and

Computing, vol 1171. Springer, Singapore.

https://doi.org/10.1007/978-981-15-5400-1_58

[35] Jeyakanth, Krishnan, Perumalsamy Venkatakrishnan, and

Chinnasamy Chitra. "Optimized channel prediction and

auction‐based channel allocation for personal cognitive

networks." International Journal of Communication Systems

36, no. 3 (2023): e5391.

