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Abstract: In the expansive domain of the Internet of Things (IoT), ensuring the integrity of data transmission within cloud computing 

systems takes precedence as a critical concern. This research focuses on proactively identifying and mitigating IoT security threats, 

particularly botnet attacks, using advanced Variational Autoencoders (VAEs) with the UNSW-NB15 dataset. The model achieved an 

impressive accuracy of 99.74%, highlighting its effectiveness in predicting IoT botnet attacks. Through rigorous evaluation and 

comparative analysis, the study establishes the superiority of the VAE-based model. Beyond immediate applications, the model has 

transformative potential for enhancing data transmission security in IoT and cloud computing. This research paves the way for 

groundbreaking advancements, envisioning a future where information flows securely in the interconnected global landscape, ensuring a 

safer and more resilient digital environment in the era of IoT. 
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1. Introduction 

In the rapidly evolving landscape of digital transformation and the 

IoT, the security of IoT devices and data transmission has become 

a paramount concern. Recent reports have highlighted the intricate 

challenges faced by organizations, particularly in the healthcare 

sector, in safeguarding their Internet of Medical Things (IoMT) 

devices from cyber threats [1]. The stakes are high, with even 

minor service interruptions carrying life-altering consequences. 

Enterprises across various industries, including healthcare, have 

been grappling with the increasing sophistication of cyberattacks 

[2]. Similarly, the integration of the Internet of Things (IoT) with 

computer automation controls plays a crucial role in advancing 

industrial automation systems. This integration streamlines 

industrial processes, improves data automation, and aims to reduce 

errors and inefficiencies within industrial systems by minimizing 

human involvement. As organizations increasingly rely on IoT 

devices to drive digital transformation and enhance productivity, 

the need to predict and prevent security threats becomes more 

urgent. These challenges underscore the critical need for predictive 

models that can effectively identify and mitigate IoT security 

threats. Ransomware attacks, third-party malware intrusions, and 

unauthorized device communication are among the triads of cyber 

threats afflicting medical devices within organizations [1]. The 

cost of inaction is not merely financial; it can also lead to a 

significant increase in patient mortality and operational 

disruptions. Furthermore, vulnerabilities in IoT devices, 

compounded by the challenges of limited cybersecurity resources, 

have made addressing these threats increasingly complex [1] [2].  

The primary objective of this research is twofold: to develop a 

predictive model leveraging Variational Autoencoders (VAEs) to 

forecast and analyze IoT security threats, particularly focusing on 

botnet attacks, and to enhance the security of data transmission 

within cloud computing environments, ultimately safeguarding the 

interconnected devices that are crucial to modern industries. To 

achieve these objectives, the methodology is inspired by 

innovative approaches taken by industry leaders such as Palo Alto 

Networks in addressing IoT device security challenges [3]. 

Additionally, this study considers the findings of Kaleido 

Intelligence, which forecasts a surge in the adoption of embedded 

SIM (eSIM) technology for IoT applications, highlighting the 

evolving IoT landscape [4]. The emergence of Trident IoT, a 

technology and engineering company focused on streamlining RF 

development and reducing time-to-market for connected devices, 

demonstrates the growing importance of seamless integration of 

IoT technologies [5]. The incorporation of IoT devices frequently 

includes employing embedded SIM (eSIM) technology. eSIMs, 

being programmable and capable of remote provisioning, are 

particularly suitable for the dynamic and widespread 

characteristics of IoT deployments. The analysis of connectivity 

patterns in IoT device data allows for the optimization of eSIM 

configurations based on usage patterns. This adaptive connectivity 
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management guarantees the effective and economical utilization of 

resources. By considering these real-world challenges and industry 

trends, this research seeks to contribute to the development of 

predictive models that can effectively address IoT security threats. 

The contributions to IoT security and cloud computing data 

transmission: 

• By introducing a novel predictive model using 

Variational Autoencoders (VAEs) for precise 

forecasting of IoT security threats, specifically botnet 

attacks. 

• Utilization of the UNSW-NB15 dataset to enhance the 

model's effectiveness. 

• Incorporation of domain-guided feature engineering and 

a comprehensive methodology framework to improve 

the model's efficacy. 

• Comparative analysis demonstrating the superiority of 

the proposed model in forecasting IoT security threats. 

• Outlining future directions, including model refinement, 

adaptation to other security domains, and real-world 

deployment. 

• The overarching goal of achieving secure data 

transmission in a connected world. 

• Addressing IoT security challenges as a primary focus of 

the study. 

• Laying the groundwork for enhanced data transmission 

security in IoT and cloud computing environments. 

• Alignment with the outlined research objectives, 

contributing to advancements in IoT security. 

