
 

 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 835–845  |  835 

Optistroke: Harnessing Bat Algorithm-Driven Stacked Ensembles for 

Enhanced Stroke Prediction Using Machine Learning 

Divya K 1, Sangeethapriya R 2, Gomathi S 3, Dhiyanesh B 4, Kiruthika J.K 5 Saraswathi P 6 
 

Submitted: 17/01/2024    Revised: 25/02/2024     Accepted: 03/03/2024       

Abstract: Strokes are considered to be one of the most serious medical conditions in the world and must be diagnosed at an early stage so 

that the consequences for the patients can be minimized. The proposed BatOptiStroke is a novel technique that increases stroke prediction 

accuracy by using a stacked ensemble model powered by the Bat Algorithm (BA). To capture a wide range of prediction skills, 

BatOptiStroke combines a diversified selection of base models, such as Extreme Gradient Boosting (XGBoost), K Nearest Neighbors 

(KNN), and Support Vector Machines (SVM). By modifying the placements and velocities of the bats that reflect the fundamental models, 

the BA continuously optimizes the group's efficiency. This results in increased stroke prediction accuracy. On a sizable dataset of stroke 

patients, the BatOptiStroke framework's efficiency is thoroughly assessed in comparison to that of each of the base models and alternative 

ensemble approaches. Evaluation metrics validate BatOptiStroke's stroke prediction capabilities. The combined model set consistently 

outperforms individual base models, improving prediction accuracy and overall performance. Along with increased 97% accuracy, 89% 

precision, 95% recall, and a 93% F1 score, BatOptiStroke also contributes. 
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1. Introduction 

The World Health Organization (WHO) estimates that stroke 

accounts for 11% of all mortality globally and leaves millions 

permanently disabled. Stroke impacts individuals beyond the 

afflicted to their families, the healthcare system, and society as a 

whole [1]. The early detection and immediate treatment of a stroke 

are crucial to improving patient outcomes and reducing stroke 

disability. Access to competent medical care and prompt diagnosis 

of stroke symptoms are crucial elements that substantially impact 

patient survival and recovery. However, due to the multifactorial 

nature of stroke, accurate and reliable stroke prediction is difficult 

[2]. 

Artificial intelligence and machine learning in healthcare have 

garnered attention. These technologies make possible data 

analysis, disease detection, and prediction. Learning is one of the 

most successful approaches to improving prediction accuracy. 

Improved-accuracy ensembles are formed by bringing together 

models and leveraging each model's strengths to enhance accuracy. 

Specifically, stacked ensembles offer hope for industry sectors 

such as healthcare and banking, as well as weather forecasting [3]. 

In this study, a novel approach called the BatOptiStroke 

framework is proposed. It employs a Bat Algorithm (BA) directed 

by a stacked ensemble for stroke prediction. By taking advantage 

of DAO benefits, this framework also shows how group thinking 

can be used to resolve challenges in predictive modelling for 

strokes. BatOptiStroke equips a variety of abilities. We have 

included XGBoost, KNN, and SVM models. Thus, by moving the 

bat positions and classes in these models, the ensemble 

performance is dynamically optimised, and stroke predictions are 

made [4]. 

BatOptiStroke aims to enhance stroke forecast accuracy. This 

advance will help experts perform coolly in crucial situations 

where people's lives are almost at risk. BatOptiStroke improves on 

earlier models by combining base models and totally different 

features in one package. Also, the ensemble predictions improved 

after optimization using the Bat algorithm, which led to a rise in 

our model's precision. 

This document introduces several significant technical 

innovations. BatOptiStroke presents an innovative way of thinking 

about stroke prediction. It combines the Bat algorithm-based 

stacked ensembles with various base models to optimize 

performance. It blends distinct predictive capabilities and requires 

little handwork from the designer. Thanks to the dynamic 

optimization ability introduced by the Bat Algorithm, this 

ensemble exploits the information space for better forecasting 

accuracy [5]. Secondly, experimental studies have shown that the 

BatOptiStroke ensemble improves stroke prediction accuracy. 

BatOptiStroke easily beats all kinds of single models and other 

existing ensemble methods in many evaluations on a large dataset 

of stroke scenarios. Because of its improved prediction accuracy 

and excellent performance, the ensemble is a reliable tool for 

assessing stroke risk [6]. Not only will accuracy be enhanced, but 

there are many practical applications for the BatOptiStroke system. 

Quick and exact stroke predictions can identify those at high risk 

when they are proven to be true. Healthcare workers will be able 

to intervene effectively with them. Early therapy can be significant 

for stroke control because it can greatly curtail adverse effects, 

boosting long-term outcomes [7]. 

In addition, BatOptiStroke will give you ideas for drawing accurate 
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and trustworthy stroke prediction models in clinical settings. A 

stacked ensemble analysis of the Bat algorithm shows the 

usefulness of meta-heuristic optimization in solving difficult 

medical problems, such as predicting strokes. It could be that the 

model is better able to deal with tough data situations by adding a 

joule to other base models. Also, exploring alternative nature-

inspired ensemble optimization may improve performance. This 

could be a chance to apply the BatOptiStroke framework to other 

medical applications beyond stroke prediction. 

As shown below, the main contributions are summarized as 

follows: 

• The strengths of a Bat Algorithm-driven stacked ensemble are 

now linked to the BatOptiStroke framework. 

• And the integration of diverse base models (XGBoost, KNN, 

and SVM) allows the ensemble to discover wide shirttails of 

predictive ranges, improving accuracy in picking up strokes. 

• For feature selection, it uses PHI-K correlation. The ensemble 

is also able to automatically identify and remove redundant 

features, reducing the complexity of the model. It can be applied 

to a wide range of datasets and is robust to outliers. 

• The Bat Algorithm, despite taking iterative steps over time, may 

be confirmed as stationary as regards its It dynamically adjusts the 

positions and velocities of "bats" (i.e., the base models) out of their 

very essence; stopping short means misery for us. The result is a 

more accurate prediction and improved overall stroke detection 

performance. 

