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Abstract: Diabetes-related retinopathy, or diabetic retinopathy, is the most common cause of blindness in the world. Delaying or 

preventing eyesight loss and impairment calls for prompt diagnosis and treatment. For this reason, several AI-based approaches have 

been developed for identifying and categorizing diabetic retinopathy in fundus retina images. The application of deep learning techniques 

in the various stages of the fundus image-based diabetic retinopathy diagnosis pipeline is thoroughly investigated in this review study. 

From the commonly used datasets in the research community to the preprocessing techniques and how they accelerate and improve 

model performance, to the creation of deep learning models for diagnosis, grading, and lesion localization, we cover many of the key 

steps in this pipeline. Some models that have been used in actual clinical practice are also discussed. As a final step, we offer some key 

takeaways and suggestions for further study. 
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1. Introduction 

There are currently 463 million individuals with diabetes 

mellitus, and this figure is expected to climb to 700 million by 

2045, making diabetes a major public health concern [1]. 

Diabetic retinopathy (DR) is the most frequent complication of 

diabetes affecting the eyes, affecting at least one third of people 

with diabetes. Any diabetic patient, regardless of how severe their 

condition is, is at risk for developing DR, which is characterised 

by increasing vascular disturbances in the retina due to persistent 

hyperglycemia. It is estimated that some 93 million individuals 

throughout the world have DR, making it the main cause of 

blindness among adults of working age.  

The increased incidence of diabetes in developing Asian nations 

like India and China is a major factor in the projected increase in 

these figures. Neuronal retinal degeneration and clinically 

undetectable microvascular alterations progress throughout the 

asymptomatic early stages of diabetic retinopathy. Therefore, it is 

crucial to test diabetic patients' eyes regularly so that any visual 

problems can be identified and treated as soon as possible. Early 

recognition of DR is crucial because the sole method for 

prevention is the management of risk factors such as 

hyperglycemia, hyperlipidemia, and hypertension.  

In addition, if diagnosed and treated early, proliferative 

retinopathy and diabetic maculopathy can be prevented in nearly 

all cases with the use of modern therapies like laser image 

coagulation. It is now clear that early diagnosis and therapy are 

crucial in delaying or preventing blindness from diabetic 

retinopathy. In clinical practice, early diagnosis of DR is 

dependent on fundus examination, even if it may be predicated on 

functional alterations in electroretinography (ERG), retinal blood 

flow, and retinal blood vessel diameter.  

One of the most common ways to evaluate the severity of DR is 

using fundus image, which is a quick, non-invasive, well-

tolerated, and easily accessible imaging procedure. 

Ophthalmologists diagnose and evaluate the severity of diabetic 

retinopathy by examining fundus images, in which retinal lesions 

may be seen at high resolution [2]. This has prompted the 

scientific community to create computer-aided diagnostic tools, 

which will lessen the burden on human medical professionals in 

terms of money, time, and effort spent diagnosing DR.  

 

Fig. 1. Fundus image 

 

The possibility to establish Deep Learning (DL) applications for 

effective DR detection and classification has arisen as a result of 

recent breakthroughs in AI and the growth in computational 

resources and capabilities [3]. This article presents and evaluates 

contemporary DL-based approaches for detecting and classifying 

DR; that is, those published after 2016. Although some literature 

reviews on the topic of deep learning's impact on DR have 

appeared in recent years, they tend to focus on only one or two 

steps in the data analysis and modelling pipeline (see Fig. 1), 

such as reporting on the model's performance or on the most 
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popular preprocessing techniques. There is no description of the 

open data sets provided.  

A more comprehensive and coordinated effort is required to 

assess the technological implementations and development in this 

extremely active research field due to the disjointed nature of the 

current activities. To accomplish this, we present a new 

comprehensive description of the analysis pipeline, which 

includes, among other things, a detailed analysis of the openly 

accessible datasets, the commonly used preliminary processing 

conduits. 

2. Retinopathy and diabetes 

Microaneurysms appear in the retina at an early stage of diabetic 

retinopathy due to the degeneration and loss of pericytes that 

causes capillary wall dilatation. Intraretinal hemorrhages develop 

when a capillary or a microaneurysm bursts. They are all 

additional pathologies of non-proliferative diabetic retinopathy. 