•  

2. Literature Review 

Bojarajulu et al. [6] suggested an efficient IoT-BOTNET detection 

system that combines pre-processing, feature extraction, feature 

selection, and attack identification processes. They employed an 

Information Gain (IIG) model for feature selection and a hybrid 

classifier comprising an optimized Bi-GRU and Recurrent Neural 

Network (RNN). The hybrid optimization technique, SMIE (Slime 

Mould with Immunity Evolution), was utilized for improved 

accuracy. The proposed model achieved an impressive 97% 

accuracy, outperforming previous models significantly. 

Khanam et al. [7] introduced Class-wise Focal Loss Variational 

AutoEncoder (CFLVAE) for Improved Intrusion Detection in 

Imbalanced IoT Networks. This research addressed imbalanced 

network traffic in intrusion detection for the IoT with CFLVAE. It 

generated novel samples for minority attack classes, overcoming 

data imbalance issues, and employed the Class-wise Focal Loss 

(CFL) objective function to enhance feature representation. 

Experimental results on the NSL-KDD dataset demonstrated 

CFLVAE-DNN's effectiveness, achieving an 88.08% overall 

intrusion detection accuracy and a 3.77% false positive rate. 

The study [8] focused on applying machine learning algorithms, 

particularly federated learning (FL) and deep learning (DL), to 

enhance IoT security. It discussed FL and DL methods for 

detecting security threats and attacks on IoT, addressing the 

resource constraints and heterogeneity of IoT devices. The study 

also highlighted recent approaches for IoT security, emphasizing 

the importance of layer-wise attack detection and exploring 

various ML algorithms as solutions to IoT security challenges. 

In [9], the authors explored IoT intrusion detection in cloud 

computing environments, suggesting an intrusion detection 

algorithm called the Multi-Feature Extraction Extreme Learning 

Machine (MFE-ELM). The paper discussed the challenges in IoT 

security and the need for efficient intrusion detection in cloud 

environments. It presented experimental results demonstrating the 

effectiveness of the MFE-ELM algorithm in detecting network 

intrusions. 

A research investigation presented a collaborative learning 

approach for identifying botnet attacks in IoT networks, denoted 

as ELBA-IoT [10]. ELBA-IoT characterized the behavioral 

attributes of IoT networks and utilized collaborative learning to 

detect abnormal network traffic emanating from compromised IoT 

devices. The assessment of ELBA-IoT relied on the N-BaIoT-2021 

dataset, showcasing exceptional detection precision (99.6%) and 

minimal inference overhead (40 µ-seconds) in pinpointing botnet 

assaults from compromised IoT devices. 

The authors of [11] presented a strategy for identifying and 

safeguarding against Distributed Denial of Service (DDoS) 

assaults in software-defined networks (SDN). This strategy 

integrated a trigger mechanism for spotting DDoS attacks on the 

data plane, scrutinizing for irregular data patterns. They employed 

a combined machine learning technique utilizing K-Means and K-

Nearest Neighbors (KNN) to assess flow speed and asymmetry 

characteristics, identifying suspicious data patterns identified by 

the trigger mechanism. The proposed strategy underscored 

collaborative detection approaches involving both the control 

plane and data plane, enhancing the precision and efficiency of 

detection to counteract DDoS attacks on SDN. 

In [12], the researchers introduced a decentralized architecture 

founded on deep learning for identifying diverse forms of cyber 

intrusions in IoT networks. The architecture made use of two deep 

learning models, a feed-forward neural network (FFNN) and a long 

short-term memory (LSTM), and underwent assessment 

employing the NSL-KDD and" BoT-IoT datasets. The findings 

exhibited remarkable detection precision, achieving levels of up to 

99.95% for various attack categories, rendering it a valuable point 

of reference for studies in IoT network security and predicting 

attacks. 

Garg et al. [13] presented an innovative amalgamated strategy for 

identifying network malfunctions, enhancing the Gray Wolf 

Optimization (GWO) and Convolutional Neural Network (CNN) 

methodologies. They enhanced the training techniques of GWO 

and CNN, resulting in Enhanced-GWO and Enhanced-CNN. This 

system functioned through two stages: Enhanced-GWO addressed 

the reduction of failure rates and optimized features, while an 

advanced CNN categorized network threats. The assessment using 

benchmark datasets (DARPA'98 and KDD'99) revealed substantial 

enhancements. Their cloud-based threat detection model 

outperformed the conventional GWO and CNN, achieving an 

8.25% rise in detection rate, 4.08% fewer false positives, and 

3.62% greater accuracy. 