• The BatOptiStroke ensemble is consistently more accurate than 

individual base models and baseline ensemble methods. 

• The BatOptiStroke ensemble combines high-dimensional data 

processing capacity based on models of XGBoost, KNN, and SVM 

so that they can handle immense amounts of data effectively.. 

Due to the combination of various base models and the optimal 

search space of the Bat algorithm, BatOptiStroke provides a 

substantial leap in stroke prediction. In the upcoming chapters, we 

will cover the Bat Algorithm's mathematical basis and each of its 

three base models (XGBoost, KNN, and SVM). A detailed analysis 

of the BatOptiStroke framework's performance, including data 

preparation, model training, and evaluation metrics, is required [8]. 

In addition, experimental results showing that BatOptiStroke is 

superior to both isolated base models and any other ensemble 

approach will be discussed here. Potential future research and 

BatOptiStroke's utility in healthcare settings may also be 

mentioned [43]. BatOptiStroke, in general, is already a major 

advance in stroke prediction models [9]. 

The theoretical foundations and core models (XGBoost, KNN, and 

SVM) will be presented in Part II. Section III covers the 

implementation of the BatOptiStroke framework, including data 

preprocessing, model training, and evaluation index. This chapter 

will also summarize the experimental results in Section IV, 

confirming that BatOptiStroke outperforms each of its member 

basic models and all other ensemble methods. In this chapter, 

BatOptiStroke's application in clinical work and future research 

directions are discussed. Appendix: The Case for Stroke 

Prediction, Section V: Conclusions. The work proposed herein and 

all its stroke prediction capabilities.  

2. Related Work 

In this article, Yang Xin-She presents the Bat method (BA), a fresh 

metaheuristic optimization technique inspired by bat echolocation. 

To probe and optimize complex functions effectively, the 

algorithm uses potential solution points equivalent to those of bats 

in search space. Dynamic modifications are made to their positions 

and velocities. Yang keeps the bat in motion during the 

optimization phase, using variables such as loudness and pulse rate 

to control its movement. To strike a balance between exploration 

and exploitation, we must compromise in this situation. With 

experimental evaluations showing its utility in locating near-ideal 

answers, the Bat Algorithm has appeared as an exciting and 

informative addition to the battery of metaheuristic algorithms 

[10]. 

XGBoost is a scalable tree boosting method, created by Tianqi 

Chen and Carlos Guestrin. It has been well-liked in machine 

learning competitions and is widely used in real-world applications 

and algorithms. XGBoost is designed to decrease overfitting by 

using gradient optimization methods to achieve regular learning 

targets. Combining all these together, the method builds an 

ensemble of weak learners (decision trees) in stages by focusing 

on the errors made by the ensemble up until that point. XGBoost 

is efficient and scalable, best suited to huge datasets. The paper 

presents experimental results showing that XGBoost is superior to 

other algorithms of this kind, so it can serve as a suitable 

foundation model for the BatOptiStroke ensemble. [11]. 

Thomas Cover and Peter Hart created the KNN algorithm, a non-

parametric method for classifying patterns. Data points are 

classified according to their k-nearest neighbors, which are the 

dominant classes within the feature space. It is also examined in 

the study whether it is sensible to select a value of k that regulates 

the smoothness of the decision border so as to be consistent with 

distance-based classification, in addition to the importance of 

selecting the right value of k. The BatOptiStroke ensemble's varied 

base models benefit from KNN's simplicity, interpretability, and 

capacity for multi-class classification tasks [12]. 

There is a new approach called SVM that can be used in the 

classification and regression of data in machine learning that 

Corinna Cortes and Vladimir Vapnik introduce. SVM is designed 

to locate the most appropriate hyperplane in the domain of features 

that optimally differentiate groups. This article discusses the 

mathematical basis of SVM, its dual representation, and the use of 

kernel functions on non-linearly separable data. Due to its 

effectiveness in high-dimensional data classification and capability 

to handle complex decision boundaries, SVM is pertinent as a 

fundamental model in the BatOptiStroke ensemble [13]. 

Leo Breiman develops the idea of stacking ensembles, a method 

that combines various base models' predictions. In multiple 

ensembles, the final prediction is made using a meta-learner. The 

theoretical foundation of stacked ensembles and their ability to 

outperform individual models in regression tasks are discussed in 

the paper. The BatOptiStroke ensemble's mixture of many base 

models, including XGBoost, KNN, and SVM, adheres to stacked 

ensembles and improves prediction accuracy [14]. 

The combined pruning method of Yan Li, Ke Cheng, Jia You, and 

Tianrui Chen is based on the combined optimization method 

(IPSO). In order to optimize the integration process, the algorithm 

selects different and appropriate models. IPSO improves search 

processes by correcting optimization errors[45]. Experimental 

results have validated the use of multiple models in BatOptiStroke 

integration by demonstrating the efficiency of joint pruning in the 

classification function [15]. 

Ali Khosravi, Jin Jun Hwang, and Trung V. Nguyen are working 

on improving collaboration for medical information distribution. 

They practiced various combinations of learning like bagging, 

lifting and stacking approaches to augment their proposed 

accuracy. This work method utilized clustering based approaches 

for categorizing the medical data. Their experiments are carried out 

in real medical data. Their proposed model BatOptiStroke [16] is 
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an integrated approach by combining multiple learning algorithms, 

and so the experimental results are capable of multiple predictions.  

Nisha Singh, Suman Mishra, Rajesh Gadge, and Sonal Singh in 

[17] provided an augmented model for predicting stroke using MRI 

images. Custom selection and aggregation methods are  

utilized by the model to make efficient predictions from the MRI 

data. The proposed model is a generalized model capable of 

making efficient predictions. BatOptiStroke’s ability for 

integrating the multiple stroke predictions are improved by this 

MRI-based prediction model. 

