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Abstract: The level of privacy protection needed for IoT depends on various factors and considerations. Factors such as the sensitivity of 

the data at stake, compliance with stringent data protection regulations, alignment with user privacy expectations, and the potential for 

misuse underscore the need for a nuanced approach. Additionally, the security integrity of the entire IoT ecosystem, encompassing 

device security, network fortification, and data storage, significantly influences the imperative for robust privacy safeguards. The work 

introduces a pioneering decentralized Privacy-Preserving AI system tailored for the Internet of Things (IoT), emphasizing user privacy 

while harnessing the collaborative power of decentralized learning. The system integrates two key algorithms, K-Means clustering and 

Random Forest (RF), each fortified with robust privacy-preserving mechanisms. The K-Means algorithm strategically applies 

Differential Privacy, introducing controlled noise during clustering to protect sensitive individual data points. Concurrently, the Random 

Forest algorithm employs ensemble learning, allowing each IoT device to contribute to local decision tree creation with the addition of 

Laplace noise for safeguarding sensitive data. The decentralized model ensures secure, peer-to-peer collaboration during updates, 

facilitating the creation of a Global AI Model that embodies collective knowledge. The workflow involves local data processing, privacy-

preserving algorithms, secure collaborative updates, and model distribution. The proposed approach strikes a delicate balance between 

utility and data protection, offering a powerful and privacy-respecting solution for AI models in decentralized IoT environments. The 

system's architecture, algorithms, and workflow, emphasizing its significance in ensuring robust privacy while advancing AI capabilities 

in IoT applications. 
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1. Introduction  

The essential need for privacy-preserving AI within the realm of 

the Internet of Things (IoT) arises from the pervasive presence of 

interconnected smart devices and sensors in this modern world 

[1]. These devices accumulate vast amounts of sensitive data, 

ranging from personal health metrics to daily habits. The critical 

need to safeguard this information arises not only from the 

potential for unauthorized access but also due to the security 

vulnerabilities inherent in IoT ecosystems [2]. By integrating 

privacy-preserving AI techniques, organizations can mitigate 

these risks, ensuring that sensitive data remains secure even in the 

face of evolving threats. Moreover, user trust is paramount for the 

widespread acceptance of IoT technologies, and the 

implementation of robust privacy measures serves to reassure 

individuals that their data is handled responsibly. Additionally, as 

IoT devices operate across diverse domains, including healthcare 

and smart homes, privacy-preserving AI facilitates seamless 

integration while respecting the unique privacy requirements of 

each sector [3]. Ultimately, these measures empower users with 

greater control over their data, fostering a sense of ownership and 

control in an increasingly interconnected and data-driven world. 

Differential Privacy and Secure Aggregation play pivotal roles in 

addressing privacy concerns in decentralized learning 

environments, particularly in the context of the Internet of Things 

(IoT) [4]. Differential Privacy focuses on safeguarding individual 

data points within a dataset, ensuring that the inclusion or 

exclusion of any single data entry does not significantly impact 

the overall outcome of a machine learning model. This is crucial 

in decentralized settings where data from multiple sources, such 

as IoT devices, is utilized for collaborative learning without 

compromising the privacy of individual contributors. Secure 

Aggregation, on the other hand, involves the secure combination 

of model updates from multiple decentralized devices without 

exposing the individual contributions [5]. It prevents malicious 

actors from extracting sensitive information during the 

aggregation process. Both of these techniques are instrumental in 

maintaining data privacy and security in decentralized learning 
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environments [6]. In the realm of IoT, where numerous devices 

generate and process data locally, implementing these privacy-

preserving techniques becomes paramount. By applying 

Differential Privacy, IoT devices can contribute to collaborative 

learning models without revealing sensitive information about 

their users [7]. Secure Aggregation ensures that the collaborative 

model is built without exposing the specifics of each device's 

data. For instance, in a scenario where multiple IoT devices are 

involved in health monitoring, these privacy-preserving 

techniques would allow for the collaborative training of a 

predictive model without compromising the privacy of individual 

health records [8]. This facilitates the development of more 

robust and accurate models while upholding the principles of 

privacy and security. As IoT continues to expand, the integration 

of such privacy-preserving mechanisms becomes essential to 

encourage data sharing and collaborative learning without 

sacrificing individual privacy. The objectives of the work are: 

• Develop a secure K-Means algorithm with Differential Privacy 

for grouping IoT data[17], ensuring pattern recognition without 

compromising individual data privacy. 