The study [14] presented a smart healthcare system designed for 

heart disease risk monitoring and prediction using Bi-LSTM 

(bidirectional long short-term memory) within the IoT and cloud 

computing context. This research emphasized the significant 

potential of deep learning, especially recurrent neural network 

variations such as Bi-LSTM, in healthcare predictive analytics. 
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The system achieved impressive accuracy, with outcomes 

demonstrating a 98.86% accuracy, 98.9% precision, 98.8% 

sensitivity, 98.89% specificity, and an F-measure of 98.86%, 

surpassing the performance of existing smart systems for 

predicting heart disease. 

The research [15] delivered valuable perspectives on utilizing 

federated learning (FL) and deep learning (DL) to improve IoT 

security. The authors examined the benefits of FL and DL methods 

in tackling security issues in IoT, such as limited resources and 

diverse devices. Additionally, the paper provided an extensive 

overview of recent progress in FL and DL-based strategies for 

detecting security threats and potential attacks on IoT systems. It 

explored the concerns and obstacles linked to implementing 

machine learning-based security approaches for IoT. 

In [16], the authors employed Convolutional Neural Networks 

(CNNs) and Recurrent Neural Networks (RNNs). They converted 

the API kernel call sequence list into binary vectors utilizing one-

hot encoding, a method intended to simplify machine learning 

tasks when dealing with categorical data. This encoded 

information formed the basis for constructing a deep learning 

algorithm, which included both a CNN and an RNN, incorporating 

elements like Long Short-Term Memory (LSTM) units and a 

softmax layer. The resultant model attained an 89.4% accuracy, 

85.6% precision, and 89.4% sensitivity. 

In [17] a novel model called BC-Trans Network is proposed, 

leveraging the strengths of both Blockchain technology and a 

transformer component. The transformer plays a vital role in 

identifying abnormal data, enabling the system to take proactive 

measures against potential threats. In addition, Hash-2 is 

introduced for the verification of IoT users, adding an extra layer 

of security to the authentication process. The Blockchain model is 

utilized to securely store user passwords and details, ensuring a 

robust and tamper-proof authentication mechanism. 

In  [18], the secure management of cryptographic keys has become 

a critical element in ensuring the security of data exchange, 

especially with the proliferation of the Internet of Things (IoT) and 

the rapid advancements in mobile device technology. Applications 

like smart home automation and healthcare IoT applications 

provide automated services with minimal user intervention. The 

use of a single communication link in existing security solutions 

can be vulnerable to data transmission delays and potential 

intrusions.Units 

Use either SI (MKS) or CGS as primary units. (SI units are strongly 

encouraged.) English units may be used as secondary units (in 

parentheses). This applies to papers in data storage. For example, 

write “15 Gb/cm2 (100 Gb/in2).” An exception is when English 

units are used as identifiers in trade, such as “3½-in disk drive.” 

Avoid combining SI and CGS units, such as current in amperes and 

magnetic field in oersteds. This often leads to confusion because 

equations do not balance dimensionally. If you must use mixed 

units, clearly state the units for each quantity in an equation. 

The SI unit for magnetic field strength H is A/m. However, if you 

wish to use units of T, either refer to magnetic flux density B or 

magnetic field strength symbolized as µ0H. Use the center dot to 

separate compound units, e.g., “A·m2.” 

3. Methodology 

The methodology section of the research is a comprehensive 

framework that encompasses data preparation, model 

development, and optimization techniques. This section elucidates 

the choices made during the research process and their alignment 

with the research objectives. Figure 1 depicts the architecture of 

the proposed model. 

 

Fig 1. The Proposed Model Architecture 

In this research, the architecture begins with input data, which is 

carefully preprocessed to ensure data quality. The dataset is then 

split into training and testing subsets for model evaluation. Model 

training and optimization involve the use of Variational 

Autoencoders (VAEs), with hyperparameters fine-tuned to achieve 

optimal results. The VAE model is implemented to predict IoT 

botnet attacks. Prediction results are generated, and the model's 

performance is evaluated using various metrics. This 

comprehensive architecture ensures the development of a robust 

predictive model for enhancing data transmission security in IoT 

and cloud computing environments. 

3.1 Dataset Selection 

    In the landscape of securing data transmission within the IoT, 

the detection and prevention of IoT botnet attacks represent a 

critical challenge. The selection of the UNSW-NB15 dataset for 

this research is based on two crucial factors. Firstly, the dataset's 

data diversity [19] provides a rich and varied source of 

information, encompassing benign IoT device behaviors and the 

malicious activities associated with IoT botnet attacks. This 

diversity is essential for training a robust predictive model capable 

of accurately distinguishing between normal and attack behaviors. 