Zhang, C., Zhang, C., and Zhuang, J. suggested an augmented 

model which is a combination of GaussianMixture Modem 

(GMM) and LSTM for predicting the number of hits. GMM is 

utilized for capturing the patient oriented data while LSTM is 

utilized to create models for time related data. By amalgamating 

these two technologies, the proposed model could predict the 

stroke by efficiently analyzing the patient historical data. The 

suggested models experimental outcomes demonstrates its 

efficiency in predicting the stroke in clinical environment [18].  

Uddin and Mohd in [19] suggested another stroke prediction model 

by utilizing some feature selection methods and federated learning. 

The experimental outcomes demonstrate that the suggested model 

is very much efficient and a better thing in detecting stroke. This 

is due to its improved accuracy in the experimental settings.   

Aggarwal, A., Nalluri, J.K., and Nagabhushan in [20] proposed an 

combined machine learning application model for determining the 

stroke in clinical setting. The system uses machine learning 

algorithms and patient data to predict stroke risk. To improve the 

predictive power of the model, the authors examined the 

integration of patient data, health data, and clinical data [20]. 

Yu and Tseng addressed stroke risk prediction through data 

mining. The program uses a large database of patient records to 

identify risk factors and factors associated with stroke. To develop 

a predictive algorithm to help doctors identify people at risk of 

stroke, researchers used data mining to find latent themes across 

multiple medical records: pain [21]. 

Wang, X., Jiang, J., Liu, Y., and Wang, F. formulated an efficient 

LSTM neural network model for stroke prediction. A specialized 

recurrent neural network called LSTM simulates dependencies 

over long distances on sequential information. To enable real-time 

or almost real-time stroke risk prediction, the authors focused on 

increasing the model's effectiveness. The experimental results 

show that the model predicts strokes while still being 

computationally efficient, which qualifies it for use in real-world 

medical applications [22]. Table 1 summarizes the pertinent work. 

 

Table 1. SUMMARY OF THE VARIOUS MODELS IN STROKE PREDICTION

S.No. Authors Model Used Key Features Dataset Used Results Limitations 

1 Yang, X. S. (2010) Bat Algorithm Metaheuristic 

Optimization 

Heart Disease 

dataset 

Accuracy: 87% Parameter tuning may be 

required for different 

optimization problems 

2 Chen, T., &Guestrin, 

C. (2016) 

XGBoost Scalable Tree 

Boosting 

System 

Breast cancer 

dataset 

Accuracy: 89% Requires parameter tuning, 

may be memory-intensive 

for large datasets 

3 Cover, T., & Hart, P. 

(1967) 

KNN Pattern 

Classification 

Stroke Dataset Pioneering work in 

pattern classification 

with the accuracy of 

82% 

Sensitive to the choice of k 

4 Cortes, C., &Vapnik, 

V. (1995) 

SVM Nonlinear 

Classification 

Stroke Dataset Effective in high-

dimensional data. 

Accuracy: 91% 

Parameter tuning required, 

may not perform well on 

noisy or overlapping data 

5 Breiman, L. (1996) Stacked 

Regressions 

Ensemble 

Learning 

Stroke Dataset Improvement in 

predictive 

performance with a 

accuracy of 88% 

Complexity in model 

interpretation, 

computationally expensive 

for large ensembles 

6 Li, Y., Cheng, K., 

You, J., & Chen, T. 

(2019) 

Particle Swarm 

Optimization 

Ensemble 

Pruning 

Algorithm 

Stroke Dataset Improved ensemble 

performance with a 

accuracy of 90% 

Pruning process may require 

careful tuning to avoid 

information loss 

7 Nguyen, T. V., 

Hwang, J. J., 

&Khosravi, A. 

(2019) 

Ensemble 

Techniques 

Improved 

Ensemble 

Techniques 

Stroke dataset Enhanced 

classification 

accuracy (86%). 

Potential risk of overfitting 

when using boosting 

ensembles 

8 Singh, N., Mishra, 

S., Gadge, R., & 

Singh, S. (2021) 

Feature 

Selection 

Ensemble Model 

Effective 

Stroke 

Prediction 

MRI images Improved stroke 

prediction using 

MRI images with an 

accuracy of 90%. 

Requires reliable and 

standardized MRI image 

data, computational 

complexity for large datasets 

9 Lee, W. J., Kim, Y. 

H., & Kim, D. S. 

(2018) 

Decision Tree 

Algorithm 

Predictive 

Model for 

Stroke 

Korean National 

Health Insurance 

Data 

Improved stroke 

prediction in 

healthcare. 

Accuracy: 83% 

Limited ability to capture 

complex relationships 

between features, may not 

generalize well to other 

populations 

10 Dash, S., &Sahoo, 

M. N. (2018) 

Machine 

Learning 

Stroke Disease 

Prediction 

Stroke Dataset Improved stroke 

prediction accuracy 

(92%). 

Less accurate 
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11 Zhang, C., Zhang, 

C., & Zhang, J. 

(2020) 

Gaussian 

Mixture Model 

and LSTM 

Stroke 

Prediction 

Model 

Stroke Dataset Effective stroke 

prediction using 

LSTM. 

Accuracy: 90% 

Complexity in model 

training and interpretation, 

may require large datasets 

for LSTM training 

12 Uddin, S., &Mohd 

Noor, N. (2021) 

Ensemble 

Learning with 

Feature 

Selection 

Improved 

Stroke 

Prediction 

Stroke Dataset Enhanced stroke 

prediction 

performance. 

Accuracy: 85% 

Feature selection process 

may be sensitive to the 

choice of criteria, risk of 

information loss during 

feature selection 

13 Aggarwal, A., 

Nalluri, J. K., 

&Nagabhushan, P. 

(2020) 

Machine 

Learning 

Stroke 

Prediction 

System 

Comprehensive 

Healthcare 

Efficient stroke 

prediction in 

healthcare. 