• Integrate Random Forest, using Laplace noise for secure 

decision tree creation on each IoT device, enhancing data 

protection during collective predictions. 

• Enable confidential, peer-to-peer collaboration among IoT 

devices during model updates, ensuring aggregated 

information sharing without revealing individual details. 

• Establish a workflow for creating a Global AI Model, 

encompassing local data processing, privacy-preserving 

algorithms, secure updates, and model distribution, balancing 

utility and data protection in IoT applications. 

2. Literature Review 

Data encryption is a standard practice for securing data during 

transmission and storage by converting it into a coded format that 

can only be deciphered with the appropriate encryption key [9]. 

While encryption is a fundamental component of information 

security, its application in privacy-preserving techniques for IoT 

has limitations. In IoT scenarios, the distribution and 

management of encryption keys become critical factors, and if 

these keys are compromised, the encrypted data can be 

vulnerable. Moreover, encrypted data may still be susceptible to 

attacks on the encrypted form, such as differential analysis or 

side-channel attacks. Thus, while encryption remains a crucial 

aspect of data security, it is most effective when complemented 

by additional privacy-preserving mechanisms, especially in the 

complex and dynamic ecosystems characteristic of the Internet of 

Things [10]. 

Data masking, or obfuscation, is a privacy-preserving technique 

that involves altering sensitive information within datasets by 

substituting or scrambling actual values with fake or randomized 

ones. This method is employed to protect sensitive information 

from unauthorized access during data handling or transmission 

[11]. While data masking is a relatively straightforward approach, 

it has limitations. Simple masking may not be sufficient to thwart 

determined attackers or sophisticated algorithms designed to 

reverse-engineer the masked data. In scenarios where the 

underlying structure of the data is discernible, attackers may 

employ statistical methods to uncover patterns and reveal the 

original information. Therefore, while data masking provides a 

basic level of protection, it may not be suitable for securing data 

against more advanced privacy threats in dynamic and 

interconnected environments, such as those found in the Internet 

of Things [12][19]. 

Data perturbation is a privacy-preserving technique that involves 

introducing random noise or small alterations. This method is 

often used to anonymize or obscure specific details in sensitive 

data [13]. The idea is to add enough noise to make it challenging 

for attackers to discern individual information while ensuring that 

the perturbed data remains useful for analytical purposes [14]. 

However, achieving the right balance is a delicate task, as 

excessive perturbation can compromise the quality and accuracy 

of the data, rendering it less valuable for meaningful analysis. 

Additionally, while data perturbation can provide a level of 

privacy protection, it may not be resilient against advanced 

attacks, such as those leveraging machine learning algorithms to 

infer patterns in the perturbed data [15]. Therefore, while data 

perturbation offers a basic level of privacy enhancement, it may 

not be the most robust solution for preserving privacy, especially 

in the face of evolving and sophisticated privacy threats in IoT 

environments [16[[18]. 

2.1 Proposed Work 

The planned Privacy-Preserving AI system for IoT aims to give 

top priority to user privacy. It achieves this by using decentralized 

learning, which means the learning process happens on individual 

devices, emphasizing a more distributed and private approach. At 

its core, the system integrates two pivotal algorithms—K-Means 

clustering and Random Forest (RF)—both fortified with robust 

privacy-preserving mechanisms. The K-Means clustering 

algorithm plays a central role in grouping IoT device data into 

distinct clusters, facilitating pattern recognition and relationship 

understanding without compromising individual data points. 

Differential Privacy is strategically applied to this algorithm, 

introducing controlled noise during clustering to ensure the 

confidentiality of sensitive information. Complementing this, the 

Random Forest algorithm, a powerful ensemble learning 

approach, utilizes decision trees for collective predictions.  