Large diameter, tortuous vessels are seen in ischemic regions; 

these may be IRMAs, as shown by research by Stitt et al. Finally, 

the occurrence of neovascularization, or the development of new 

retinal blood vessels in response to ischemia of preexisting 

vessels, distinguishes non-proliferative from proliferative diabetic 

retinopathy [4].  

Several lesions are shown in Figure 2 on a representative retinal 

fundus image. Diabetic macular edoema (DME) is the endpoint 

of any phase of diabetic retinopathy and is the leading cause of 

blindness. Disc-sized exudates in the macula, thickened retina 

inside the central fovea, and microaneurysms or haemorrhages 

inside the central fovea are all associated with edoema. The 

Experimental Intervention Diabetic Retinopathy Study (ETDRS) 

grading system is widely recognized as the pinnacle of quality for 

DR clinical assessment processes; nevertheless, incorporating it 

into ordinary medical treatment has been challenging. [5]. 

In an effort to enhance patient screening and communication, 

several additional scales have been developed. There is currently 

no standardised worldwide severity measure for diabetic 

retinopathy despite the development of such streamlined ratings 

in a few of countries. Thus, the International Clinical Diabetic 

Retinopathy Disease Severity Scale was proposed by the Global 

Diabetic Retinopathy Project Group to categorise DR on 5 

severity stages. 

3. Deep Learning models 

Inspired by the architecture of the human brain, Deep Learning 

(DL) is a family of AI techniques that uses artificial neural 

networks to learn new skills. Automatically learning the 

mathematical illustration of the hidden and intrinsic relations in 

the data is at the heart of deep learning. Since deep learning 

methods learn relevant features directly from the data, they 

require significantly less human direction than standard machine 

learning methods, which are dependent on the development of 

hand-crafted features, a procedure that may be highly difficult 

and time-consuming [6].  

Also, when data volumes grow, DL approaches perform 

substantially better than classic ML techniques. In this part, we 

will quickly go over some fundamental DL ideas. A three-layer 

artificial neural network (ANN) with one input layer, one hidden 

layer, and one output layer is the simplest type of neural network. 

Due to its single hidden layer, such networks are referred to as 

"Shallow" or "Feed-Forward" Neural Networks. [7].  

Unfortunately, imaging data is not a suitable input for these 

networks since they only take one-dimensional arrays. In contrast 

to shallow neural networks, which only accept 1D or 2D arrays as 

input, the notion of Convolutional Neural Networks (CNN) is 

based on a basic mathematical process called "convolution," 

which was inspired by human vision. While the output of each 

neuron in the following layer is calculated using the input of all 

the neurons in the previous layer in a DNN, this is not the case 

with a CNN. A CNN, on the other hand, uses filters or kernels to 

compute convolutions by sliding over a region of the original 

image to generate a feature map.  

Since UNet able to maintain the original image structure, they are 

superior to conventional CNNs when it comes to semantic 

segmentation. Specifically, they have a contracting path to 

capture the important context and an expanding path that is 

symmetric to allow for exact and accurate segmentation. 

Furthermore, unlike conventional CNNs, which process the 

image in multiple passes using a sliding window method, a UNet 

architecture processes the entire image in a single pass; hence, the 

name "Fully Convolutional Networks" (FCN) [8]. Last but not 

least, it performs a segmentation task with considerably less data 

than conventional CNNs do, which is especially important in the 

field of medical image analysis, where the amount of data 

available is far lower than in other areas of computer vision. It's 

well knowledge that humans can't analyse an entire scene or item 

all at once, but rather use attention processes to zero down on 

individual details.  

 

Fig. 2. Process Flow model 

 

However, such a method has not been completely implemented in 

conventional CNNs. In order to boost the models' efficiency and 

reliability, several recent research have developed such methods, 

known as attention modules [36–39]. Finally, the Generative 

Adversarial Network (GAN) [40] is a significant subclass of 

convolutional neural networks. The generating network, which 

creates candidate samples according to the original data 

distribution, and the discriminator, which tries to tell the 

difference between the created candidate samples and the genuine 

data distribution, make up the two halves of a standard GAN. If 

the generator is trained in this way, it will provide prospective 

samples that are statistically very similar to the actual data 

distribution [9].  

