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Abstract: Musculoskeletal abnormalities typically rely on radiographic examinations for diagnosis, but even experienced radiologists can 

miss abnormalities, underscoring the need for improved detection methods. This paper presents a novel approach utilizing Deep 

Convolutional Neural Networks (Deep CNN) for computer-aided bone abnormality detection. Leveraging the Stanford MURA dataset 

featuring radiological images of seven upper extremity types, we employ pre-processing techniques such as Histogram Equalization (HE) 

and Contrastive Limited Adaptive Histogram Equalization (CLAHE) to enhance image quality before inputting them into our proposed 

5SET (5S) model. This model accurately classifies images into the seven upper extremity categories and identifies normal or abnormal 

conditions. Our results demonstrate a remarkable overall accuracy of 92.10%, with a precision of 94% for specific extremities and a 

Cohen's Kappa score of 91.5%. This proposed model highlights the efficacy of combining preprocessing techniques with Deep CNN for 

high-precision bone abnormality detection. 
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1. Introduction  

Global Burden of Disease, also known as GBD, found that 

abnormalities of musculoskeletal diseases were the second 

highest contributor to disability and lower back pain across the 

world in a study in 2016. The study concluded that approximately 

20% to 30% of people worldwide live tormented with 

musculoskeletal abnormalities that go undetected sometimes [1]. 

Almost all of our daily work is done using the upper extremities 

of our body. An abnormality in the bone of an upper extremity 

may result in a painful, dependent life. The person is unable to 

perform simple daily chores on his own. The detection of the 

abnormality in bone depends upon the evaluation of radiographs 

by radiologists. After evaluating these radiographs, they make 

adequate treatment plans for the patients. Sometimes, radiologists 

or doctors become confused or misguided. This happens because, 

in most cases, radiology results are highly impacted by the 

circumstances of the patient and clinical affairs and quondam 

medical imaging. Under-reading was one of the most significant 

clinical errors, performed on a dataset consisting of 1269 errors 

[2][3]. A recent report enumerated that approximately one billion 

radiological studies are perpetrated worldwide every year, most 

of which are explained by radiologists [4]. 

1.1. Musculoskeletal Systems and Statistics 

A major inter-observer discrepancy rate of 26% and an intra-

observer discrepancy rate of 32% were found in a study 

conducted by Massachusetts General Hospital [5]. A minor 

discrepancy rate of 13% major and 21% minor was found in a 

study in 2007, which shows the influence of highly experienced 

neuro-radiologists who had their second reading of MR and CT 

studies interpreted by radiologists initially [6]. The workload of 

radiologists is escalating with more images, increased volume of 

cases, greater complexity, and decreased time to detect 

abnormality by radiologists, leading to burnout of radiologists. 

Patients having musculoskeletal problems are most likely to visit 

small-scale primary care centers. Almost 105 million people 

visited the primary medical centers in ambulance and hospital 

emergency departments and outpatients in the United States of 

America from 2009 to 2010. They all were for diseases related to 

the connective tissue and musculoskeletal system. Of these visits, 

approximately 39 million were supposed to visit the primary care 

centers, around 32.4 million went to surgical specialists, and 

about 17 million visited medical specialists. At the time of 

offering radiology services in a primary care center, a reduction 

of access issues, including a decrease in the time required to 

diagnose and treat, was found. This led to poor quality because of 

the insufficient skills and training of the radiologists. [39] 

Increasing radiologist workloads and escalating primary care 

centers of radiology make it much more relevant to explore the 

application and scope of Artificial Intelligence and intense 

learning to assist in diagnosis to radiologists and physicians of 

primary care centers to improve the quality of care of patients. In 

this paper, we have used Deep Learning for computer-aided 

diagnosis using image feature extraction [7][38].  

1.2. Motivation 

Deep learning algorithms are inspired by the magnificent human 

brain and are based on a structure of neural networks that are 

trained on a dataset to learn various discriminative features 

[17][18][19][20]. Injuries and diseases to the bone are some of 

the major factors that contribute to causing bone abnormalities. 

To be specific, conditions of Musculoskeletal disorders are 

known to affect a little more than 1.7 billion people around the 

world. They are considered one of the most common causes of 

long-term severe pain and bone disability. There are more than 30 

million visits to the emergency department annually and this is 
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increasing day by day. Hence, we need to minimize the error rate 

caused by the Radiologist and analyze faster [9]. The clinician 

must get a compiled medical diagnosis to provide an effective 

treatment [10]. For this purpose, we need to implement an AI 

solution. 

1.3. Contribution 

The models which are thus trained are then used to detect and 

diagnose. In our model, we have used Deep CNN to classify the 

seven upper extremities and predict the abnormality in bone using 

radiological images. Deep CNN takes an image from the dataset 

and assigns learnable biases and weights to the various aspects of 

the image to differentiate one image from the other. The CNN 

model provides a high computation rate and is very efficient. The 

dataset used in the model is the MURA dataset, a benchmark 

dataset produced by Stanford [8]. It contains radiological images 

of seven different types of upper. The radiological images were 

not clear enough for feature extraction by the model, thereby 

giving a lower accuracy. To increase the quality of images, we 

applied Histogram Equalization (HE) and Contrastive Limited 

Adaptive Histogram Equalization (CLAHE). These processes 

enhanced and improved the clarity of the image. The resulting 

images were of high quality, which enabled the model to extract 

the required features, giving a high accuracy of 92.10 percent. 

Our model consists of five main layers: the Convolutional Layer, 

Activation Layer, Batch Normalization Layer, Maxpooling 

Layer, and Dropout Layer. When the image is fed into the model, 

it classifies the image into one of the seven classes of the MURA 

dataset and then predicts whether the image has a normal bone or 

an abnormal bone. As we have used Deep CNN, the model keeps 

on learning and providing better results. The result consists of 

fourteen classes of outcomes predicting abnormality in the seven 

classes of the MURA dataset. 

The proposed model aids in detecting abnormalities present in the 

upper extremity bones. The dataset that we used in our model 

consisted of various types of upper extremity bone abnormalities, 

including fractures, degenerative joint diseases, bones having 

hardware, and other monsters, including subluxations and lesions. 