 

Fig.1 Decentralized Learning for IoT Privacy-Preserving AI 

 

In this decentralized system, each IoT device contributes to local 

decision tree creation, safeguarding sensitive data through the 

addition of Laplace noise to leaf labels and split thresholds. This 

decentralized approach enables secure, peer-to-peer collaboration 

among IoT devices during model updates, ensuring that 

aggregated information is shared directly without revealing 

individual details. The collaborative learning process results in 

the creation of a Global AI Model that embodies the collective 

knowledge of all decentralized devices. The overall workflow 

involves local data processing, privacy-preserving algorithms, 

secure collaborative updates, and model distribution. This 

pioneering approach ensures that AI models in IoT applications 
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are not only powerful but also respectful of user privacy, striking 

a delicate balance between utility and data protection in a 

decentralized learning environment.  

Fig.1 illustrates the flow of data and operations within the 

decentralized Privacy-Preserving AI system for IoT. It starts with 

data generation by IoT devices, followed by local processing with 

K-Means clustering applying Differential Privacy. The 

decentralized model then undergoes Secure Aggregation and 

Model Distribution, resulting in the creation of a Global AI 

Model. Random Forest, with Laplace Noise, is applied locally, 

and secure collaborative model updates contribute to an updated 

model for individual devices. The decentralized architecture 

ensures collective knowledge without compromising privacy. 

2.2 Algorithmic Framework 

The algorithm, named Privacy-Preserving K-Means with Secure 

Aggregation, takes an encrypted dataset as input and conducts K-

means clustering while ensuring privacy through differential 

privacy with Laplace noise addition. The parameters include the 

number of clusters ‘K’, the privacy parameter ‘𝜺’, the maximum 

number of iterations ‘max_iterations’, and ‘sigma’ controlling the 

smoothness of weights in local centroid updates. The algorithm 

outputs the final cluster centers (‘centroids’) and the assignment 

of each data point to a cluster (‘assignments’). It employs secure 

aggregation to protect sensitive information during the 

aggregation process, making it suitable for decentralized learning 

environments with privacy concerns. 

Algorithm 1: Privacy-Preserving K-Means with Secure 

Aggregation 

1. def privacy_preserving_k_means(D, K,𝜀, max_iterations, 𝜎): 

# Initialization 

2. centroids = np.random.choice(D, K, replace=False) 

3. for t in range(max_iterations): 

# Local Data Processing 

4. perturbed_distances = local_data_processing(D, centroids, 𝜀) 

# Local Centroid Update 

5. local_centroids = local_centroid_update(D, 

perturbed_distances, 𝜎) 

# Secure Aggregation 

6. aggregated_centroids = secure_aggregation(local_centroids) 

# Global Centroid Update 

7. centroids = global_centroid_update(aggregated_centroids) 

# Final Clustering Result 

8. assignments = assign_data_to_clusters(D, centroids) 

9. return centroids, assignments 

10. def initialize_centroids(D, K): 

# Randomly initialize centroids 

11. indices = np.random.choice(len(D), K, replace=False) 

12. return D[indices] 

13. def local_data_processing(D, centroids,𝜀): 

# Perturb distances for differential privacy 

14. perturbed_distances = [cdist(𝑑𝑖, centroids) + (𝑠𝑐𝑎𝑙𝑒 =

2 × 𝑙𝑒𝑛(𝑑𝑖)

𝜀
) for 𝑑𝑖in D] 

15. return np.array(perturbed_distances) 

16. def local_centroid_update(D, perturbed_distances, 𝜎): 

# Update local centroids based on perturbed distances 

17. local_centroids = 
[𝑛𝑝.𝑠𝑢𝑚(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(−𝑝𝑑[:,𝑘],𝜎)[:,𝑛𝑝.𝑛𝑒𝑤𝑎𝑥𝑖𝑠]∗𝑑𝑖,𝑎𝑥𝑖𝑠 =0)

𝑖∙𝑛𝑝∙𝑠𝑢𝑚(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(−𝑝𝑑[:,𝑘],𝜎))
for k, p𝑑𝑖 in 

enumerate(perturbed_distances) for 𝑑𝑖 in D] 

18. return np.array(local_centroids) 

19. def secure_aggregation(local_centroids): 

# Securely aggregate local centroids 

20. aggregated_centroids = np.sum(local_centroids, axis=0) 

21. return aggregated_centroids 

22. def global_centroid_update(aggregated_centroids): 