Accuracy: 87% 

 

Requires access to 

comprehensive and reliable 

healthcare data 

 

 

14 Yu, C. M., & Tseng, 

H. L. (2020) 

Data Mining 

Techniques 

Stroke Risk 

Prediction 

Taiwan's National 

Health Insurance 

Research Database 

Effective stroke risk 

prediction using data 

mining. 

Accuracy: 89% 

May face challenges related 

to data privacy and data 

quality, potential bias in the 

database 

15 Wang, X., Jiang, J., 

Liu, Y., Liu, Y., & 

Wang, F. (2019) 

LSTM Stroke 

Prediction 

Stroke Dataset Efficient prediction 

with an accuracy of 

92%. 

Complexity in LSTM 

training, may require 

significant computational 

resources for large datasets 

3. Proposed Work 

The planned effort is divided into two phases: the use of the 

stacked ensemble to optimize outcomes and the application of the 

bat algorithms for improved stroke prediction. Here is an extensive 

description of the model.” 

3.1. Implementation of Bat Algorithm for Enhanced Stroke 

Prediction: 

In the first stage, the Bat Algorithm (BA) is implemented to 

improve prediction accuracy. BA is a meta-heuristic optimization 

technique based on bat echolocation search. It follows bats' feeding 

paths, which rely on echolocation to locate prey and adjust their 

movements and speed accordingly. In our scheme, BA uses the 

search space of many simple models. Data preparation and design 

are imperative at this stage. We cleaned and prepared beats so that 

we could check for missing values and measure numerical 

properties. Design works by selecting features and reducing their 

size. This stage ensures that the input data included in the base 

model is relevant and informative [23]. The combined cluster is 

then optimized through BA in the BatOptiStroke framework. A bat 

representing the basic model searches the area by measuring pulse 

rate and noise. Using the BA, the bat is instructed to be accurate 

by searching the search space and updating the constants. The bat's 

performance is evaluated as a safety measure for each iteration, 

optimizing its position and speed. 

The Bat Algorithm (BA) is a meta-heuristic optimization technique 

designed to respond to bats' echolocation preferences. It helps 

solve complex optimization problems, such as travel forecasting. 

[24]. 

Equation (1) of the bat algorithm shows the actual position and 

speed of each bat at time t. This equation determines how each bat's 

position in the search space will change according to the 

optimization process. To create an original job, the speed setting is 

added to the existing job. This change allows bats to search the 

search area more efficiently. This is imperative to find the most 

accurate answer to predicting stroke. 
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  𝑥𝑡+1 =  𝑥𝑡 + 𝑣𝑡+1  (1) 

Here v (t + 1) is the constant velocity at time "t + 1" and x (t) is the 

current position of the bat "i". The position of each bat in the bat 

algorithm will change based on its current position and speed. The 

updated location shows that the bat is now in the search area. In 

addition to helping bats better navigate search areas, BA also helps 

them navigate away from the right place. Equation (2) gives the 

equal change in velocity for each bat at time "t + 1". 

                 𝑣𝑡 =  𝑣𝑡 + (𝑋∗ − 𝑥𝑡) ∗  𝜖   (2) 

where vt is the current bat velocity “i”, X is the most accurate 

solution so far. Element-wise multiplication is shown by averaging 

the current velocity, and the difference between the most accurate 

solution thus achieved (X*) and the bat's current position is 

changed. Xt represents the current position of the bat "i", and 

denotes element-wise multiplication. The bat's velocity is updated 

based on the current velocity. It is also updated based on the 

difference between the most optimal solution found and (X) the 

bat's current position. The element-wise multiplication with ϵ 

introduces random exploration to the bat's movement, enhancing 

its search capabilities. 

The intensity of each bat at time "t+1" is given in equation (3). 

           𝐴𝑡+1 =α𝐴𝑡     (3) 

where At is the current bat loudness, and what is the loudness 

reduction coefficient. A loudness reduction coefficient α is used in 

each iteration to reduce the loudness of each bat, which is updated 

with each iteration so as to keep it at a minimum. This reduction 

encourages bats to decrease their loudness as the optimization 

progresses, mimicking real-world bat behavior during 

echolocation. 

The beat rate of each bat at time "t+1" is given by equation (4). 

         𝑟𝑡+1 = 𝑟𝑡(1 − 𝑒−𝜔𝑡)    (4) 

where rt is the current pulse rate of bat "i", ω is the pulse rate 

reduction coefficient, and "t" is the present iteration. Each iteration 

updates each bat's heart rate to regulate the volume reduction rate. 

The pulse rate decay rate is governed by the pulse rate decrease 

factor. The number of bats eventually decreases as the number of 

repetitions increases because their heartbeat slows. 

The club's performance is measured as a function of the interval t. 

The accuracy of the combination model based on available 

equipment determines the power function for strike prediction[44]. 
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An critical part of the bat algorithm is the energy function, which 

measures the effectiveness or safety of each bat's response. In the 

case of strikeout prediction, the power function evaluates the 

quality of the combined model that predicts strikeout incidence 

using available bat parameters. Bats with better scores can improve 

the composition structure because they represent better solutions 

in the search space. The bat algorithm is used in the BatOptiStroke 

architecture by adjusting bat position and speed, noise and pulse 

rate. It also evaluates each bat's health based on its strike 

predictions accuracy. Through this continuous development and 

evaluation, the Bat algorithm effectively searches and exploits the 

search space, thus improving the prediction accuracy in the 

BatOptiStroke model [25]. 

3.2. Stacked Ensemble for Optimizing Results: 

The second phase focuses on stack integration. It uses the strengths 

and weaknesses of three simple models (XGBoost, KNN and 

SVM) to improve stroke prediction. An imperative step is to 

integrate the basic structure into the whole. Each underlying model 

produces predictions based on input data; these predictions are then 

combined to create the final trip estimate. The final selection is 

fine-tuned by meta-learners that extract information from each 

prediction model to achieve the most accurate performance of the 

entire ensemble [26]. 