Training a deep neural network requires a large amount of time, 

effort, and data. ImageNET [42] is the largest item detection 

collection in the world, containing over 14 million images of real-
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world objects like animals, electronics, food, people, 

automobiles, and more. However, there are only around 80.000 

fundus images in the biggest dataset discussed here. This 

distinction stems from the fact that unlike images of 

commonplace items, medical images are notoriously difficult to 

get on account of the extensive curation, annotation, and legal 

difficulties that accompany their acquisition [10]. 

Therefore, it can be quite challenging to train strong and accurate 

models for medical issues. However, it is feasible to take use of 

models that have been trained on big datasets, such as ImageNet, 

by applying the information gained to a different model in a 

different domain. In order to enhance learning in one activity, 

Transfer Learning takes previously acquired knowledge and 

applies it to a new context. Ultimately, the network's ability to 

recognise low-level elements of the image (i.e. edges, contours, 

etc.) is improved by the transfer of knowledge from ImageNet to 

a medical imaging domain. Fine-tuning (i.e. retraining) the model 

on a fresh task (i.e. new dataset) is required in order to identify 

DR, however this procedure is far quicker and more precise than 

training the model from beginning [11].  

 

Fig. 3. Prepreocessing of Fundus images 

 

Ensemble Learning, or the use of several approaches, is another 

key field of research in artificial intelligence. As a potential 

method to combine data from different modalities, this learning 

strategy works to lessen the model's generalisation mistake. By 

combining the results of several different base models trained on 

the same dataset or a portion of the available data, ensemble 

learning modelling infrastructure may provide more accurate 

predictions. If all the models have been trained to do the same 

job, then it is feasible to utilise a variety of ensemble methods to 

combine the results. Majority voting, averaging, bagging, 

stacking, and boosting are all examples of such techniques. 

In a classification task, for instance, each classifier generates a 

result, and the final prediction is based on the result that received 

the most votes. When solving regression issues, it is common 

practise to take an average, which may or may not include 

weighting the individual predictions. Bagging is a method of 

producing a final prediction by combining the results of many 

models that were each trained on a small part of the original 

dataset. In addition, in stacking, a unique meta-model is trained 

on the output predictions of the various models in order to 

provide the final prediction. The goal of boosting-based ensemble 

approaches is to use models that have been trained several times 

to improve upon the shortcomings of less effective models [12]. 

Next, the predictive performance of the various models is used to 

weight the forecasts and provide an average. Multimodal 

learning, active learning, and the ability to learn while doing 

other things are also crucial. Figure 3 provides a straightforward 

example of the methods under discussion. With Multitask 

Learning, a single data encoding network may be used to make 

predictions for two distinct tasks. Imaging and non-imaging 

sources (such as magnetic resonance imaging (MRI), computed 

tomography (CT), molecular and clinical data)) are often 

integrated in multimodal learning. 

First, data from each source type is analysed by its own 

specialised model, and then the resulting fused features are 

utilised to educate a single model. Finally, Active Learning is 

concerned with training the algorithm on a small marked subset 

of the data, generating the predictions for the remaining models. 

The model is then trained using the newly tagged dataset. When 

the data set is too huge to label manually and labelling should be 

prioritised, active learning is often utilised. 

4. Analysing data on Diabetic retinopathy 

A certified expert used the ICDRDSS scale to rate the images. 

Aravind Eye Hospital collected the data for the Kaggle APTOS 

2019 Challenge in rural India so that they may create effective 

tools for the automated diagnosis of Diabetic Retinopathy and 

increase their capacity for patient identification. It has 5590 

images, making it the third biggest dataset. However, it has 

certain gaps in coverage, such as the Severe NPDR class having 

just 193 images [13]. 

Noise in the data (i.e. artefacts, focus difficulties, being 

under/overexposed) and the labels are present in the APTOS 

dataset, just as they are in the Kaggle EyePACS dataset, because 

they were both gathered in a real-world multicentre scenario. 

There are 1200 retina fundus images in the Messidor dataset, all 

of which were acquired in 2005 and 2006 from three different 

ophthalmology clinics in France. Eight hundred images were 

taken with pupils dilated and the remaining 400 were taken with 

normal pupils. Both datasets have high-quality images free of 

distracting noise, unlike the Kaggle EyePACS dataset.  