# Update global centroids based on aggregated values 

23. return
𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠

𝑙𝑒𝑛(𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠)
 

24. def assign_data_to_clusters(D, centroids): 

# Assign each data point to the nearest global centroid 

25. distances = cdist(D.reshape(-1, D.shape[-1]), centroids) 

26. assignments = np.argmin(distances, axis=1) 

27. return assignments 

28. def softmax(x,𝜎): 

# Softmax function 

29. exp_x = np.exp(𝑥

𝜎
) 

30. return 
𝑒𝑥𝑝_𝑥

𝑛𝑝.𝑠𝑢𝑚(exp 𝑎𝑥𝑖𝑠=0)
) 

# Example usage 

31. D = np.random.rand(100, 2)  # Replace with your dataset 

32. K = 3 

33. 𝜀= 1.0 

34. max_iterations = 10 

35. 𝜎= 1.0 

# Run the algorithm 

36. centroids, assignments = privacy_preserving_k_means(D, K, 

𝜀, max_iterations,𝜎) 

# Display final results 

37. print("Final Centroids:", centroids) 

38. print("Final Assignments:", assignments) 

 

This algorithm takes an encrypted dataset and corresponding 

binary labels as input in a decentralized learning environment. It 

leverages a privacy-preserving Random Forest methodology, 

training individual decision trees with differential privacy through 

the addition of Laplace noise to leaf labels and split thresholds. 

The algorithm outputs a privacy-preserving Random Forest 

(‘forest’) composed of multiple differentially private decision 

trees. For predictions on new data, the ‘privacy_preserving_ 

random_forest_predict’ function is employed, which aggregates 

predictions from each tree using the median to ensure privacy. 

The resulting ‘predictions’ represent the model's predictions for 

the provided data. This algorithm is designed to address privacy 

concerns in decentralized learning scenarios while maintaining 

the utility of Random Forest models. 

Algorithm 2: Privacy-Preserving RF in Decentralized 

Environments 

1. def privacy_preserving_random_forest(D, labels, n_trees, 𝜀, 

max_depth): 

2. forest = [] 

3. for _ in range(n_trees): 

# Sample with replacement for each tree 

4. D_bootstrap, labels_bootstrap = resample(D, labels, 

replace=True) 

# Train a differentially private decision tree on the bootstrapped 

sample 

5. tree = privacy_preserving_decision_tree(D_bootstrap, 

labels_bootstrap, 𝜀, max_depth) 

# Add the tree to the forest 

6. forest.append(tree) 
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7. return forest 

8. def privacy_preserving_decision_tree(D, labels, 𝜀, 

max_depth): 

9. tree = DecisionTreeClassifier(max_depth=max_depth) 

10. for node in tree.tree_: 

# Each node in the decision tree 

11. if tree.tree_.children_left[node] == 

tree.tree_.children_right[node]:  # Leaf node 

# Noisy label for the leaf 

12. laplace_noise = laplace(
𝑠𝑐𝑎𝑙𝑒=1

𝜀
) 

13. leaf_label = np.random.choice(np.unique(labels), 1)[0] 

14. tree.tree_.value[node] = [[leaf_label + laplace_noise]] 

else:  # Non-leaf node 

# Noisy threshold for the split 

15. laplace_noise = laplace(
𝑠𝑐𝑎𝑙𝑒=1

𝜀
) 

16. split_threshold = tree.tree_.threshold[node] + laplace_noise 

17. tree.tree_.threshold[node] = split_threshold 

18. return tree 

19. def privacy_preserving_random_forest_predict(forest, X): 

# Make predictions for each tree and aggregate results 

20. predictions = [tree.predict(X) for tree in forest] 

21. aggregated_predictions = np.median(np.array(predictions), 

axis=0) 

22. return aggregated_predictions.astype(int) 

# Example usage 

23. D = np.random.rand(100, 10)  # Replace with your dataset 

24. labels = np.random.randint(0, 2, 100)  # Replace with your 

labels (binary classification) 

25. n_trees = 5 

26. 𝜀= 1.0 

27. max_depth = 3 

# Train a privacy-preserving random forest 

28. forest = privacy_preserving_random_forest(D, labels, 

n_trees, 𝜀, max_depth) 

# Make predictions on new data 

29. new_data = np.random.rand(10, 10)  # Replace with your 

new data 

30. predictions = 

privacy_preserving_random_forest_predict(forest, new_data) 

31. print("Predictions:", predictions) 

2.3 Mathematical Indication 

The Privacy-Preserving K-Means algorithm commences with the 

random selection of initial centroids. 