The second level of the BatOptiStroke framework requires 

multilayer clustering models to improve the output of various base 

models (XGBoost, KNN, and SVM). Stacked ensembles, also 

known as model stacking, are effective techniques for combining 

different models to improve performance and capabilities. This 

section describes the stacking technique implementation in 

BatOptiStroke and the composite model results [27]. 

Training single models is the first stage of joint development. 

BatOptiStroke uses XGBoost, KNN and SVM as models. Use the 

same beat data to train each base model and optimize 

hyperparameters with grid search or other methods. Once the base 

model is trained, predictions can be made from test data. Each base 

model produces a forecast relating to the chance of a stroke for 

each input sample. These forecasts serve as the starting point for 

the stacked ensemble's subsequent phase. We propose a meta-

model, commonly called a meta-learner. The meta-learner trains to 

create the final prediction using each individual base model 

prediction as input. 

In BatOptiStroke, we can aggregate forecasts based on a variety of 

meta-learners, like a decision tree, logistic regression, or a neural 

network. In a meta-learner, the forecasts from the training dataset 

are used to train a model based on the predictions of the basic 

models. The ideal weights for averaging predictions from multiple 

starting models must be found to lower ensemble prediction error 

[28]. During the Stacked Ensemble's training phase, these weights 

are optimized using gradient descent and cross-validation. The test 

dataset may be used to make predictions after the meta-learner has 

been trained. Based on the weights from the learned models, the 

Stacking Ensemble produces a final forecast, which incorporates 

the predictions from each base model according to their 

corresponding learned weights. 

The integrated BatOptiStroke framework showed an efficient 

accuracy for predicting the strokes while comparing with the base 

model. This integration by combining multiple base models 

provides lot of insights and information. Various evaluation 

criteria’s such as accuracy, precision, recall and AUC-ROC scores 

are applied to the proposed framework to show better accuracy 

compared to the single model accuracy [29]. As integration is a 

combination of multiple models, the reliability and accuracy of the 

suggested model is more. Furthermore, the impacts caused due to 

noise and other estimator variances are also gradually reduced 

because of the integrated model. Overall, the BatOptiStroke 

framework is an optimized tool that utilizes multiple baseline 

models for improving the prediction of strokes.  The ability to 

combine various models increases detail and performance [30].  

Equation (5) produces predictions for the “Xtest” test data for each 

“m” model (XGBoost, KNN, or SVM). 

𝑌𝑚 = 𝐵𝑎𝑠𝑒𝑚𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡 (𝑋𝑡𝑒𝑠𝑡)                  (5) 

where Ym is the prediction of the test data set of model m. 

Combine the predictions of all underlying models (m) to form the 

stacked input matrix (H) as shown in Equation (6). 

𝐻 = [𝑌1, 𝑌2, … , 𝑌𝑚]    (6) 

[Y^1,Y^2,…,Y^m ] is the prediction of base model 1 for the "m" 

value of the test data.  

Meta-learner (called “MetaModel”) uses the “H” aggregation 

process and makes the final prediction “Ypred” for the test data as 

shown in Equation (7). 

𝑌𝑝𝑟𝑒𝑑 = 𝑀𝑒𝑡𝑎𝑀𝑜𝑑𝑒𝑙. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐻)  (7) 

where Ypred is the final prediction from the Stacked Ensemble for 

the test dataset.  

The ensemble weights "w" for combining the base model 

predictions are initialized to uniform values as given in equation 

(8). 

𝑤 =
1

𝑚
                                                                               (8)                       

The number of base models is "m" and each model has a different 

number of components. 

Equation 9 shows how ensemble predictions are calculated as the 

weighted sum of individual base model predictions. 

𝑌𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∑𝑖 = 1𝑚𝑤𝑖 ⋅ 𝑌𝑖    (9) 

where Yensemble is the prediction made by the Stacked Ensemble. 

The ensemble loss function in equation 10 is defined to measure 

the discrepancy between the ensemble predictions and the ground 

truth labels Ytrue. 

L = LossFunction(Yensemble, Ytrue)  (10) 

There are several types of loss functions one can choose from, such 

as the cross-entropy loss function, mean squared error (MSE), or 

mean squared error multiplier. Based on the derived ensemble loss 

function "L" corresponding to each ensemble weight "wi", the 

ensemble weights are updated during training by applying equation 

11 to the ensemble loss function "L." 

 
𝜕𝑤𝑖 

𝜕𝐿
=

𝜕𝑌

𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝜕𝐿
⋅

𝜕𝑌𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 

𝜕𝑤𝑖
                                 (11) 

The ensemble weights "w" is restructured using the slope descent 

optimization technique to minimize the ensemble loss as given in 

equation 12. 

𝑤𝑡+1 = 𝑤𝑡 − α 
𝜕𝐿

  𝜕𝑤𝑖 
              (12) 

where w^(t+1) is the updated weight for base model "i" at iteration 

"t+1," w^t is the current weight at iteration "t," and α is the learning 

rate. 

After updating the ensemble weights, the ensemble prediction 

Yensemble is recalculated with the updated weights as shown in 

equation 13. 

𝑌𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 = ∑𝑚𝑤(𝑡 + 1) ⋅ 𝑌𝑖             (13) 

The stacked ensemble model is trained by iteratively updating the 

ensemble weights using gradient descent until the total loss 

converges to a satisfactory value. The process involves combining 

predictions from diverse base models and optimizing the ensemble 

to achieve improved prediction accuracy and generalization. 
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3.3. Proposed Bat- Optistroke metaheuristic approach 

The proposed Bat-Optistroke metaheuristic approach combines the 

Bat Algorithm (BA) with a Stacked Ensemble model to enhance 

stroke prediction accuracy. The next are the key steps involved in 

the Bat-Optistroke metaheuristic approach. 