Secondly, the dataset's specialization in intrusion detection aligns 

well with the research objectives. Originally designed for general 

intrusion detection purposes, the UNSW-NB15 dataset's detailed 

recording of network traffic behaviors, coupled with attack 

instances, makes it a suitable resource for training a predictive 

model focused on IoT botnet attack prediction. 

   The limitations of the UNSW-NB15 dataset encompass two 

primary issues: class imbalance and class overlap. Uneven 

distribution among classes has the potential to introduce bias, 

affecting the model's precision in identifying and predicting 

patterns within minority classes. Simultaneously, class overlap 

may result in misclassifications, thereby reducing the overall 

effectiveness of the model. 

This research utilizes two core CSV files: UNSW-NB15 training-

set.csv and UNSW-NB15 testing-set.csv, encompassing 175,341 

and 82,332 data instances, respectively. These files constitute the 

UNSW-NB15 dataset, which was meticulously compiled within 

the secure environment of the Australian Centre for Cyber 

Security's (ACCS) Cyber Range Lab. Advanced tools, including 

IXIA, were employed for this purpose. The dataset encompasses 

network traffic data, capturing both legitimate and potentially 

harmful activities, using the tcpdump utility. This tool generated 

an extensive 100 GB dataset in Pcap format, capturing intricate 
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details of IoT network traffic. The subsequent data processing 

involved the utilization of the Argus and Bro-IDS systems, 

alongside the application of twelve advanced algorithms. This 

rigorous processing resulted in a dataset enriched with 49 distinct 

attributes, neatly organized into the aforementioned CSV files. To 

highlight the dataset's relevance to the research, Table 1 presents a 

concise summary of the UNSW-NB15 dataset, offering insights 

into the distribution of records among various attack types and 

normal IoT device behaviors. 

Table 1. Description and Distribution of Records in the UNSW-NB15 

Dataset 

Types No. of  Training 

Records 

 No.of Testing 

Records 

Label 

Shellcode 1133 378 7 

Normal 56,000 37,000 0 

Exploits 33,393 11,132 5 

GenericF 40,000 18,871 5 

DoS 12,264 4,089 4 

Fuzzers 18,184 6,062 1 

Worms 130 44 8 

Reconnaissance 10,491 3,496 7 

Analysis 2,000 677 3 

Backdoor 1,746 583 2 

When dividing the dataset into training and testing sets, make 

certain that both subsets retain a class distribution identical to that 

of the original dataset. The IXIA tool, employed for assessing 

network performance, traffic, and dynamic network intelligence, 

enhances the reliability and security of networks. It offers products 

for network visibility and testing, contributing to more robust and 

secure network operations. 

The importance of the UNSW-NB15 dataset in this study is its 

ability to depict both legitimate IoT device behaviors and the 

malicious actions linked to IoT botnet attacks. This comprehensive 

dataset forms the basis for creating a predictive model for detecting 

IoT botnet attacks using Variational Autoencoders (VAEs). 

Through the utilization of this dataset, the aim is to bolster the 

security of data transmission within IoT environments, ultimately 

aiding in the protection of IoT ecosystems. 

3.2  Preprocessing 

In the preprocessing phase, a critical component of the 

methodology, various data-related aspects were meticulously 

addressed to establish a solid foundation for accurate model 

training. The data cleaning process involved the careful handling 

of missing values, duplicates, and outliers, taking into 

consideration the nature of the data and their potential impact on 

predictive accuracy. Additionally, to promote stable convergence 

during Variational Autoencoder (VAE) training, feature 

normalization was performed to ensure that attributes with larger 

scales did not unduly influence the predictive process. 

Furthermore, drawing from domain knowledge in IoT security, 

feature engineering was conducted to craft new features tailored to 

capture the unique behaviors and patterns associated with IoT 

botnet attacks. This meticulous feature engineering step ensured 

that the model was equipped with the necessary information to 

make precise predictions, enhancing its overall effectiveness in 

threat detection. Achieving success in the IoT botnet attack relies 

significantly on the normalization of features and the 

implementation of feature engineering. These measures prevent 

attributes with larger scales from unduly impacting the predictive 

process, while also furnishing essential information to enhance the 

model's precision in making predictions and overall effectiveness 

in threat detection. 

Dataset Splitting (Training and Testing) 

To assess the VAE-based model's performance in predicting IoT 

botnet attacks, the UNSW-NB15 dataset is methodically split into 

separate training and testing portions. The decision to use a 70% 

training set and a 30% testing set ratio was intentional, taking into 

account several factors. The 70% training set provides a substantial 

amount of data for the model to grasp essential patterns and 

characteristics linked to both normal and attack behaviors. 