A model that can detect all or more bone abnormalities 

mentioned above can reduce the work of radiologists to a great 

extent. Moreover, it will also reduce errors that occur by 

manually detecting bone abnormality. Minor details that may go 

unnoticed by the human eye can easily be detected by the model, 

which continues to learn. The model can reduce the delays caused 

in reporting by X-rays, and urgent cases can then be diagnosed as 

soon as possible. 

1.4. Organization of the paper 

The paper is organized as the following sections: Section 2 

describes the related works, Section 3 describes the System 

Approach and Implementation, Section 4 describes the System 

Analysis and Performance and Section 5 describes the 

conclusion. 

2. Related Works 

Jose George et al., [11] proposed a Hybrid Wavelet technique for 

detecting Temporal bone abnormalities. High High-resolution 

computed tomography (HRCT) images were used as the dataset 

for the diagnosis of the ear. Histogram Equalization and Median 

Filtering were performed on each image to increase the contrast 

and remove the noise and outliers from the HRCT images. An 

adaptive mask was used to select the Region of Interest (ROI). 

The texture features were extracted from the Gray Level Co-

occurrence Matrix (GLCM) and the geometric features were 

removed from the region of the temporal bone. Maximum 

Probability, Inverse Element, Entropy, Contrast, Energy, and 

Difference Moment were included in the texture features. 

Calculation of GLCM in 0 degrees, 45 degrees, and 90-degree 

directions was used to extract the 15 features, which in turn was 

used for classification. Wavelet Support Vector Machine was the 

technique that was used for classification. 

Tusher Chandra et al., [12] proposed a technique for detecting 

Bone Abnormalities in the MURA dataset using the Deep CNN 

based on the CADx (Computer Aided Diagnosis) model. The 

dataset of four of the upper extremities from the MURA dataset 

was used. At first, the images were normalized and smoothed 

using Gaussian Blur. Histogram Equalization and Adaptive 

Thresholding followed this process. The architectures used in the 

model are VGG (Visual Geometry Group) and RestNET 

(Residual Network). Both of these architectures were trained on 

the ImageNet dataset [13]. The pre-trained weight of ImageNet 

was collected to apply the transfer learning concept. To compile 

the model in both architectures, an SGD optimizer was used. The 

model was run for 100 epochs with early patience of 10. The area 

under the ROC curve (AUROC) was used to select the base 

model of the two architectures. This process was done for all the 

upper extremity datasets separately. To further increase the 

accuracy, the ensemble technique was applied to the model. 

When the results were compared, the performance of the 

Ensemble model was better than the VGG and RestNET1. The 

performance of the model was also compared to MURA and 3 

other radiologists, where the model had a better result than 

MURA with two other radiologists. But in this paper, only four of 

the upper extremities in the MURA dataset were used. Also, the 

individual accuracy of these four upper extremities was not 

satisfied. 

N.Umadevi and S.N.Geethalakshmi [14] proposed a method was 

created to find bone fractures in X-ray images. It involved 

enhancing the images and then identifying fractures. 

Enhancements reduced noise using techniques like Independent 

Component Analysis (ICA) and wavelets. The fracture 

identification used active contour modeling and a region-growing 

algorithm to pinpoint key areas. To emphasize important details, 

texture and shape features were extracted. Finally, binary 

classifiers like Back Propagation Neural Network (BPNN), K-

Nearest Neighbors (KNN), and Support Vector Machine (SVM) 

were used to detect bone fractures, aiming to improve accuracy. 

Róża Dzierżak et al. [15] proposed a transfer learning technique 

to predict the probability of abnormality in bone using a VGG 19.  

Pranav Rajpurkar et al. proposed a technique to predict the 

probability of abnormality in a study of musculoskeletal 

abnormalities detection using a 169-layer convolutional neural 

network [21]. The architecture used in the model was DenseNet. 

The fully connected final layer was replaced with a single output 

layer. Sigmoid Nonlinearity was applied to the images. To get a 

similar mean and standard deviation in the ImageNet training set, 

normalization was performed in each image of the dataset. The 

images were scaled to a size of 320×320. After that, data 

augmentation was performed using lateral inversions and 

rotations of up to 30 degrees. This was followed by the 

initialization of weights performed by using weights of a pre-

trained model on Imagenet [16]. Adam Optimizer was used for 

the end-to-end training of the model. Then, the five models were 

ensembled having the lowest validation loss. In this paper, the 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 870–878  |  872 

performances of the model in some classes were not good, 

especially in Humerus and Wrist classes.  

3. System Approach and Implementation 

A Deep Convolutional Neural Network was used on the 

benchmark MURA dataset provided by Stanford for the 

classification of different parts of the upper extremities as well as 

to detect bone abnormality in musculoskeletal radiographs [37]. 

The data is preprocessed using suitable image enhancement 

algorithms and then the processed data is used to train the 

Convolutional Neural Network [22] [23]. 

3.1. Proposed Methodology 

Fig. 1 shows the complete working of system architecture. The 

technique of Histogram Equalization is used for preprocessing the 

images. The images were resized to a fixed size of 400×400 [32-

36]. The enhanced images were fed into the neural network 

which is a multiclassifier model. The model classifies the image 

into the seven types of upper extremities as well as predicts 

whether it is normal or abnormal. This classification and 

prediction results in fourteen outcomes. 

3.2. Software and Libraries Used 

The entire algorithm was developed in Jupyter Notebook using 

Python 3. Keras was used as the Neural Network API. The 

Python Image Library (PIL) was used to load the images in the 

dataset. The library cv2 was used for the extraction of the images. 

Techniques like Histogram Equalization and CLAHE were 

applied and the images were resized using the cv2 library. The 

total number of images for testing and training is less, to 

overcome this issue, image Augmentation techniques are used 

[24-26].  