Each image in the datasets has been assigned a medical 

diagnostic indicating the degree of Diabetic Retinopathy, but 

there is no pixel-level information available describing the 

segmentation of lesions. However, the reliability and 

generalizability of their grades are diminished since their system 

deviates from the standard ICDRS procedure. The ophthalmology 

clinic in Nanded, India, used a Kowa VX - 10 fundus camera to 

capture these high-quality images, which make up the IDRiD 

dataset. All subjects had their pupils enlarged before any 

imagegraphs were taken. Although it has 12522 images and ranks 

second in size when evaluating the classification challenge, the 

DDR dataset is still relatively fresh and has not been utilised 

much. The information was gathered by several experts using a 

majority vote schema from 2016-2018 from various hospitals and 

annotated using the ICDRDSS scale. In addition, a sixth grade 

was added so that low-quality imagegraphs may be placed in their 

own group [14]. 

5. Image Processing Approaches 

Noise is introduced to the final image when a fundus image is 

taken with several different kinds of hardware under different 

kinds of lighting. In majority of the studies we looked at, pre-

processing the images was required because it helped minimise 

heterogeneity, which in turn affected the performance of the 

classification model, and it helped emphasise some small 

elements of the images. To begin, in any image processing or 

analysis pipeline, contrast enhancement is a popular 

preprocessing method used to emphasise the foreground from the 

background. Histogram equalisation, a straightforward approach 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 792–799  |  795 

for boosting contrast in fundus images, does so by increasing the 

image's global contrast but disregarding local differences [15].  

Adaptive Histogram Equalisation is a more sophisticated 

technique for contrast adjustment that accounts for regional 

differences in a constrained region of each pixel. Contrast-limited 

adaptive histogram equalisation (CLAHE) is increasingly widely 

employed in the scientific community for fundus imaging. In 

contrast to the original Adaptive Histogram Equalisation 

technique, CLAHE avoids the problem of excessive contrast 

amplification in almost constant regions of the image. All of 

these techniques work by altering the contrast of the image, 

which makes the retina's fine features more obvious.  

To minimise variations in lighting between images and to better 

show the minor lesions, other researchers have subtracted the 

local average colour from each pixel and mapped it to 50% 

grayscale. The image may have noise, thus Non-Local Means 

Denoising (NLMD) is used to get rid of it. While a more 

powerful denoising algorithm can successfully remove more 

noise from an image, it will also cause the image's fine features to 

blur as a side effect. 

Additionally, image intensity normalisation is used to reduce bias 

and lengthy training durations for the network and to standardise, 

considering the intensity of its pixels). Using a different colour 

model or even just the channels has improved the model's 

performance in addition to contrast augmentation, normalisation, 

and noise reduction. This approach outperformed the models that 

effect after being converted to entropy images, as performed by 

Lin et al.  

Additionally, the green channel is typically extracted from the 

fundus colour image because to its high contrast and plenty of 

information. Images in the databases could also range in 

resolution and aspect ratio. There may also be large stretches of 

blank space in the images. Images may be cropped, rescaled, and 

resized to a predetermined resolution in order to standardise their 

size and eliminate such blank spaces [16].  

Two distinct cropping methods were used in the tests by Bravo et 

al. Here, they are cropped so that the circle of the cropped image 

is surrounded by the retina; in another, the biggest square image 

inscribed in the retina is cropped. Preprocessing approaches, like 

as those presented in this section, have been shown to boost 

performance, notably for fundus images, even though DL has 

been shown to operate effectively.  

Due to the scarcity of high-quality data, data augmentation 

methods are employed to improve the model's stability and 

precision. Such methods may include Generative Adversarial 

Networks for image synthesis, colour and brightness 

augmentation, and image flipping, rotation, and shifting 

(translation), resizing, shearing, and flipping. The majority of the 

examined publications make use of some sort of augmentation 

technique to boost the available number of images and, thus, 

speed up the training of the model. 

6. Deep Learning Models 

These approaches are to categorise DR into five groups (or 

"classes"), in accordance with the clinical grading system, was 

published by Pratt et al. To address the class imbalance in the 

dataset and prevent over-fitting, the authors utilised a class-

weighted method to adjust the parameters during 

backpropagation for each batch. 