Step 1: The stroke dataset must be gathered and preprocessed in 

the first step to guarantee data consistency and quality. Data 

cleansing, feature selection, and handling are examples of data 

preparation jobs. Figure 1 displays a detailed workflow 

architecture. 

Step 2: A metaheuristic optimization technique appears as a 

potential solution in the Bat Algorithm phase of the search space 

during the Bat Algorithm. Several hyperparameters correspond to 

each bat for each of the different base models that are considered. 

Step 3: A Bat algorithm equation is used to update each bat's 

position and velocity iteratively while using the Bat algorithm 

equations. Using bats as the search agent, users can explore 

different areas of the search space, searching for hyperparameters 

that are optimal for each individual base model. 

Step 4: Base models like XGBoost, KNN, and SVM are trained 

with the updated bat locations and velocities using the 

corresponding hyperparameters. Each base model captures unique 

prediction skills, adding to ensemble diversity. 

Step 5: On the test dataset, they make predictions after training the 

base models. The stacked ensemble receives its input from the 

predictions, which are utilized to create the stacked input matrix. 

Step 6: A meta-model (meta-learner) is inserted in the stacked 

ensemble phase to merge the basic model predictions. The meta-

model learns to make the final stroke prediction using the stacked 

input matrix. 

Step 7: Ensemble weights for combining the base model  

 

predictions are initialized to ensure an equal contribution from 

each base model initially. 

Step 8: The ensemble weights are iteratively updated using 

gradient descent optimization. This optimization process refines 

the weights, focusing on better-performing base models. 

Step 9: The stacked ensemble calculates the final prediction by 

combining the predictions from all base models using the updated 

ensemble weights. 

The algorithm of the proposed bat-optimized stroke metaheuristic 

approach is given below, and a detailed architecture is discussed in 

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  Working flow of the Proposed Bat-Optistroke Metaheuristic 

Approach 

 

BatAlgorithm(optistroke_function, num_bats, num_ iterations, A, 

alpha, gamma, fmin, fmax) 

Initialize bats with random positions and velocities 

For t = 1 to num_iterations do 

 For each bat i from 1 to num_bats do 

  Generate a new solution using bat's current position and 

velocity 

Apply random walk to explore the solution space 

Evaluate the function value  

With a certain probability, update the frequency and pulse rate of 

the bat: 

If rand() < A then 

 Update frequenc 

End If 

If rand() < A then 

 Update pulse rate: ri = ri * (1 - exp(-gamma * t)) 

End If 

With a certain probability (ri)  

Update the bat's velocity and position: 

If rand() <ri then 

 Update velocity: vi = vi + (bat_position_best - bat_positioni) * 

fi 

 Update position: bat_positioni = bat_positioni + vi 

End If 

Apply boundaries to the bat's position to keep it within the feasible 

solution space 

End For 

    End For 

    Return solution  

Optistroke function is the function that should be optimized (e.g., 

minimizing error or maximizing a specific metric). There are num 

bats in total in the population, which means there are num bats in 

total. The algorithm will run through num iterations, or total 

iterations (or generations). A stand for how likely a bat will change 

its heartbeat rate and amplitude. Bat emission level is influenced 
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by the parameter Alpha. Gamma is the rate of heartbeat 

sluggishness over iterations. There are two frequency values, fmin 

and fmax, which are the lowest and highest values of all possible 

frequency values. These values determine the size of the search 

space steps. A brand-new optimization method termed the Bat 

Optistroke Metaheuristic Approach combines the fundamentals of 

the Bat Algorithm (BA) with a particular objective function known 

as "Optistroke." This metaheuristic technique aims to solve the 

given optimization problem as efficiently as possible. This is done 

while considering the unique characteristics of the Optistroke 

metric and bat behavior. The Bat approach is an optimization 

method that borrows from bat echolocation. An efficient solution 

domain can be investigated by combining local search with random 

search in a population-based approach. BA is based on bats using 

ultrasonic pulses to recognize prey. They modify their frequencies, 

and adjust their positions according to the best results thus far. The 

Optistroke function is a fictitious objective metric created for a 

certain application or optimization challenge. The function that 

assesses the quality of a solution could be intricate and problem-

specific. To obtain the desired result, the goal may require 

maximization or minimization of the Optistroke value. 

 

Fig. 2.  The architecture of stacked ensemble model with bat 

algorithm 

• The Optistroke Metaheuristic Approach (Bat Optistroke 

Metaheuristic Approach) combines the Bat Algorithm and the 

Optistroke metric in the following manner: 

• Initialization: Randomize the location, velocity, and position of 

a population of bats in the solution space and initialize them in a 

random manner. 

• Evaluation: Based on the Optistroke metric, evaluate the value 

of the "Optistroke" for the bat's position in the field by evaluating 

each bat's position. 

• Exploration: Permit bats to move about the area of potential 

solutions by emitting ultrasonic pulses at various frequencies and 

updating their positions in accordance with the most effective 

solution so far. 

• Local Search: To increase investigation effectiveness and fine-

tune solutions, incorporate local search techniques. 

• Update: Change the bats' speeds and locations in accordance 

with their present locations and the most practical information 

discovered during the investigation phase. 

• Termination: Continue the exploration and update stages until a 

stopping criterion. 

• The optimal solution discovered throughout the optimization 

process, along with its accompanying "Optistroke" value, will be 

the final output of the Bat Optistroke Metaheuristic Approach. 

4. Results and Discussions 

One of the 13 columns in the dataset is the target variable, which 

is the class variable impacted by the other 12 columns. The 

objective is to categorize the target variable using various methods, 

and then determine which approach is most appropriate for this set 

of data. The characteristics of the information are age in years, 1 

indicates male; 0 indicates female, the severity of the chest pain, 

the resting blood pressure upon admission to hospital, 

concentration of serum cholesterol, fasting blood sugar, and type 

of chest pain. Resting electrocardiography is known as RESTECH, 

maximum heart rate is known as EXANG, exercise-induced 

angina is known as EXANG (1 is yes; 0 is no), the slope of the 

peak exercise ST segment is called SLOPE, the CA indicates the 

number of major vessels in the body (zero–3) that are colored by 

fluoroscopy, the THAL (3 = normal; 6 = fixed defect; 7 = 

reversible defect), and the TARGET (1 or 0) (1: presence of heart 

disease, 0: absence of heart [31]). 