 

𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠 = 𝑛𝑝. 𝑟𝑎𝑛𝑑𝑜𝑚. 𝑐ℎ𝑜𝑖𝑐𝑒(𝐷, 𝐾, 𝑟𝑒𝑝𝑙𝑎𝑐𝑒

= 𝐹𝑎𝑙𝑠𝑒) 

 

(1) 

where 𝐾 represents the number of clusters. The subsequent step 

perturbs distances for differential privacy during local data 

processing. Each data point's distance to the centroids is 

perturbed using Laplace noise, denoted by: 

 

𝑙𝑎𝑝𝑙𝑎𝑐𝑒(𝑠𝑐𝑎𝑙𝑒 =
2∙𝑙𝑒𝑛(𝑑𝑖 )

𝜖
) 

 

(2) 

Where 𝜖 governs the privacy level. Following the perturbation, 

local centroids are updated based on the perturbed distances. The 

update involves a weighted average of data points, employing the 

softmax function. This process is captured by the equation, with 

𝜎  controlling the smoothness of the softmax. The subsequent 

step involves securely aggregating local centroids. The equation 

is: 

𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑_𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑𝑠

= 𝑛𝑝 ∙ 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑎𝑥𝑖𝑠

= 1) 

 

(3) 

This equation captures the aggregation, consolidating information 

from all local computations in a secure manner. Global centroids 

are then updated by dividing the aggregated centroids by their 

total count, ensuring a global representation of the clusters. 

Finally, data points are assigned to the nearest global centroids 

based on Euclidean distances. The equation is: 

 

𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠 = 𝑛𝑝. 𝑎𝑟𝑔𝑚𝑖𝑛(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠, 𝑎𝑥𝑖𝑠 = 1) 

 

(4) 

Additionally, the algorithm employs a softmax function to 

normalize values, converting them into probabilities. The softmax 

equation is: 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑥, 𝜎) =
𝑒𝑥𝑝(𝑥 𝜎)⁄

∑ 𝑒𝑥𝑝(𝑥 𝜎⁄ )
 

 

(5) 

This equation elucidates the normalization, with 𝜎 influencing the 

smoothness of the softmax. Overall, these mathematical 

formulations underpin the Privacy-Preserving K-Means 

algorithm, delineating the steps taken to achieve privacy-

preserving clustering. 

3. Result 

The interplay between privacy and accuracy within a 

decentralized learning framework implementing Differential 

Privacy and Secure Aggregation for K-Means clustering. The 𝜺 

parameter, denoting the privacy level, is systematically varied in 

a simulated environment to elucidate its impact on both model 

accuracy and privacy loss. While this script provides an initial 

perspective, a robust security analysis necessitates a holistic 

consideration of additional dimensions, including resilience 

against adversarial attacks, communication overhead, and real-

world experimentation. The applicability and efficacy of 

Differential Privacy and Secure Aggregation must be evaluated in 

the specific context of the decentralized learning environment, 

factoring in distinctive goals, threat models, and application 

prerequisites. Only through this nuanced assessment can one 

discern the most suitable equilibrium between privacy 

preservation and model performance. 

 

 

Fig.2 K-means Accuracy vs. 𝜀 

 

The Fig.2 displays how the accuracy of the K-Means clustering 

model changes with different values of 𝜺. The  𝜺 is a parameter 

controlling privacy in the model. Each point on the blue line 

represents a different setting of 𝜺, ranging from 0.1 to 2.0. The y-

axis (vertical) shows the accuracy of the model, ranging from 0.7 

to 0.95. Observing this graph helps us understand the relationship 
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between privacy settings (𝜺) and the accuracy of the K-Means 

clustering algorithm. A higher accuracy value indicates better 

performance, while changes in epsilon highlight the trade-off 

between privacy and model accuracy. 