 

Fig. 1. System Architecture 

 

The NumPy library was used to convert all the images into a 

simple NumPy array so that they could be formatted and used for 

data extraction. The dataset also contained a CSV file containing 

information about each image location and also whether the 

image was normal or abnormal. So, to read and use the data, 

Pandas library was used. Its pattern rules follow standard Unix 

path expansion rules. Moreover, it is predicted that it is faster 

than other methods. The Seaborn library was used for the creation 

of the Confusion Matrix and the sklearn library was used to 

calculate various performance metrics such as Precision, Cohen's 

Kappa, and Accuracy metrics. 

3.3. Data Collection 

The MURA dataset was collected by a view board of an 

institution and is made available publicly for research on Bone 

Abnormalities. MURA is a dataset provided by Stanford of 

HIPAA-compliant musculoskeletal radiographs which are de-

identified and consist of 14,863 radiographic studies from 

approximately 12,173 patients that constitute a total of about 

40,005 radiographic images which are multi-view in nature and 

are from the Picture Archive and Communication System (PACS) 

from the Stanford Hospital. Each of the radiographic studies 

belongs to one of the seven types of standard upper extremities: 

the elbow, forearm, humerus, wrist, finger, hand, and shoulder. 

Each radiographic study has been labeled manually as abnormal 

or normal by radiologists board-certified from Stanford Hospital. 

3.4. Data Preprocessing 

Before feeding the data into our neural network, it needs various 

pre-processing techniques. Training and testing datasets were 

combined and the K fold cross-validation technique was applied, 

which selects the different distributions of data samples. The 
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dataset for the humerus and forearm was less as compared to the 

dataset of other types of upper extremities. Hence, the combined 

dataset will result in more images [27-31]. 

 

Table 1 Distribution of MURA Dataset 

Study 
Training Testing 

Total 
Abnormal Normal Abnormal Normal 

ELBOW 2006 2925 230 235 5396 

FINGER 1968 3138 247 214 5567 

HUMERUS 599 673 140 148 1560 

WRIST 3987 5765 295 364 10411 

HAND 1484 4059 189 271 6003 

FOREARM 661 1164 151 150 2126 

SHOULDER 4168 4211 278 285 8942 

TOTAL 14873 21935 1530 1667 40005 

 

Table 1, Shows that to preprocess the dataset, we divided the 

dataset having seven subclasses positive (abnormal) and negative 

(normal). This results in a dataset consisting of fourteen classes 

which will be used for the classification of normal and abnormal 

bone structures along with the different types of upper 

extremities. 

 

Table 2 Distribution of Combined Images 

Study Abnormal Normal 

ELBOW 2236 3160 

FINGER 2215 3352 

FOREARM 812 1314 

HAND 1673 4330 

HUMERUS 739 821 

SHOULDER 4446 4496 

WRIST 4282 6129 

 

Even after combining the training and validation images, the ratio 

of the number of images is not good enough to feed into the 

neural network. Hence, there is a need for Data Augmentation. 

We used Python Image Library also known as PIL for this 

purpose. PIL is used to open, manipulate, and save many 

different image file formats.  PIL was used to read the images of 

the MURA dataset one by one.  Open Source Computer Vision 

Library, also known as OpenCV, was used for feature extraction 

and to improve the quality of the images. Histogram equalization 

(HE) and Contrastive Limited Adaptive Histogram Equalization 

(CLAHE) were used to get a more enhanced image. Fig. 2 shows 

that Histogram Equalization is a technique used for computer 

image processing to give the image an improved contrast. In 

Contrastive Limited Adaptive Histogram Equalization, a 

transformation function is derived from each neighbourhood 

when applying the contrast limiting procedure. CLAHE prevents 

the over-amplification of noise that is risen by the adaptive 

histogram equalization.  The images in our dataset are of 

different sizes. For the neural networks to perform better, we 

need images that are of the same size. Thus, we converted all the 

images into a standard size of 400×400. So the images will not 

lose their quality and the convolutional neural network will 

perform better giving higher accuracy.  

 

 
Fig. 2. Transformation of the image using HE and CLAHE 

 

Table 2 reveals fewer Humerus and forearm images compared to 

other categories, requiring equal class distribution. Data 

Augmentation, demonstrated in Fig.  3, involves generating new 

training data from existing samples. we expanded the dataset by 

flipping and rotating, resulting in 60,803 images with nearly 

equal class representation. Following data augmentation to 

achieve a balanced class distribution, we partition the dataset into 

an 80:20 split, with 80% designated for training and 20% for 

testing. The 20% allocation for testing comprises images that 

have not been previously seen by our model, ensuring an 

unbiased evaluation. Table 3 shows the number of images in each 

class after dividing them into training and validation datasets. 

Altogether 48649 images were used for training the model and 

12154 images were the ones that the model had never seen and 

hence were used for testing. 

 

 
Fig. 3. Augmentation of data (a) Original image, (b) Flipped image, (c) 

Rotated image 

3.5. Network Architecture and Design 

Deep Learning outshines traditional Machine Learning as it 

automates feature extraction from images, eliminating manual 

effort. During training, it independently identifies and combines 

features, expediting the learning process. Our research on Deep 

CNN architectures led to a superior model for classifying upper 

extremity segments and predicting bone abnormalities. 

 

Table 3 Distribution of Dataset Used 

STUDY TRAINING TESTING 

ELBOW NEGATIVE 3700 925 

ELBOW POSITIVE 3445 861 

FINGER NEGATIVE 3471 867 

FINGER POSITIVE 3015 753 

FOREARM NEGATIVE 3732 932 

FOREARM POSITIVE 3328 832 

HAND NEGATIVE 4047 1011 

HAND POSITIVE 2788 696 

HUMERUS NEGATIVE 3339 834 

HUMERUS POSITIVE 3279 819 

SHOULDER NEGATIVE 3368 841 

SHOULDER POSITIVE 3335 833 

WRIST NEGATIVE 4612 1153 

WRIST POSITIVE 3190 797 

TOTAL 48649 12154 

 

Fig.  4 Shows, In our proposed model, we are using 5SET (5S), 

which starts with a convolutional layer as they are the main 

building blocks of a neural network and are used for feature 

extraction from the image. Each convolutional layer is followed 

by an activation function which has the purpose of introducing 

non-linearity into the output of each neuron. The Activation 

Function which we have used is Rectified Linear Unit (ReLU). 