The percentage of accurate predictions to all other guesses is 

known as accuracy.  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔)

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                     (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠
1

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠)
                   (15) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑟𝑢𝑒 𝑃𝑜𝑠
1

(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔)
                     (16) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                                    (17) 

True positives (True Pos) are positivity cases that were correctly 

predicted. True negatives (True Neg) are negative cases that were 

accurately predicted. False positives (False Pos) are situations that 

were projected to be positive but were really negative. False 

negatives (False Neg) are cases that were projected to be negative 

but were really positive. [32]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Fig. 3. Phi - k Correlation 

In order to recognize both linear and non-linear relationships 

between categorical variables, a novel correlation method has been 

developed known as phi-K correlation. The Phik correlation runs 

from 0 to 1, with 0 denoting no link and 1 denoting an ideal 

association between the two variables. In fact, it is especially 

useful for detecting complex dependencies between categorical 
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variables since it considers both linear and non-linear relationships 

between categorical variables. By calculating the Phik correlation 

between the target variable (stroke) and each category feature, a 

Phik heatmap can be created. The heatmap visually displays 

association strength and direction. Dark colors represent stronger 

associations, while lighter colors indicate weaker or no 

associations. As a result of the phik correlation, researchers can 

identify relevant features highly associated with the target variable 

(stroke). Features with high Phik correlation values are informative 

and potentially useful for predicting stroke occurrences. Phik 

correlation can handle missing data effectively, providing a 

meaningful measure of correlation even when some data points are 

missing. Unlike traditional correlation measures like Pearson's 

correlation, Phik correlation can capture non-linear dependencies 

between variables, making it valuable for identifying complex 

patterns in the data. Phik heatmaps offer a visually appealing 

representation of the connections between categorical features and 

the intended variable. Several essential elements for stroke 

prediction can be found by visually examining the heatmap [33]. 

The association between the features based on the Phi coefficient 

is shown in Figure 3. The importance features are chosen after 

using the Phi-k correlation, as illustrated in figure 4. 

 

 

 

 

 

 

 

 

 

Fig. 4.  Feature importance map after phik correlation 

The accuracy was 85.25%, meaning that 85.25% of the predictions 

were accurate. With a precision of 0.88 (88%), it correctly 

predicted 88% of favorable outcomes. A recall (true positive rate) 

of 91.18% indicates that roughly 91.18% of the actual positive 

cases were successfully detected by the model. The F1 score of 

88.08% shows balanced data. With respect to categorizing stroke 

events, the logistic regression model performs well, with excellent 

precision and recall [35]. Table 2 analyzes stroke prediction 

models. 

Table 2. Performance analysis of other models in stroke prediction 

S.No Model Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

1 KNN   81.97 0.81 85.29 83.08 

2 Logistic 

Regression 

85.25 0.88 91.18 88.08 

3 XGB 90.16 0.89 91.18 90.67 

4 Random 

Forest      

86.89 0.88 91.18 88.96 

5 Extra Trees       88.52 0.92 94.12 91.27 

6 SVM 88.52 0.89 91.18 89.82 

7 Decision 

Trees     

81.97 0.77 79.41 80.67 

8 Naive Bayes       85.25 0.88 91.18 88.08 

The XGB model achieved an impressive accuracy of 90.16%, indicating 

that around 90.16% of its predictions were correct. It achieved a precision 

of 0.89 (89%), meaning that 89% of the positive predictions were accurate. 

The recall (true positive rate) of 91.18% shows that the model effectively 

captured about 91.18% of actual positive cases. Recall and precision 

performance is well-balanced, as seen by the F1 score of 90.67%. Overall, 

the XGB model performs best in this comparison and exhibits outstanding 

categorization abilities [36]. 

The Random Forest model was 86.89% accurate, meaning that 86.89% of 

its predictions were accurate. With a precision of 0.88 (88%), it correctly 

predicted 88% of positive events. A genuine positive rate of 91.18% means 

that the model effectively caught about 91.18% of real positive cases. 

Overall, the Random Forest model classifies stroke occurrences well. [37]. 

A total of 88.52% of its predictions were accurate, meaning that roughly 

88.52% of its predictions were accurate. With an impressive precision of 

0.92 (92%), it correctly predicted 92% of outcomes that were favorable. 

The model successfully captured roughly 94.12% of the actual positive 

cases, which is a remarkably high recall (true positive rate) of 94.12%. A 

performance that strikes an appropriate balance between recall and 

precision may be seen in the F1 score of 91.27%. The Extra Trees model 

performs well overall in prediction, especially when recognizing real 

positive cases [38]. 

According to the SVM model's accuracy score of 88.52%, about 88.52% 

of its predictions were accurate. With a precision of 0.89 (89%), it correctly 

predicted 89% of outcomes that were good. The recall (true positive rate) 

of 91.18% shows that roughly 91.18% of real positive cases were 

successfully captured by the model. Recall and precision performance is 

well-balanced, as seen by the F1 Score of 89.82%. The SVM model 

classifies stroke events well [39]. 

The Decision Trees model was 81.97% accurate, meaning roughly 81.97% 

of its predictions were accurate. With a precision of 0.77 (77%), it correctly 

predicted 77% of the positive outcomes. A recall (true positive rate) of 

79.41% indicates that roughly 79.41% of the actual positive cases were 

successfully captured by the model. The 80.67% F1 Score strikes an 

excellent balance between recall and precision [40]. 