To improve their ability to forecast NPDR and PDR instances, 

Islam et al. transformed the quinary (5-class) classification issue 

into a regression problem. Torre et al. also created a CNN model 

for doing the categorization; theirs took into account data from 

both eyes and effectively fused the resulting representations. To 

get a final receptive field with dimensions as close to the original 

image as feasible, they suggested utilising tiny convolutions and 

adjusting the network's architecture [17].  Raju et al. also showed 

that the DR classification performance was improved while 

employing smaller (4x4) filters in the Conv2D layers. To try and 

capture significant lesion markings, which vary in size, in Refs. 

inception modules have been used to extract features at various 

resolutions. 

While testing their model on two independent datasets, to 

determine the existence and severity of DR and DME, 54 US-

based doctors rated the images anywhere from three to seven 

times. First, we looked at what happens when we train the model 

on smaller and smaller pieces of the full dataset, and found that 

the sweet spot for performance occurs at roughly 60,000 images 

(with 17,000 referable).  

The quality of the image was tested in a second subsampling 

experiment, and the results showed that the performance 

improved when the majority voted on the issue. However, Krause 

et al. investigated the effect of training using an adjudication 

grading system on the accuracy of the ground-truth labelling. 

They employed a short dataset in which an adjudication grading 

methodology was applied to a pre-trained model developed by 

Gulshan et al. The authors observed that adopting settlement as 

the milled fact expansion typical resulted in a minor performance 

gain compared to majority voting. 

The detection efficiency of CNNs has also been boosted with the 

use of attention modules. The attention mechanism and bilinear 

technique were utilised by Zhao et al. to train a CNN and 

improve the system's categorization performance in complex 

regions. To further enhance classification accuracy, the emphasis 

mappings that Wang et al. created were sent into a Crop-

Network, that focused in on the spots with the most focus. A 

unique architecture was presented by Li et al. that uses attention 

modules to investigate possible links between diseases in order to 

concurrently identify DR and DMR.  

The original fundus image is employed with the deep learning 

pipeline established by Lin et al. for DR severity categorization. 

To mitigate the effect of incomplete lesion annotations, a lesion 

clustering approach was applied during the detection phase. 

Every component of a lesion is given a relative priority score, and 

the Focus Integration System merges these maps with the feature 

maps generated by the classification algorithm. In order to boost 

the performance with a system for paying attention from image-

level data with annotations, Zhou et al. suggested an ensemble 

weakly-supervised learning approach [18]. 

Additionally, high-resolution fundus images would be ideal for 

training the model. This would allow for the detection of even the 

smallest lesions. However, this is not possible with deep CNNs 

because to their high computational complexity and the 

vanishing/exploding gradient issue. On the other hand, there is a 

significant loss of detail when images are downsampled directly. 

Multi-Cell Multi-Task CNN (M2 CNN) is a novel architecture 

created by Zhou et al. that captures high-resolution details by 

gradually increasing the network's depth and kernel size in 

tandem. In the final step, called Multi-Task, a classification score 

and a regression score are calculated. 
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Since DR is a chronic condition with no clear inflection points, 

the authors reformulated the training loss function to be more 

accurate. The model's performance improves logarithmically with 

regard to increasing input image resolutions, as determined by Li 

et al.'s extensive experimentation across a wide range of image 

resolutions. However, the network complexity grows 

exponentially with the input image resolution. The best image 

resolution, given the complexity restrictions, was 896 × 896, 

which helped the system perform better, especially when 

classifying the moderate DR scenario correctly, which is 

dependent on extracting subtle details. 

The lack of available data to train the models is a fundamental 

problem for deep learning in general, and for DL applied to 

medical imaging in particular. It is feasible to solve this problem 

by moving expertise from an area with an abundance of data 

(such as computer vision) to one with a scarcity of data (such as 

medical imaging). Classification models have been developed 

using transfer learning in several of the publications we've looked 

at. 