Meanwhile, the 30% testing set enables a robust assessment of the 

model's performance on data it hasn't encountered before, ensuring 

its predictive abilities generalize efficiently. 

3.3  Model Development 

The model's development revolves around the Variational 

Autoencoder (VAE), featuring an encoder and a decoder. The 

VAE's unique ability to map input data into a condensed latent 

space is crucial for effective security threat prediction. The encoder 

efficiently compresses input data, capturing key patterns and 

structuring them. Simultaneously, the decoder reconstructs 

compressed data, helping the model understand intrinsic features 

and complex relationships in the security threat landscape. By 

leveraging the VAE, the model achieves data compression while 

retaining meaningful information in the latent space. This 

emphasis on a compact yet information-rich space boosts the 

model's accuracy in predicting subtle patterns and anomalies, 

enabling it to anticipate and mitigate security threats in the 

specified IoT context. 

3.4  Optimization 

The VAE model was trained effectively using the Adam optimizer, 

a well-known optimization technique renowned for its 

effectiveness in deep neural network training. This optimizer 

combines the strengths of the RMSprop and momentum methods. 

Additionally, a learning rate schedule was implemented, starting 

with an initial rate of 0.0005 and dynamically adjusting it based on 

validation loss to prevent overfitting during training. The loss 

function plays a pivotal role in training the model effectively. [20] 

The loss function combines two essential components: the 

Reconstruction Loss and the Kullback-Leibler (KL) Divergence 

denoted as, 

Loss = Reconstruction Loss + KL Divergence        (1) 

The Reconstruction Loss quantifies how well the VAE model 

reconstructs the input data, which is crucial for accurately 

predicting IoT botnet attacks [21]. This loss can be calculated using 

metrics such as Mean Squared Error (MSE) or Binary Cross-

Entropy (BCE), depending on the nature of the data.  

For MSE,  

MSE =  
1

𝑁
∑(𝑥 − 𝑥1)2                                                       (2) 

For BCE,  

BCE = ∑(x × log(x1) + (1 − x) × log(1 − x1))                (3) 
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Where N represents the total number of data instances, x represents 

the original input data, and 𝑥1 represents the reconstructed data 

generated by the VAE. 

The KL Divergence encourages the latent space learned by the 

VAE to follow a desired distribution, typically Gaussian. This 

ensures that the latent space is well-structured and enhances the 

model's capacity for diverse data generation [21]. The KL 

Divergence can be calculated as follows, 

𝐾𝐿 𝐷𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 = 0.5 × ∑((𝜎2 + 𝜇2 − 1 − log(𝜎)))      (4) 

Where, σ is the standard deviation of the latent space, and μ is the 

mean of the latent space. Combining these components, the Loss 

function balances the reconstruction of input data with the 

structuring of the latent space, enabling the VAE to excel in 

predicting IoT botnet attacks while maintaining a structured latent 

representation. The VAE model underwent extensive training, 

lasting several hours. This duration ensured capturing essential 

patterns in the UNSW-NB15 dataset and enhancing IoT botnet 

attack prediction capabilities. 

3.5  Hyperparameter Tuning for VAE Model 

To optimize the Variational Autoencoder (VAE) model for 

predicting IoT botnet attacks, essential hyperparameter tuning was 

conducted. The Adam optimizer with default parameters was 

employed during training. In model training, we use Variational 

Autoencoders (VAEs) to capture intricate data patterns, fine-

tuning hyperparameters crucial for optimal outcomes. The model 

focuses on predicting and mitigating IoT botnet attacks by 

leveraging VAEs for nuanced detection of indicators. The impact 

lies in VAE utilization for effective representation learning, 

hyperparameter fine-tuning, and thorough evaluations, enhancing 

predictive accuracy and efficiency. The VAE model was trained 

using the Adam optimizer on high-performance GPUs, leveraging 

their parallel processing capabilities to efficiently handle the 

complex computations involved in capturing intricate data 

patterns. Table 2 presents the hyperparameters that underwent 

fine-tuning to attain optimal results.      