The following equation depicts the working of the ReLU 

Activation Function. 
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Fig. 4. 5 S  Model Architecture 

 𝒇(𝒙) = 𝐦𝐚𝐱⁡(𝟎, 𝒙)               (1) 

Then comes the batch normalization layer which is responsible 

for improving a neural network's speed, performance, and 

stability. It normalizes the input by adjusting and scaling the 

output of the activation layer. This is followed by a max pooling 

layer represented in (Eq. (1)). A pooling layer is one more 

building block of the convolutional neural network which 

progressively minimizes or maximizes the spatial size of the 

representation and thereby reduces the computation and the 

number of parameters used. It operates on each of the feature 

maps independently. 

When feature extraction is done, max pooling is the most 

preferred type of pooling. This layer is followed by a dropout 

layer which is used to prevent the model from overfitting as it 

randomly selects neurons according to a set percentage and does 

not consider the output of those neurons or considers them as 0. 

After this layer, we have a fully connected layer (FC) which 

converts the entire matrix into a single 1D vector as it is followed 

by 2 dense layers which require input in a 1D vector.  The 

purpose of the dense layer is to feed all the outputs from the 

previous layer into its neurons and every single neuron provides 

output to the next layer. The first Dense Layer is followed by an 

Activation function, Rectified Linear Unit (ReLU). 

The second dense layer provides the final output to classify the 

image into one of the fourteen classes and is followed by an 

Activation Function, Softmax. The following equation (Eq. (2)) 

depicts the working of the Softmax Activation Function. 

𝝈(𝒛)𝒊 =
𝒆𝒛𝒊

∑ 𝒆𝒛𝒊𝑲
𝒋=𝟏

𝒇𝒐𝒓⁡𝒊 = 𝟏, . . , 𝑲⁡𝒂𝒏𝒅⁡𝒛 = (𝒛𝟏, … , 𝒛𝑲)𝝐𝑹
𝑲       (2) 

We compiled the model using the loss function as categorical 

cross-entropy and three optimizers with different learning rates 

were used to get the best accuracy. The first optimizer used was 

Adam Optimizer, which is an adaptive learning rate method, that 

computes learning rates for all the parameters individually. After 

that, the Adagrad optimizer was used, which is a gradient-based 

optimizer that adapts the learning rate to the parameters, 

performing larger updates for parameters associated with features 

that are not frequent and smaller updates for parameters that have 

features occurring frequently. At last, Adadelta optimizers were 

used, which is an extension of Adagrad and reduce its aggressive, 

monotonically decreasing learning rate to achieve more accuracy. 

Our model has 143,036,302 parameters, out of which 

143,033,422 are trainable parameters, and 2880 are non-trainable 

parameters. 

3.6. Algorithm 

Our Algorithm is divided into three major phases. In the first 

phase of our algorithm, the preprocessing of data is done. After 

that, we move to the second phase of our model, which is model 

creation, and finally, we move to the third and last phase of our 

algorithm, which is the training and testing of the model. 

Phase 1: Preprocessing 

Step 1: Separate the MURA dataset into 7 folders with 2 

subfolders each  (Assume data is organized as needed)  

Step 2: Augment data to maintain a common data distribution 

across each class 

Step 3: Data Preprocessing and Transformation 

For each image in the dataset: 

Load image using imread function 

Convert image from RGB to Gray 

Apply Histogram Equalization 

Apply CLAHE to the image 

Save the preprocessed image to a folder 

Step 4: Change directory structure into 14 folders for Keras 

Image Data Generator 

After following these steps, the first phase of our algorithm was 

completed successfully and we moved on to the second phase of 

our algorithm, where we imported the libraries, defined the 

Convolutional Neural Network, and selected the appropriate loss 

function.  

Phase 2: Model Creation 

Step 5: Import necessary libraries and layers 

Step 6: Initialize the model 

model = Sequential() 

model.add(Conv2D(32,(3, 3), input_shape=(400, 400, 1))) 

model.add(ReLU()) 

model.add(BatchNormalization()) 

model.add(MaxPooling2D()) 

model.add(Dropout(0.25)) 

 

model.add(Conv2D(64, (3, 3))) 

model.add(ReLU()) 

model.add(BatchNormalization()) 

model.add(Conv2D(64, (3, 3))) 

model.add(ReLU()) 

model.add(BatchNormalization()) 

model.add(MaxPooling2D()) 

model.add(Dropout(0.25)) 

 

model.add(Conv2D(128, (3, 3))) 

model.add(ReLU()) 

model.add(BatchNormalization()) 

model.add(Conv2D(128, (3, 3))) 

model.add(ReLU()) 

model.add(BatchNormalization()) 

model.add(MaxPooling2D()) 

model.add(Dropout(0.25)) 

model.add(Flatten()) 

model.add(Dense(1024)) 

model.add(ReLU()) 

model.add(BatchNormalization()) 
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model.add(Dropout(0.5)) 

model.add(Dense(14, activation='softmax')) 

Step 7: Compile the model 

model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

When model creation was successfully done, we moved on to our 

final phase where we split the data into training and testing, 

trained the model on the training images, and tested the model on 

the testing images. 

Phase 3: Training and Testing 

Step 8: Using keras Image Data Generator for Splitting 60803 

images into 48649 for training and 12154 for Validation 

Step 9: Training the model with Adam as first Optimizer 

Step 10: After reaching peak accuracy with Adam, optimizer is 

changed to Adagrad 

Step 11: when reached the peak accuracy with Adagrad, 

Optimizer is again changed to Adadelta  

Step 12: Save the model and Load for Testing 

Step 13: Testing the model with 12154 Validation Images and 

getting the result 

4. System Analysis and Performance  

The existing optimizer architecture uses upto 4 upper extremities, 

used for the classification of upper extremities as well as for the 

prediction of bone abnormality but the accuracy were not 

satisfactory. The proposed 5s model was most suitable and 

produces higher accuracy. We used different optimizers such as 

Adam, Adagrad, and Adadelta, which aided in increasing the 

accuracy of the model. For the enhancement of radiograph 

images, we used Histogram Equalization but it was not enough 

because the features required for extraction and learning were not 

completely visible to our model thereby decreasing its accuracy. 