The Kaggle EyePACS dataset was used in a comparison of pre-

trained models by Wan et al. When compared to other, more 

complicated designs, they found that VGGNet's architecture 

produced the greatest results. Using a previously trained 

InceptionV3 model from ImageNet, Hagos et al. engaged in 

transfer learning. The authors adjusted the classifier using a 

sample of the Kaggle EyePACS dataset that was carefully 

selected to be balanced. Pre-trained Inception backbone networks 

(GoogLeNet, InceptionV3, InceptionV4) have been found to 

produce the greatest results by a number of other researchers. By 

integrating the benefits of several classifiers, ensemble learning 

has played a significant role in the development of strong and 

powerful AI frameworks for DR classification. Given the 

information gain provided by their complementarity, ensemble 

learning has been observed to outperform the corresponding solo 

models. This suggests that due to changes in design or training, 

the various base models are capable of implicitly learning varying 

degrees of semantic representations [19]. 

Two ensemble models were created by Zhang et al.; one was used 

for illness identification (binary classification), while the other 

was used for disease grading (quinary classification). Feature 

extraction in each model was handled by a different set of pre-

trained networks, while classification was handled by a bespoke 

standard dense neural network. The ensemble models achieved a 

higher sensitivity (98.10%) and specificity (98.56%) than the 

individual ones. The authors also point out that general 

performance improved with the 'strength' of the base learner (pre-

trained network). The results of a dual ensemble (ensemble of 

ensembles) were much more impressive than those of a single 

ensemble. 

Three models built on the InceptionV3, ResNet152, and 

Inception-Resnet-V2 architectures were combined into an 

ensemble model by Jiang et al. The model was built using an 

exclusive dataset created in tandem with Beijing Tongren Eye 

Centre. Sensitivity = 85.57%, Specificity = 90.85%, Accuracy = 

88.21%, and AUC = 0.946 were all better than the individual 

models. Specificity, however, was 91.46 percent higher for 

InceptionV3. Since, according to the authors, different types of 

lesions are most effectively recognised at different stages of 

training, Quellec et al. developed a CNN model and exported it at 

various stages of the training process. To then predict the severity 

score of DR, they used ensemble learning (Random Forest 

Classifier) to integrate the stored models. Sayres et al. assessed 

the abilities of 10 ophthalmologists under three scenarios: (a) the 

doctors had access to the raw fundus images; (b) the doctors had 

access to the DLS grading findings; and (c) the doctors had 

access to the DLS grading results plus an interpretable heatmap. 

The heatmaps considered each pixel's impact on the final 

forecast, which in turn hints about potential lesions [20].  

The accuracy of the diagnosis, the rate of subjective confidence in 

DR rating, and the amount of time spent grading were the major 

outcomes examined. With model aid, they saw a tendency 

towards increased accuracy and confidence but also increased 

grading times. There was a general trend towards higher accuracy 

and less grading time as readers became more accustomed to 

using model aid. In addition to this heightened sensitivity, no 

discernible loss of specificity was noted. Results showed that the 

grades-only condition benefited all images more than the grades-

plus-heatmap condition. 

7. Performance Analysis 

As was said in the introduction, an experienced ophthalmologist's 

primary observations are diseased spots on the retina, which play 

a crucial role in the diagnosis and treatment of diabetic 

retinopathy. Thus, in this part, we offer details about previously-

published deep learning approaches for the automated 

segmentation of DR-related lesions such exudates, 

microaneurysms, and hemorrhages.  

In contrast to a classification challenge, where the ground truth 

applies to the whole image, in a segmentation problem, it applies 

to each individual pixel. Traditional pixel-level measurements 

like as accuracy, sensitivity, specificity, etc. are deceptive since 

the image backdrop (the healthy part of the retina) typically 

dominates the foreground (the real lesions). This is because most 

of the pixels in the ground truth image represent the healthy 

retina, and only a small fraction of the pixels represent lesions. 

Therefore, because the backdrop is primarily matched with itself, 

a segmentation algorithm's pixel-wise accuracy would continually 

be virtually flawless, without necessarily properly finding the 

important lesions. Therefore, the following measures, rather than 

the standard classification-oriented ones, are best suited to assess 

a segmentation model's efficacy [21]. 

The Intersection-over-Union (IoU) is a popular measure for 

segmentation issues; it is calculated by equating the union of the 

predicted (P) and ground truth (G) segmentation areas with the 

overlapping area, IoU = P P G G. It can take on values between 0 

and 1, with 1 denoting an exact match and 0 indicating total 

discord. The evaluation measure is then determined by 

arithmetically averaging each class's IoUs. The DICE coefficient 

is another measure; it's calculated by dividing the combined number 

of pixels in P and G by the area that overlaps both. It has the same 

worth as the F1score metric. The DICE coefficient, like the IoU, is a 

numeric value between 0 and 1. Although their absolute values may 

differ, DICE and IoU are positively associated and hence point in the 

same direction. This means that while measure A suggests classifier 

A is superior than classifier B, metric B also suggests this. However, 

a distinction becomes clear when comparing the relative performance 

of several classifiers.  