Table 2. Hyperparameter Values 

Hyperparameter Initial Value Explored Range Final Value 

Learning Rate 0.0005 [0.0001, 0.001] 0.0005 

Batch Size 128 [64, 128, 256] 128 

Latent 

Space Dimensions 

64 [32, 64, 128] 64 

Encoder/Decoder 

Layers 

3 [2, 3, 4] 3 

KL Divergence  

Weight 

0.005 [0.001, 0.005, 0.01] 0.005 

L2  

Regularization Weight 

0.001 [0.001] 0.001 

Number of Epochs 150 [100, 150, 200] 150 

3.6  Feature Selection 

In the context of feature selection, a critical step in optimizing the 

Variational Autoencoder (VAE) model for accurate IoT botnet 

attack predictions, a meticulous approach was adopted. This 

process involved the careful curation of attributes from the UNSW-

NB15 dataset. The selected features encompassed various critical 

aspects, including network traffic-related attributes such as source 

and destination IP addresses, port numbers, protocol types, and 

byte counts. These attributes provided invaluable insights into the 

behavioral patterns of IoT devices within the network. Timestamps 

were also integrated into the feature set to capture temporal 

patterns in network traffic, potentially revealing signs of botnet 

activity. Additionally, time-related features were engineered to 

identify anomalies associated with time-based patterns. Moreover, 

expertise and a deep understanding of IoT botnet attacks informed 

the creation of additional features designed to encapsulate specific 

botnet behavior characteristics. The overarching objective of this 

meticulous feature selection process was to strike a delicate 

balance, ensuring the inclusion of pertinent information for attack 

prediction while mitigating the introduction of noise or irrelevant 

data. By prioritizing network-related attributes and judiciously 

engineered features, the model's capacity to distinguish between 

normal IoT device behavior and botnet attacks was significantly 

enhanced. 

3.7  Implementing Variational Autoencoders (VAEs) 

Variational Autoencoders (VAEs) are a class of generative models 

that have gained popularity in various domains, including 

predictive modeling. They consist of two main components: an 

encoder and a decoder. The Input Layer receives preprocessed 

data, including network traffic attributes, timestamps, and 

engineered features. The Multiple Hidden Layers comprises 3 

hidden layers with 128, 64, and 32 units progressively. The 

Activation Functions employ ReLU for non-linearity in each 

hidden layer. and the Latent Space Parameters calculate μ (mean) 

and σ (standard deviation) at the encoder's end, using fully 

connected layers. 

The latent space serves as a condensed representation of input data, 

preserving essential patterns while reducing dimensionality. This 

space introduces probabilistic elements crucial for diverse data 

generation, improving the model's capability to predict security 

threats and secure data transmission in the cloud. Figure 2 

illustrates the Implementation Architecture of the proposed VAE 

model. 

 

Fig 2. Proposed VAE Model Implementation Architecture 

Sampling from the latent space is vital. It involves generating 

data points using statistical parameters obtained during encodings, 

such as the mean (𝜇) and standard deviation (𝜎). The process 

includes: 

1. Calculating 𝝁 and 𝝈: Computed during encoding, these 

parameters define the latent space's statistical properties. 

2. Random Sampling (∈): A random sample (∈) is drawn 

from a standard normal distribution. 

3. Sampling in the Latent Space (𝒁): The latent space is 

sampled using the formula: 𝑍 =  𝜇 +  𝜎 × ∈ [21] [22]. 

This equation combines 𝜇, 𝜎, and (∈) to generate a 

unique encoding of input data.  
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4. Latent Space Interpretation: 𝑍 represents a unique 

encoding of input data, encapsulating crucial 

characteristics for decoding. 

The Input Layer accepts the latent space points as input for data 

reconstruction. The Multiple Hidden Layers employs the three 

hidden layers with 128, 64, and 32 units to decode latent 

representations. The Activation Function applies ReLU to capture 

complex patterns during decoding. The Output Layer is 

Responsible for producing data reconstructions resembling the 

initial instances. Therefore, the VAEs aim to minimize the 

reconstruction loss, ensuring accurate data reconstruction. 

Additionally, they incorporate a regularization term, the Kullback-

Leibler (KL) divergence, to guide the latent space toward a specific 

distribution, typically Gaussian. This motivates the model to 

acquire an organized understanding of the data. 

4. Result and Discussion 

In this section, an assessment of the VAE-based model's 

performance on the UNSW-NB15 dataset is presented, followed 

by a discussion of the outcomes. 

4.1 Performance Evaluation 

The performance evaluation begins with an examination of the 

confusion matrix, which offers insights into the model's accuracy 

in labeling the UNSW-NB15 dataset. This dataset comprises both 

real-world normal activities and artificially generated modern 

attack behaviors. The model's objective is to determine whether 

data transmissions are secure using VAEs. The confusion matrix 

reveals that out of 2,218,761 actual instances of normal behavior, 

2,217,321 were accurately classified as normal (True Negative 

Rate or TNR), while 1,440 were misclassified as attacks (False 

Positive Rate or FPR). Among the 321,283 actual attack instances, 

5,191 were erroneously classified as normal (False Negative Rate 

or FNR), and 316,092 were correctly identified as attacks (True 

Positive Rate or TPR). Figure 3 provides a visual representation of 

the VAEs' effectiveness using the UNSW-NB15 dataset's 

confusion matrix. 