So, we needed to enhance the image more which is why we used 

CLAHE along with Histogram Equalization which enhanced the 

images to an extent that the features required for extraction were 

fairly visible to the model and it was able to extract and learn 

more features correctly. The enhanced images made it easier for 

the model to learn and predict accurately. For the training of our 

model, 48649 images were used and 12154 images were used for 

testing. The model classified these images into the seven classes 

of upper extremities and predicted their abnormality as well. As a 

result of this, together fourteen types of outcomes were predicted, 

which were the normality and abnormality of each class. We got 

much better accuracy for each of the outcomes. 

4.1. Analysis of Algorithm 

To increase the performance of our model, we have used three 

optimizers. At first, we used Adam Optimizer. It resulted in a 

training accuracy of 22% and a validation accuracy of 23%. Fig.  

5 shows the accuracy and loss of the Adam Optimizer. 

 

Fig. 5. (a) Accuracy of Adam Optimizer (b) Loss of Adam Optimizer 

After that, we used Adagrad Optimizer. It resulted in a training 

accuracy of 68% and validation accuracy of 70%. Fig.  6 shows 

the accuracy and loss of the Adagrad Optimizer. 

 

Fig. 6. (a) Accuracy of Adagrad Optimizer (b) Loss of Adagrad 

Optimizer 

After that, we used Adadelta Optimizer. Table 4 shows the result 

of training accuracy of 92% and a validation accuracy of 92.10%. 

Fig. 7 shows the accuracy and loss of the Adadelta Optimizer. 

 

Fig. 7. (a) Accuracy of Adadelta Optimizer (b) Loss of Adadelta 

Optimizer 

Table 4 Accuracy of the Model 

OPTIMIZER 
ACCURACY 

TRAINING VALIDATION 

ADAM 22% 23% 

ADAGRAD 68% 70% 

ADADELTA 92% 92.10% 

 

The proposed model classified the images into seven classes of 

upper extremities and further predicted them for abnormality. For 

each category, the result is evaluated using a confusion matrix. A 

confusion matrix is formed for the actual condition and the 

predicted condition, which consists of parameters like TP, FN, 

FP, and TN for the assessment, where TP means True Positive 

(Identified Correctly), TN means True Negative (Identified 

Incorrectly), FP means False Positive (Rejected Correctly), FN 

means False Negative (Rejected Incorrectly). We use these 

parameters to derive the required results from the output received 

from the model. These results will later help in deriving the 

performance of our designed model. The evaluation according to 

these parameters (TP, TN, FP, FN) helps us to get significant 

results.  

These metrics are referred from the data mining algorithms and 

includes various evaluation metrics used to assess the 

performance. The evaluation metrics include Accuracy (Eq. (3)), 

Precision (Eq. (4)), Sensitivity (Eq. (5)), Specificity (Spec) (Eq. 

(6)), MissRate (Eq. (7)), Fallout (Eq. (8)), Cohen’s Kappa Score 

(Eq. (9)), F1-score (Eq. (10)). 

 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 = ⁡
𝑻𝑷 + 𝑻𝑵

𝑻𝑷 + 𝑭𝑷 + 𝑻𝑵+ 𝑭𝑵
 

(3) 
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𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑷
 

(4) 

⁡𝑺𝒆𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
⁄  

(5) 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄𝒊𝒕𝒚 =
𝑻𝑵

𝑭𝑷 + 𝑻𝑵
 

(6) 

𝑴𝒊𝒔𝒔𝑹𝒂𝒕𝒆 = 𝟏 −
𝑻𝑷

𝑻𝑷 + 𝑭𝑵
 

(7) 

𝑭𝒂𝒍𝒍𝒐𝒖𝒕 = 𝟏 −
𝑻𝑵

𝑭𝑷 + 𝑻𝑵
 

(8) 

𝑪𝒐𝒉𝒆𝒏′𝒔⁡𝑲𝒂𝒑𝒑𝒂 =
𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 − 𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅

𝟏 − 𝑬𝒙𝒑𝒆𝒄𝒕𝒆𝒅
 

(9) 

𝑭𝟏𝑺𝒄𝒐𝒓𝒆 = 𝟐 ∗
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

(10) 

The result of each category of upper extremity has been described 

below. 

1) ELBOW: Table 5 shows the Confusion Matrix for the Elbow 

class. 

For the Elbow class, the Precision for Normal is 87% and for 

Abnormal, it is 96%. We also calculated the Recall and F1 Score 

which are 97% and 92% for the Normal Elbow, and 93% and 

94% for the Abnormal Elbow. The Miss Rate for Normal is 3.4% 

and for Abnormal, it is 6.7%. 

Table 5 Confusion Matrix Parameters of ELBOW 

CLASSIFICATION TP TN FP FN 

NORMAL 893 11099 130 32 

ABNORMAL 803 11256 37 58 

Table 6 Confusion Matrix Parameters of Finger 

CLASSIFICATION TP TN FP FN 

NORMAL 832 11182 105 35 

ABNORMAL 668 11377 24 85 

 

2) FINGER: Table 6 shows the Confusion Matrix for the Finger 

class. 

For the Finger class, the Precision for Normal is 89% and for 

Abnormal, it is 97%. We also calculated the Recall and F1 Score 

which is 96% and 92% for the Normal Finger, and 89% and 92% 

for the Abnormal Finger. The Miss Rate for Normal is 4% and 

for Abnormal, it is 11.2%. 

3) FOREARM: Table 7 shows the Confusion Matrix for the 

Forearm class. 

Table 7 Confusion Matrix Parameters of Forearm 

CLASSIFICATION TP TN FP FN 

NORMAL 848 11159 63 84 

ABNORMAL 729 11282 40 103 

 

For the Forearm class, the Precision for Normal is 93%, and for 

Abnormal, it is 95%. We also calculated the Recall and F1 Score, 

which are 91% and 92% for the Normal Forearm and 88% and 

91% for the Abnormal Forearm. The Miss Rate for Normal is 9% 

and for Abnormal, it is 12.4%. 