The model's efficacy across all decision thresholds is graphically 

represented by the model curve. A threshold determination for a 

detected region to be recognised as genuine or not is required for 

FROC, unlike ROC curves. One possible threshold for a positive 
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detection is an overlap of 50% between the annotated and 

detected areas [22]. 

They can also be used to evaluate a segmentation method. However, 

as none of these criteria are referenced or employed in the 

publications under evaluation, they will not be discussed at length 

here. In order to concurrently segment all four DR-related lesions in a 

fundus image (Soft/Hard Exudates, Haemorrhages, and 

Microaneurysms), Guo et al. suggested L-Seg network. Their 

approach generates four distinct segmentation maps, one for each 

class of lesion. To get around class- and loss-imbalance difficulties, 

they also suggest a multi-channel bin loss function that uses all four 

outputs together. They used a weighted fusion module to combine all 

this data and successfully analyse complicated lesions, as well as 

numerous feature maps of the network to encompass multi-scale 

analysis and manage lesions of varying sizes. 

The authors describe an "interestingness" score that ranks the 

remaining unlabeled patches according to how much information 

they contain about the target lesion. They start by using the 

labelled portion of the dataset to train the network. Even if not all 

images were input to the model, training is terminated once 

convergence is achieved. This guarantees that only the most 

informative images are used. For the purpose of patch generation, 

two distinct partitioning strategies were studied. The first method 

included taking a 48x48 pixel patch surrounding a randomly 

chosen pixel within an exudate lesion. This method guaranteed 

that the chosen patches had exudates, however exudates from 

different patches may overlap.  

The second method included removing little sections of the image 

at a time. While no two patches were next to one another, only a 

small fraction of those patches really had an exudate. When the 

model was trained using a combination of 75% patches from the 

first method and 25% patches from the second, the F1score was 

92.8%. In order to show where the lesions are to eliminate 

unnecessary borders and messy pixels surrounding the segmented 

signs. They created three probabilistic output maps, one for each 

lesion, however it's possible that some pixels correspond to more 

than one lesion.  

To get around this problem, they decided to give each pixel an 

assignment based on which of the three possible lesions it was 

more likely to belong to. To better visualise potential lesion 

regions that contributed significantly to the networks' primary 

goal is to categorise the image according on its severity. On the 

other hand, such a rough estimate of the lesion regions might be 

viewed as an approximation of the area the network is 

concentrating on while making its choice [23]. 

To be more specific, during training, the networks (regardless of 

design) picked up on hard and soft exudates more sooner than 

they did on haemorrhages and then microaneurysms. It is 

common for high-quality images to have been collected under 

controlled, non-standard settings for many datasets, such as 

Messidor, IDRiD, etc. It follows that it is possible to claim that 

algorithms trained on such datasets may not fare well in more 

typical actual scenarios, where the images may not be precisely 

similar and where environmental and hardware aspects will 

change. Although the Kaggle EyePACS and APTOS datasets 

solve these difficulties and closely mirror a real-world scenario, 

the noise which is there due to those fluctuations makes it 

exceedingly difficult for the algorithms to precisely and 

efficiently complete the analysis. 

Nonetheless, by using such low-quality images as a 

representation of the actual data, one might create strong 

algorithms with potential for use in clinical practise. bias and 

provide reliable and accurate ground truth data for certain kinds 

of data. To improve the reliability of the ground truth and hence 

the precision of the model, Gulshan et al. also suggested having 

numerous experts independently assess the obtained data. 

To that end, it is important to create a common benchmark 

against which all graders may compare their work. In contrast to 

a majority decision methodology, an adjudication grading 

standard was found to be more accurate in the later trial in 

spotting artefacts and missing microaneurysms. Both the training 

process and the model's final results might be negatively 

impacted by the data's poor image quality. Images with poor 

contrast or blurriness might obscure the earliest, most subtle 

indicators of retinopathy. 