 

Fig 3. Confusion Matrix performance 

In the assessment of the VAE-based model's 

performance on the UNSW-NB15 dataset, key performance 

metrics were employed: 

Accuracy: This metric gauges the overall correctness of 

predictions, representing the proportion of correctly classified 

instances among all instances. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

(𝑇𝑃 + 𝑇𝑁)+(𝐹𝑃 + 𝐹𝑁)
                                    (5)                                                                                     

Precision: Precision quantifies the model's ability to correctly 

identify botnet attacks while minimizing false positives. It is the 

ratio of true positive predictions to the total number of positive 

predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

 𝑇𝑃 + 𝐹𝑃
                                                      (6)                                                                                                       

Recall (Sensitivity): Recall measures the model's ability to 

correctly identify all instances of botnet attacks among all actual 

botnet attacks. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                     (7)                                                                                                     

Specificity: Specificity evaluates the proportion of true negatives 

correctly identified by the model among all actual negatives. 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                    (8)                                                                                                

F1-Score: The F1-score provides a balanced measure of a model's 

accuracy, considering both false positives and false negatives. It is 

the harmonic mean of precision and recall. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                (9)                                                                               

These metrics collectively offer a comprehensive assessment of the 

model's performance. Figure 4 provides a visual representation of 

the Evaluation Metrics of the Proposed VAE Model. 

 

Fig 4. Evaluation Metrics of the Proposed VAE Model 

The proposed VAE model on the UNSW-NB15 dataset 

demonstrated exceptional performance across these metrics. For 

instance, the high sensitivity score underscores its ability to 

accurately identify botnet attacks. Furthermore, the specificity 

score indicates the model's effectiveness at correctly classifying 

normal data transmissions without many false alarms. The results 

underscore the model's capability to improve data transmission 

security in cloud environments and predict secure data transfer in 

IoT systems hosted in the cloud. This underscores the potential of 

the proposed model to significantly contribute to improved data 

security in IoT environments. 

4.2 Comparative Analysis of Performance Metrics 

The proposed VAE model excels in performance when compared 

to several existing IoT botnet attack prediction approaches. It's 

important to note that while [1], [2], and [9] focus on various 

aspects of IoT security, including intrusion detection and 

healthcare applications, they provide valuable reference points for 

evaluating this study’s proposed model performance. The contrast 

between existing studies and the suggested VAE model’s 

accuracy, precision, sensitivity, f1 score, and specificity are 

illustrated in Figure 5.  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 820–828  |  826 

 

Fig 5. (a) Accuracy Comparision 

The study [1] achieved an accuracy of 97%, indicating 

its overall correctness in classifying IoT network traffic. The study 

[2] reported an accuracy of 88.08%, signifying its ability to classify 

network behaviors effectively. and the study [9] achieved an 

accuracy of 98.86%, demonstrating its capability to predict IoT 

network behaviors accurately. The proposed VAE-based model 

outperforms all the existing studies with an accuracy of 99.74%, 

showcasing its accuracy in identifying IoT botnet attacks. 

 

 

Fig 5. (b) Precision Comparision 

The study [1] achieved a precision of 98.5%, indicating 

its capability to minimize false positives in botnet attack 

prediction. The study [2] reported a precision of 88.25%, 

indicating its ability to correctly identify botnet attacks while 

minimizing false alarms. The study [9] achieved a precision of 

98.9%, demonstrating its capacity to accurately classify IoT 

network behaviors. The proposed VAE-based model achieved a 

precision of 99.55%, surpassing all the existing studies. This 

highlights the proposed model’s effectiveness in minimizing false 

positives in IoT botnet attack prediction. 

 

Fig 5. (c) Sensitivity Comparision 

The study [1] achieved a recall of 98.3%, demonstrating 

its ability to correctly identify actual botnet attacks. The study [2] 

reported a recall of 88.02%, indicating its capacity to capture 

botnet attack instances. The study [9] achieved a recall of 98.8%, 

showcasing its effectiveness in identifying IoT botnet attacks. The 

proposed model achieved a recall of 98.38%, underlining its 

capability to identify IoT botnet attacks while minimizing false 

negatives. 

 

Fig  5. (d) F1-score Comparision 

The study [1] achieved an F1 score of 98.4%, 

highlighting its balanced performance in precision and recall. 

Another study [2] reported an F1 score of 87.69%, indicating a 

balanced measure of accuracy. Additionally, in the research [9], an 

F1 score of 98.86% was attained, demonstrating a well-balanced 

performance in terms of precision and recall. The proposed VAE-

based model achieved an outstanding F1 score of 99.96%, 

demonstrating its exceptional balance between precision and 

recall. 