4) HAND: Table 8 shows the Confusion Matrix for the Hand 

class. 

Table 8 Confusion Matrix Parameters of HAND 

CLASSIFICATION TP TN FP FN 

NORMAL 946 11049 94 65 

ABNORMAL 619 11412 46 77 

 

 

For the Hand class, the Precision for Normal is 91% and for 

Abnormal, it is 93%. We also calculated the Recall and F1 Score 

which are 94% and 92% for the Normal Hand, and 89% and 91% 

for the Abnormal Hand. The Miss Rate for Normal is 6.4% and 

for Abnormal, it is 11%. 

5) HUMERUS: Table 9 shows the Confusion Matrix for the 

Humerus class. 

For the Humerus class, the Precision for Normal is 92% and for 

Abnormal, it is 94%. We also calculated the Recall and F1 Score 

which is 93% and 93% for the Normal Humerus, and 89% and 

91% for Abnormal Humerus. The Miss Rate for Normal is 6.8% 

and for Abnormal, it is 11.2%. 

Table 9 Confusion Matrix Parameters of HUMERUS 

CLASSIFICATION TP TN FP FN 

NORMAL 777 11256 64 57 

ABNORMAL 727 11286 49 92 

 

6) SHOULDER: Table 10 shows the Confusion Matrix for 

Shoulder class. 

Table 10 Confusion Matrix Parameters of SHOULDER 

CLASSIFICATION TP TN FP FN 

NORMAL 800 11242 71 41 

ABNORMAL 765 11283 38 68 

 

For the Shoulder class, the Precision for Normal is 92% and for 

Abnormal, it is 95%. We also calculated the Recall and F1 Score 

which are 95% and 93% for the Normal Shoulder, and 92% and 

94% for the Abnormal Shoulder. The Miss Rate for Normal is 

4.9% and for Abnormal, it is 8.1%. 

7) WRIST: Table 11 shows the Confusion Matrix for the  Wrist 

class. 

Table 11 Confusion Matrix Parameters of WRIST 

CLASSIFICATION TP TN FP FN 

NORMAL 1087 10867 134 66 

ABNORMAL 708 11300 57 89 

 

For the Wrist class, the Precision for Normal is 89%, and for 

Abnormal, it is 93%. We also calculated the Recall and F1 Score 

of 94% and 92% for the Normal Wrist, and 89% and 91% for the 

Abnormal Wrist. The Miss Rate for Normal is 5.7% and for 

Abnormal, it is 11.1%. 

As our model is a multi-classifier, we cannot get accuracy and 

Cohen's Kappa Score for every class separately. The overall 

Accuracy and Loss of the model are depicted in Fig.  8. So, the 

overall accuracy of our model is 92.10% and the overall Cohen’s 

Kappa score is 91.5%. 

4.2. Comparison of Results 

Musculoskeletal abnormalities are very important to detect in the 

early stages as they can affect the ligaments, tendons, bones, 

muscles, discs, blood vessels, nerves, and various other parts of 

the body. Tusher, Hasib, and Hashem published a deep CNN 

based model for the detection of Bone Abnormality in the MURA 

dataset. They used only four of the seven upper extremities for 

their experiment which were Elbow, Finger, Humerus, and Wrist.  
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Fig. 8. (a) Accuracy of the Model (b) Loss of the Model 

 

Table 12 Comparison of the Proposed Model and Existing Model 

Upper Proposed Model Existing Model 

Extremity Miss  Rate F1 Score Miss  Rate F1 Score 

ELBOW 5% 93% 18% 85% 

FINGER 7.60% 92% 8% 83% 

HUMERUS 9% 92% 13% 87% 

WRIST 8.40% 91.50% 7% 89% 

 

Table 12 shows the comparison of the proposed and existing 

models. The accuracy they got for these classes was 86.45%, 

82.13%, 87.15%, and 87.86%. The overall accuracy of our model 

is 92.10%. In our model, the precision for Elbow is 91.5%, for 

the Finger is 93%, for Humerus is 93%, and for the Wrist is 91%. 

Their paper used VGG-19 and ResNet neural networks for their 

model. The Miss Rate of the four classes, Elbow, Finger, 

Humerus, and Wrist, which they studied are 18%, 8%, 13%, and 

7%. The Miss Rate calculated in our model was 5% for Elbow, 

7.6% for Finger, 9% for Humerus, and 8.4% for Wrist. As we can 

see, for Elbow, Finger, and Humerus, the Miss Rate of our model 

is less than the compared model, but for Wrist classes, the Miss 

Rate of our model is slightly higher than the above model. 

F1 score helps us to get a balance between Precision and Recall. 

In the previous model, the F1 Score was 85% for the Elbow class, 

83% for the Finger class, 87% for the Humerus class, and 89% 

for the Wrist class. Compared to our model, the F1 Score for 

Elbow, Finger, Humerus, and Wrist is 93%, 92%, 92%, and 

91.5%, higher than the previous model. Cohen's Kappa Score in 

the prior model was 71.1%, whereas, for our model, it is 91.5%, 

which is much higher than the previous model. 

5. Conclusion 

Computer-aided detection in medical imaging is vital for 

reducing radiologists’ workload and minimizing error rates in 

patient reports. Based on Deep CNN, the model enhances 

prediction accuracy by self-learning from radiological images in 

the MURA dataset, covering seven upper extremities. Through 

preprocessing techniques and well-designed architecture, the 

model achieves an impressive 92.10% accuracy overall, with a 

remarkable 94% precision precisely for extremities and a Cohen's 

Kappa score of 91.5%. This research paper advocates the 

adoption of deep learning algorithms in medical imaging to 

streamline radiologists' work and enable quicker, more precise 

therapeutic decisions, benefiting patient care significantly. The 

success of this model underscores the potential for artificial 

intelligence to revolutionize medical diagnosis and treatment, 

ultimately improving patient outcomes and healthcare efficiency. 