 

Fig.3 K-means Privacy Loss vs. 𝜀 

 

The Fig.3 illustrates the trade-off between privacy and 𝜀. Here, 

the red line represents how much privacy is lost at different 

epsilon values. Privacy loss is a measure of how much individual 

data points may be revealed during the learning process. As 

𝜀 increases, the privacy loss may decrease or increase, and this 

graph helps visualize the impact. Lower privacy loss values 

indicate better privacy preservation. Understanding this trade-off 

is crucial for finding an optimal balance between privacy and 

model utility in privacy-preserving K-Means clustering. 

 

Fig. 4 Random Forest - Accuracy vs. 𝜀 

 

The Fig.4 illustrates the relationship between the privacy 

parameter (𝜀) and the accuracy of a Privacy-Preserving Random 

Forest model. Each point on the blue line represents a different 

value of 𝜺, ranging from 0.1 to 2.0. The y-axis shows the 

accuracy of the model, ranging from 0.7 to 0.95. The graph 

provides insights into how changes in privacy settings, 

represented by 𝜀, impact the accuracy of the Random Forest. 

Higher accuracy values indicate better performance, while 

different 𝜀 values showcase the trade-off between privacy and 

model accuracy. 

 

Fig.5 Random Forest - Privacy Loss vs. 𝜀 

 

The Fig.5 demonstrates the trade-off between privacy and 𝜺 in the 

Privacy-Preserving Random Forest. The red line represents the 

privacy loss, indicating how much privacy is compromised at 

various 𝜀 values. Privacy loss is a measure of potential 

information leakage during the learning process. Lower values on 

the y-axis signify better preservation of privacy. This graph offers 

a visual understanding of how adjusting the privacy parameter 

affects the trade-off between the model's privacy preservation and 

its utility in making accurate predictions. 

 

 

 

4. Conclusion and Future Work 

The decentralized Privacy-Preserving AI system for IoT 

seamlessly blends advanced algorithms with robust privacy 

mechanisms, ensuring a powerful and secure collaborative 

learning environment. By prioritizing user privacy through 

techniques like Differential Privacy and secure aggregation, the 

system strikes a delicate balance between utility and data 

protection. The creation of a Global AI Model reflects the success 

of the decentralized approach, embodying collective knowledge 

while preserving individual device privacy. Future endeavors will 

focus on refining privacy-preserving techniques, optimizing 

model distribution mechanisms, and exploring scalability for 

diverse IoT environments. Additionally, ongoing efforts will 

address emerging privacy challenges and further enhance the 

system's adaptability to evolving IoT landscapes. 

 

References 

[1] Zaman, U., Imran, Mehmood, F., Iqbal, N., Kim, J., & 

Ibrahim, M. (2022). Towards Secure and Intelligent 

Internet of Health Things: A Survey of Enabling 

Technologies and Applications. Electronics, 11(12), 1893. 

[2] Srivastava, A., Gupta, S., Quamara, M., Chaudhary, P., & 

Aski, V. J. (2020). Future IoT‐enabled threats and 

vulnerabilities: State of the art, challenges, and future 

prospects. International Journal of Communication 

Systems, 33(12), e4443. 

[3] Deebak, B. D., Memon, F. H., Cheng, X., Dev, K., Hu, J., 

Khowaja, S. A., ... & Choi, K. H. (2022). Seamless 

privacy-preservation and authentication framework for 

IoT-enabled smart eHealth systems. Sustainable Cities 

and Society, 80, 103661. 

[4] Rivadeneira, J. E., Silva, J. S., Colomo-Palacios, R., 

Rodrigues, A., & Boavida, F. (2023). User-centric privacy 

preserving models for a new era of the Internet of 

Things. Journal of Network and Computer Applications, 

103695. 

[5] Tsaloli, G., Liang, B., Brunetta, C., Banegas, G., & 

Mitrokotsa, A. (2021, November). DEVA: Decentralized, 

verifiable secure aggregation for privacy-preserving 

learning. In International Conference on Information 

Security (pp. 296-319). Cham: Springer International 

Publishing. 

[6] Shafeeq, S., Alam, M., & Khan, A. (2019). Privacy aware 

decentralized access control system. Future Generation 

Computer Systems, 101, 420-433. 