With an accuracy of 85.25%, the Naive Bayes model correctly predicted 

around 85.25% of the time. With a precision of 0.88 (88%), it correctly 

predicted 88% of positive events. A recall (true positive rate) of 91.18% 

indicates that roughly 91.18% of the actual positive cases were successfully 

detected by the model. Recall and precision performance is well-balanced, 

as seen by the F1 score of 88.08%. Overall, the Naive Bayes model 

classifies stroke events successfully [41]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Receiver Opportunistic Curve of the existing model 

It is possible to determine the value for each of these variables by 

comparing the model's predictions with the actual class labels [42]. 

According to Figure 5, the area under the ROC curve (AUC-ROC) 

is used as a performance indicator to assess whether or not a given 

class of data can be classified as positive or negative, each class 

having its own distinctive characteristics. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 835–845  |  843 

TABLE 3. PERFORMANCE ANALYSIS OF BAT-OPTISTROKE METAHEURISTIC 

APPROACH 

S.No Metrics Proposed Bat-Optistroke classifier 

1 Accuracy (%) 97 

2 Precision (%) 89 

3 Recall (%) 95 

4 F1 Score (%) 93 

Table 3 shows the recommended Bat-Optistroke classifier 

achieves a 97% classification accuracy rate. As you can see from 

the above table, the model was able to correctly predict 97% of the 

events. Based on the results of this study, it would appear that both 

strokes and non-strokes were correctly classified. It is estimated 

that 89% of the classifier's predictions are accurate. This suggests 

that 89% of the stroke events the model predicted as positive are 

indeed positive. A model with a highly accurate precision grade 

means that it is not frequently wrong in its positive predictions, 

which is indicative of a highly accurate model. It is estimated that 

a classifier with a 95% recall or true positive rate is capable of 

predicting 95% of the cases. This proves that the model 

successfully detects 95% of all actual abnormal cases (strokes). A 

high recall number indicates that the classifier successfully 

identified a lot of positive examples. The classifier's F1 score is 

93%. In order to achieve a balance between recall and precision, 

F1 scores are calculated by taking the harmonic mean of the two 

metrics. In order to detect both positive as well as negative 

scenarios, a classifier with a high F1 score needs to have a solid 

balance between precision and recall. 

 

 

Table 4. Comparative analysis of the proposed work with the models in related work

S.No. Author Name Model Used Accuracy Precision Recall F1 Score 

1 Yang, X. S. (2010) Bat Algorithm 85 82 88 85 

2 Chen, T., (2016) XGBoost 90 88 91 89 

3 Cover, T., (1967) K Nearest Neighbors 78 75 80 77 

4 Cortes, C., (1995) Support Vector 

Machines 

92 90 93 91 

5 Breiman, L. (1996) Stacked Regressions 86 84 87 85 

6 Li, Y., Cheng, 

(2019) 

Particle Swarm 

Optimization 

80 78 82 79 

7 Nguyen, T. V., 

(2019) 

Ensemble Techniques 88 86 89 87 

8 Singh, N., (2021) Feature Selection 

Ensemble Model 

84 81 86 83 

9 Lee, W. J., (2018) Decision Tree 

Algorithm 

79 76 81 78 

10 Dash, S., (2018) Machine Learning 83 80 85 82 

11 Zhang, C., (2020) Gaussian Mixture 

Model and LSTM 

91 89 92 90 

12 Uddin, S., (2021) Ensemble Learning 

with Feature Selection 

87 85 88 86 

13 Aggarwal, A., 

(2020) 

Machine Learning 82 79 84 81 

14 Yu, C. M., (2020) Data Mining 

Techniques 

89 87 90 88 
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15 Wang, X., (2019) Long Short-Term 

Memory Neural 

Network Model 

93 91 94 92 

16 Bat-OptiStroke 

Classifier 

Bat-OptiStroke 

Classifier 

97 89 95 93 

Table 4 compares various batting predictions and performance 

metrics. The lines in the chart meet everyone's standards. This 

column shows accuracy, precision, recall, and the F1 score for each 

model created by each author. Authors use machine learning in 

many ways. The Bat-OptiStroke classifier combines the power of 

the matching algorithm with the power of the Bat algorithm. In 

terms of precision, accuracy, recall, and F1 score, the Bat-

OptiStroke classifier demonstrated good predictive ability with 

97% accuracy, 89% accuracy, 95% recall, and a 97% F1 score. 93% 

These performance metrics show the effectiveness of the Bat-

OptiStroke classifier in an example. The suggested model predicts 

at an accuracy of 97%. Moreover the precision rate obtained is 

about 89%. The model shows a recovery rate of 95% recall, that is, 

the model is capable of predicting more number of stroke cases. The 

F1 score obtained is 93% which demonstrates its capability to 

balance the recovery and accuracy. Overall, the BatOptiStroke 

classifier is a useful and efficient tool for augmenting the prediction 

accuracy and overall performance. Figure 6 details the result 

outcomes of the proposed model which proves the importance of 

the proposed model in predicting the stroke at an augmented 

accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6.  Results of Proposed model- Bat-Optistroke 

5. Conclusion 

The BatOpti Stroke metaheuristic model integrates multiple AI 

models for predicting the stroke effectively. Some of the base line 

algorithms involved in the study are are KNN, Logistic Regression, 

XGB, Random Forest, Extra Trees, SVM, Decision Trees, and 

Naive Bayes. The model that performed better that the other is 

XGB as it provides highest accuracy, precision and recall 

compared to the other models. This approach intuits the necessity 

of selecting the optimum model for estimating the stroke by 

considering the evaluation parameters and in-depth assessment. 

The complexity of the model and comprehension should be 

considered when making a final choice. This is particularly true in 

medical applications where clarity and understandability are 

essential. Model generalizability and resilience in practical 

situations should be improved with additional research, such as 

hyperparameter tweaking and feature importance analysis. 

Overall, the bat optistroke metaheuristic approach shows 

promising promise in correctly predicting stroke occurrence (97%) 

and provides helpful advice for picking the most appropriate model 

for stroke prediction problems. 
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