 

 

Declaration of Competing Interest  

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

References 

[1] Global, regional, and national incidence, prevalence, and years lived 

with disability for 328 diseases and injuries for 195 countries, 1990–2016, 

2017. A systematic analysis for the global burden of disease Study 

2016. Lancet, 390(10100), pp.1211-1259. https://doi.org/10.1016/S0140-

6736(17)32154-2. 

[2] AJR Am J Roentgenol Kim YW, Mansfield LT. Fool me twice: delayed 

diagnoses in radiology with emphasis on perpetuated errors.  Pages 465–70, 

2014. DOI: 10.2214/AJR.13.11493 

[3] Berlin, L., 2014. Radiologic errors, past, present and 

future. Diagnosis, 1(1), pp.79-84. https://doi.org/10.1515/dx-2013-0012 

[4] Abujudeh HH. Bruno MA, Walker EA. Understanding and confronting 

our mistakes: The epidemiology of error in radiology and strategies for error 

reduction. page 1668–1676. RSNA, 2015. 

https://doi.org/10.1148/rg.2015150023.  

[5] Hani H. Abujudeh, Giles W. Boland, Rathachai Kaewlai, and G. Scott 

Gazelle James H. Thrall Pavel Rabiner, Elkarn F. Halpern. Abdominal and 

pelvic computed tomography (ct) interpretation: discrepancy rates among 

experienced radiologists. pages 1952–7. Springer, 2008.   

[6] Worthington M Rennie I McKinstry CS. Briggs GM, Flynn PA. The role 

of specialist neuroradiology second opinion reporting: is there added value 

page 791–795. Europe PMC, 2008.  

[7] Shoji Kido, Yasusi Hirano and Noriaki Hashimoto, “Detection and 

Classification of Lung Abnormalities by Use of Convolutional Neural 

Network (CNN) and Regions with CNN Features (R-CNN)” IEEE 2018. 

[8] Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., Yang, 

B., Zhu, K., Laird, D., Ball, R.L. and Langlotz, C., 2017. Mura: Large 

dataset for abnormality detection in musculoskeletal radiographs. arXiv 

preprint arXiv:1712.06957. https://doi.org/10.48550/arXiv.1712.06957 

[9] Mennatallah M.Abdel, Sara H.Awwad, Farah H.Ahmed, Amira 

G.Wasfi, Taraggy M.Ghanim, Ayman M.Nabil, “Survey: Automatic 

Recognition of Musculoskeletal Disorders from Radiographs” IEEE 2018.  

[10]  Azian Azamimi Abdullah, Atieqah Yaakob, and Zunaidi Ibrahim, 

“Pre- diction of Spinal Abnormalities using Machine Learning Techniques” 

IEEE 2018. 

[11] George, J., Subin, T.K. and Rajeev, K., 2008, November. Detection of 

temporal bone abnormalities using hybrid wavelet Support Vector Machine 

classification. In TENCON 2008-2008 IEEE Region 10 Conference (pp. 1-

6). IEEE. DOI: 10.1109/TENCON.2008.4766549 

[12] Tusher Chandra Mondol, Hasib Iqbal and MMA Hashem, “Deep CNN- 

Based Ensemble CADx Model for Musculoskeletal Abnormality Detection 

from Radiographs” 5th International Conference on Advances in Electrical 

Engineering (ICAEE). IEEE 2019.  

[13] Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012. Imagenet 

classification with deep convolutional neural networks. Advances in neural 

information processing systems, 25. DOI: 10.1145/3065386 

[14] N. Umadevi, S.N. Geethalakshmi, “Multiple classification system for 

fracture detection in human bone x-ray images.” In 2012 Third Inter- 

national Conference on Computing, Communication and Networking 

Technologies (ICCCNT’12). IEEE, 2012.  

[15] Dzierżak, R. and Omiotek, Z., 2022. Application of deep convolutional 

neural networks in the diagnosis of osteoporosis. Sensors, 22(21), p.8189. 

https://doi.org/10.3390/s22218189 

[16] Deng, J., Dong, W., Socher, R., Li, L.J., Li, K. and Fei-Fei, L., 2009, 

June. Imagenet: A large-scale hierarchical image database. In 2009 IEEE 

conference on computer vision and pattern recognition (pp. 248-255). IEEE.  

https://doi.org/10.1016/S0140-6736(17)32154-2
https://doi.org/10.1016/S0140-6736(17)32154-2
https://doi.org/10.2214/ajr.13.11493
https://doi.org/10.1515/dx-2013-0012
https://doi.org/10.1148/rg.2015150023
https://doi.org/10.1109/TENCON.2008.4766549


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 870–878  |  878 

[17] Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., 

Mollura, D. and Summers, R.M., 2016. Deep convolutional neural networks 

for computer-aided detection: CNN architectures, dataset characteristics and 

transfer learning. IEEE transactions on medical imaging, 35(5), pp.1285-

1298.  

[18] LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 

521, 436-444. http://dx.doi.org/10.1038/nature14539 

[19] Salamon, J. and Bello, J.P., 2017. Deep convolutional neural networks 

and data augmentation for environmental sound classification. IEEE Signal 

Processing Letters, 24(3), pp.279-283. https://doi.org/10.3390/s23156972 

[20] Zhang, B., Yu, K., Ning, Z., Wang, K., Dong, Y., Liu, X., Liu, S., 

Wang, J., Zhu, C., Yu, Q. and Duan, Y., 2020. Deep learning of lumbar 

spine X-ray for osteopenia and osteoporosis screening: A multicenter 

retrospective cohort study. Bone, 140, p.115561. 

[21] Chen, J., Kang, X., Liu, Y. and Wang, Z.J., 2015. Median filtering 

forensics based on convolutional neural networks. IEEE Signal Processing 

Letters, 22(11), pp.1849-1853.  

[22] Li, Z., Tian, Q., Ngamsombat, C., Cartmell, S., Conklin, J., Filho, 

A.L.M.G., Lo, W.C., Wang, G., Ying, K., Setsompop, K. and Fan, Q., 2022. 