[7] Jiang, B., Li, J., Yue, G., & Song, H. (2021). Differential 

privacy for industrial internet of things: Opportunities, 

applications, and challenges. IEEE Internet of Things 

Journal, 8(13), 10430-10451. 

[8] Kasyap, H., & Tripathy, S. (2021). Privacy-preserving 

decentralized learning framework for healthcare 

system. ACM Transactions on Multimedia Computing, 

Communications, and Applications (TOMM), 17(2s), 1-

24. 

[9] Abiodun, M. K., Awotunde, J. B., Ogundokun, R. O., 

Adeniyi, E. A., & Arowolo, M. O. (2021). Security and 

information assurance for IoT-based big data. In Artificial 

Intelligence for Cyber Security: Methods, Issues and 

Possible Horizons or Opportunities (pp. 189-211). Cham: 

Springer International Publishing. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 829–834  |  834 

[10] Satyanarayana, P., Diwakar, G., Subbayamma, B. V., 

Phani Sai Kumar, N. V., Arun, M., & Gopalakrishnan, S. 

(2023). Comparative analysis of new meta-heuristic-

variants for privacy preservation in wireless mobile adhoc 

networks for IoT applications. Computer 

Communications, 198, 262–281. https://doi.org/10.1016/ 

j.comcom. 2022.12.006. 

[11] Yamac, M., Ahishali, M., Passalis, N., Raitoharju, J., 

Sankur, B., & Gabbouj, M. (2020). Multi-level reversible 

data anonymization via compressive sensing and data 

hiding. IEEE Transactions on Information Forensics and 

Security, 16, 1014-1028. 

[12] Grammatikis, P. I. R., Sarigiannidis, P. G., & Moscholios, 

I. D. (2019). Securing the Internet of Things: Challenges, 

threats and solutions. Internet of Things, 5, 41-70. 

[13] Rai, R. K. (2022). Data Mining Of Perturbation Data 

Approach Using Different Noise For Privacy Preserving 

Techniques. Neuro Quantology, 20(9), 4039. 

[14] Keshk, M., Moustafa, N., Sitnikova, E., Turnbull, B., & 

Vatsalan, D. (2020, December). Privacy-preserving 

techniques for protecting large-scale data of cyber-

physical systems. In 2020 16th international conference 

on mobility, sensing and networking (MSN) (pp. 711-

717). IEEE. 

[15] Arachchige, P. C. M. (2020). Scalable data perturbation 

for privacy preserving large scale data analytics and 

machine learning (Doctoral dissertation, RMIT 

University). 

[16] Perumal, G., Subburayalu, G., Abbas, Q., Naqi, S. M., & 

Qureshi, I. (2023). VBQ-Net: A Novel Vectorization-

Based Boost Quantized Network Model for Maximizing 

the Security Level of IoT System to Prevent Intrusions. 

Systems, 11(8), 436. MDPI AG. 

[17] Rachapudi V., Venkata Suryanarayana S., Subha Mastan 

Rao T. "Auto-encoder based K-means clustering 

algorithm".  International Journal of Innovative 

Technology and Exploring Engineering. 2019. 8(5), pp. 

1223-1226 

[18]  Kallam, Suresh, A. Veerender, K. Shilpa, K. Ranjith 

Reddy, K. Reddy Madhavi, and Jonnadula Narasimharao. 

"The Adaptive Strategies Improving Design in Internet of 

Things." In Proceedings of Third International 

Conference on Advances in Computer Engineering and 

Communication Systems: ICACECS 2022, pp. 691-699. 

Singapore: Springer Nature Singapore, 2023. 

[19]  Kumar Apat, S., Mishra, J., Srujan Raju, K., Padhy, N. 

(2023). IoT-Assisted Crop Monitoring Using Machine 

Learning Algorithms for Smart Farming. In: Kumar, R., 

Pattnaik, P.K., R. S. Tavares, J.M. (eds) Next Generation 

of Internet of Things. Lecture Notes in Networks and 

Systems, vol 445. Springer, Singapore. 

https://doi.org/10.1007/978-981-19-1412-6_1 

 

 
 

https://doi.org/10.1007/978-981-19-1412-6_1