Study [9] achieved a specificity of 98.89%, indicating its 

effectiveness in correctly classifying non-attack traffic. The VAE-

based model proposed in this study achieved a high specificity of 

99.94%, showcasing its ability to correctly classify normal IoT 

traffic. Therefore, in this comparative analysis, the performance of 

the proposed VAE-based model was evaluated against existing 

studies [1], [2], and [9] in terms of precision, accuracy, recall, F1 

score, and specificity. 

 

Fig 5. (e) Specificity Comparision 

 The proposed model consistently outperforms prior 

studies in all metrics, showcasing its effectiveness in predicting 

IoT botnet attacks while minimizing both false positives and false 

negatives. This comparison underscores the superiority of the 

proposed model in improving data transmission security within 

IoT and cloud computing environments. The results of the 

performance assessment and comparative analysis establish the 

VAE-based model's superiority in predicting IoT botnet attacks. 

When evaluating the performance of Variational Autoencoders 

(VAEs), an indispensable instrument employed is the confusion 

matrix. This matrix furnishes a thorough summary of the model's 

precision, unveiling its aptitude in accurately categorizing 

instances. Through a detailed breakdown encompassing true 

positives, true negatives, false positives, and false negatives, the 

confusion matrix emerges as a crucial asset, providing insights not 

only into overall accuracy but also into precision, recall, and the 

F1-score of the VAEs. It stands as an essential element in the 

assessment procedure, facilitating a nuanced and comprehensive 

analysis of the model's effectiveness across diverse classification 

scenarios. These discoveries carry substantial implications for 
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elevating data transmission security in IoT and cloud computing 

settings. 

5.  Conclusions 

 In this study, the intricate landscape of IoT botnet attack 

prediction was explored, a fundamental aspect of data transmission 

security in the era of the IoT and cloud computing. The primary 

objective was to introduce a novel and robust VAE model for 

predicting IoT botnet attacks with unparalleled accuracy and 

precision. The evaluation of the VAE model's performance on the 

UNSW-NB15 dataset has demonstrated its remarkable abilities. It 

demonstrated high accuracy, precision, recall, F1-score, and 

specificity, surpassing existing studies in the field. These findings 

underscore the potential of this model to significantly enhance data 

transmission security in IoT and cloud computing environments. 

The meticulously crafted methodology, which encompassed data 

preprocessing, feature engineering, dataset selection, and 

hyperparameter tuning, played a pivotal role in achieving these 

results. The careful selection of the dataset, enriched with diverse 

network behaviors, provided a robust foundation for the predictive 

model. Feature engineering, guided by domain knowledge, 

allowed us to capture unique characteristics of IoT botnet attacks, 

thereby enhancing the model's predictive capabilities. 

Furthermore, the comparative analysis highlighted the superiority 

of the proposed VAE model in key performance metrics compared 

to prior research endeavors, demonstrating the innovation and 

efficacy of the approach in addressing IoT security challenges. In 

the realm of IoT, where the proliferation of connected devices 

continues unabated, the research contributes a foundational piece 

to the security puzzle. The proposed VAE-based model not only 

bolsters defenses against botnet attacks but also lays the 

groundwork for future advancements in data transmission security.  

 Several promising avenues for further exploration 

emerge from this research. Firstly, continued refinement of the 

VAE-based model can lead to even higher accuracy and precision, 

making it an indispensable tool in defending against IoT botnet 

attacks. Additionally, the principles and techniques developed here 

can be adapted to enhance security in various other domains, 

including network security, anomaly detection, and intrusion 

prevention. Collaboration with industry partners to implement and 

deploy this predictive model in real-world IoT and cloud 

computing environments is another exciting prospect. This can 

provide valuable insights into the model's performance in practical 

scenarios. Furthermore, as the IoT ecosystem continues to evolve, 

new types of threats and attack vectors may emerge. Research in 

adapting and evolving the predictive model to counter these 

evolving threats will be crucial. Therefore, this research serves as 

a significant contribution to the ongoing efforts to secure IoT and 

cloud computing environments. Implementing the predictive 

model in cloud and IoT environments enables proactive 

monitoring, anticipating botnet attacks for early detection and 

mitigation. Leveraging Variational Autoencoders (VAEs), the 

model can identify nuanced patterns related to emerging threats, 

enhancing defense in the dynamic IoT and cloud landscape. Future 

improvements may involve seamless integration with existing 

security systems, collaborating with intrusion detection systems, 

firewalls, and other measures for a comprehensive defense 

strategy. 
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