High‐fidelity fast volumetric brain MRI using synergistic wave‐controlled 

aliasing in parallel imaging and a hybrid denoising generative adversarial 

network (HDnGAN). Medical Physics, 49(2), pp.1000-1014. DOI: 

10.1002/mp.15427 

[23] Smith, L.N., 2017, March. Cyclical learning rates for training neural 

networks. In 2017 IEEE Winter Conference on Applications of Computer 

Vision (WACV) (pp. 464-472). IEEE. 

https://doi.org/10.48550/arXiv.1506.01186 

[24] Huang, G., Liu, S., Van der Maaten, L. and Weinberger, K.Q., 2018. 

Condensenet: An efficient densenet using learned group convolutions. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern 

Recognition (pp. 2752-2761).  https://doi.org/10.48550/arXiv.1711.09224 

[25] Mall, P.K., Singh, P.K., Srivastav, S., Narayan, V., Paprzycki, M., 

Jaworska, T. and Ganzha, M., 2023. A comprehensive review of deep 

neural networks for medical image processing: Recent developments and 

future opportunities. Healthcare Analytics, p.100216. 

https://doi.org/10.1016/j.health.2023.100216 

[26] Ilesanmi, A.E., Ilesanmi, T. and Gbotoso, A.G., 2023. A systematic 

review of retinal fundus image segmentation and classification methods 

using convolutional neural networks. Healthcare Analytics, p.100261. 

https://doi.org/10.1016/j.health.2023.100261 

[27] Breit, H.C., Varga-Szemes, A., Schoepf, U.J., Emrich, T., Aldinger, J., 

Kressig, R.W., Beerli, N., Buser, T.A., Breil, D., Derani, I. and 

Bridenbaugh, S., 2023. CNN-based evaluation of bone density improves 

diagnostic performance to detect osteopenia and osteoporosis in patients 

with non-contrast chest CT examinations. European Journal of 

Radiology, 161, p.110728. 

[28] Eckardt, J.N., Middeke, J.M., Riechert, S., Schmittmann, T., Sulaiman, 

A.S., Kramer, M., Sockel, K., Kroschinsky, F., Schuler, U., Schetelig, J. and 

Röllig, C., 2022. Deep learning detects acute myeloid leukemia and predicts 

NPM1 mutation status from bone marrow smears. Leukemia, 36(1), pp.111-

118.  

[29] Lee, S.J. and Pickhardt, P.J., 2017. Opportunistic screening for 

osteoporosis using body CT scans obtained for other indications: the UW 

experience. Clinical Reviews in Bone and Mineral Metabolism, 15, pp.128-

137. 

[30] Lorentzon, M., Johansson, H., Harvey, N.C., Liu, E., Vandenput, L., 

McCloskey, E.V. and Kanis, J.A., 2022. Osteoporosis and fractures in 

women: the burden of disease. Climacteric, 25(1), pp.4-10. 

[31] Zhen, L., Zhang, Y., Yu, K., Kumar, N., Barnawi, A. and Xie, Y., 

2021. Early collision detection for massive random access in satellite-based 

internet of things. IEEE Transactions on Vehicular Technology, 70(5), 

pp.5184-5189. 

[32] Ding, F., Zhu, G., Li, Y., Zhang, X., Atrey, P.K. and Lyu, S., 2021. 

Anti-forensics for face swapping videos via adversarial training. IEEE 

Transactions on Multimedia, 24, pp.3429-3441. 

[33] Han, S., Oh, J.S. and Lee, J.J., 2022. Diagnostic performance of deep 

learning models for detecting bone metastasis on whole-body bone scan in 

prostate cancer. European Journal of Nuclear Medicine and Molecular 

Imaging, pp.1-11. 

[34] Tan, L., Yu, K., Shi, N., Yang, C., Wei, W. and Lu, H., 2021. Towards 

secure and privacy-preserving data sharing for COVID-19 medical records: 

A blockchain-empowered approach. IEEE Transactions on Network Science 

and Engineering, 9(1), pp.271-281. 

[35] Grauhan, N.F., Niehues, S.M., Gaudin, R.A., Keller, S., Vahldiek, J.L., 

Adams, L.C. and Bressem, K.K., 2021. Deep learning for accurately 

recognizing common causes of shoulder pain on radiographs. Skeletal 

Radiology, pp.1-8. 

[36] Ren, M. and Yi, P.H., 2022. Deep learning detection of subtle fractures 

using staged algorithms to mimic radiologist search pattern. Skeletal 

Radiology, pp.1-9. 

[37] S. Rani B, G. B, S. G Shivaprasad Yadav, G. Shivakanth and M. B M, 

"Deep Learning Based Cancer Detection in Bone Marrow using 

Histopathological Images," 2023 IEEE International Conference on 

Integrated Circuits and Communication Systems (ICICACS), Raichur, 

India, 2023, pp. 1-8, doi: 10.1109/ICICACS57338.2023.10100116. 

[38] Dimlo, UM Fernandes, R. Umanesan, Jonnadula Narasimharao, N. 

Senthamilarasi, P. S. Ranjit, B. Balaji, I. Thamarai, and Vijay Kumar 

Dwivedi. "Optimal Configuration Planning of Multi-Energy Systems using 

Optimization-based Deep Learning Technique." Electric Power 

Components and Systems (2023): 1-16. 

[39] A. Sathishkumar, S. Majji, T. Radhika Patnala, S. Rao Karanam, A. 

Kumar and M. Malyadri, "Experimentation Methodology of Orthogonal 

Frequency Division Multiplexing Signals Process using Radio over Fiber 

(RoF) system," 2022 International Virtual Conference on Power 

Engineering Computing and Control: Developments in Electric Vehicles 

and Energy Sector for Sustainable Future (PECCON), Chennai, India, 2022, 

pp. 01-05, doi: 10.1109/PECCON55017.2022.9850996. 

 

https://doi.org/10.3390/s23156972
https://doi.org/10.48550/arXiv.1711.09224
https://doi.org/10.1016/j.health.2023.100216
https://doi.org/10.1016/j.health.2023.100261