In their diagnostic workflow, Rakhlin et al. suggested a quality 

evaluation module to remove ungradable images. After that, an 

ophthalmologist is brought in to have a look at the imagegraphs. 

Even Jiang et al. omitted the blurry, low-resolution images from 

their dataset of choice. Using the ICDR grading scale approach as 

the basis for the first five classes, Li et al. included the quality 

evaluation module into the deep learning model and posed the 

classification as a six-class scenario grading problem. 

Tan et al. analysed data gathered from 11 distinct clinical 

locations using different types of fundus cameras. They used an 

Ascore to evaluate the image's quality during the normalisation 

process. The quantity of grey pixels that arose during 

normalisation of the image's dark regions served as the basis for 

its calculation. Images with such dark regions were removed from 

both the training and testing sets since their illumination revealed 

no useful information about the retina's anatomy. 

However, Quellec et al. state that the performance of their 

ensemble model was not significantly impacted by image quality. 

But the model's performance may be enhanced, or at least made 

easier to train, by enhancing the uniformity and consistency 

among the data. This can be done by either manipulating the 

camera settings and ambient variables during the collection, or by 

removing low-quality images [24]. 

One of the many processes required to create reliable and 

effective AI models is the creation of massive training and 

assessment datasets. However, the aforementioned datasets 

typically lack sufficient data or have class imbalance. 

Fortunately, this problem may be circumvented in a number of 

ways, including the use of augmentation techniques, the 

generation of synthetic data using GANs, transfer learning to 

draw on the expertise of models trained on big datasets like 

ImageNET, and so on.  

To verify the model's reproducibility, it's also crucial to collect 

more demographically diverse data. It was also suggested by 

Gargeya et al. that additional patient information be incorporated, 

such as the patient's genetic makeup, the length of time they've 

had diabetes, their haemoglobin A1C level, and any other clinical 

data that may affect their risk for getting retinopathy. 

Incorporating data on explicit lesion aspects into the classification 

models could be useful as well. By doing so, the AI model may 

discover surprising associations between previously unrelated 

data, providing new insight into the causes of DR and improving 

diagnosis accuracy [25]. 
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8. Research Directions 

The healthcare industry might benefit from the application of AI 

and, more specifically, Deep Learning (DL)-based 

methodologies. However, a number of significant barriers must 

be removed before AI can be widely used in hospitals and other 

healthcare facilities. The traditional methods which are used to 

test the performance of the approach, i.e. accuracy metrics, are 

given as only one of several ways that are key components 

towards the acceptance of AI models through regulatory 

procedures. Despite improving the effectiveness of such research, 

the transition from traditional [26-27] machine learning 

approaches to deep learning ones has been accompanied by a lack 

of explainability and transparency.  However, their 

interpretability is a critical factor impacting their adoption and 

incorporation into clinical practise. The model's decision process, 

which should ideally include justifications for its predictions 

(e.g., whether those projections have been chosen and what 

alternatives were examined), must be grasped by the clinical 

operator. In an effort to quantify the relative contribution of each 

pixel across all of the network's layers in making a DR prediction, 

a number of researchers have created evidence heatmaps. These 

representations let doctors see if the model is basing its forecast 

on important clinical aspects, such exudates, microaneurysms, 

and haemorrhages in the case of DR. The models' robustness and 

dependability are other important considerations that must be 

taken into account before they can be used in a clinical setting. In 

the end, these phrases reflect to the requirement that the models 

continually function properly despite the many unexpected 

variances present in the clinical environment, such as differences 

in data obtained from different centres or devices manufactured 

by different manufacturers. 

9. Conclusion 

The increasing impairment and eventual loss of vision caused by 

diabetic retinopathy is a devastating consequence of diabetes 

mellitus. In order to prevent further decline and retinal damage, 

early diagnosis and treatment is crucial. Over the past several 

years, there has been a surge in enthusiasm for using DL systems 

for diagnosing diabetic retinopathy, and when these systems 

mature and are eventually integrated into clinical practise, they 

will help doctors better care for their patients. This article 

summarises what is known so far about using deep learning to 

detect diabetic retinopathy. The field of ophthalmology has 

benefited greatly from the advent of deep learning, but there is 

still room for development in terms of performance, 

interpretability, and reliability. 
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