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Abstract: A glioma is a primary brain tumor that develops within the brain's tissue. It originates from glial cells and keeps neuron in a 

specific place for normal brain function. Glioma affects all age people, mostly men than women. However, manually segmenting gliomas 

is a laborious and error-prone task. Recently, researchers working on imaging techniques along with recent deep neural networks (DNN) 

to segment tumor from the brain tissue. DNN generates features from images without feature engineering procedure. It is a popular 

technique, especially in medical imaging fields like precise segmentation, image classification and etc. By implementing early treatment 

strategies, it is possible to improve survival rates and reduce computational time. The main problems with automatic DNN models are 

bias toward a specific class, imbalanced data, local and global contexts, large training parameters, and accuracy. This research paper 

analyzes 2D multi-modal magnetic resonance imaging (MRI) image sequences to differentiate between tumor regions and normal brain 

regions. These models consist of two U-Net topologies for glioma tumor segmentation. The first U-Net incorporates an innovative 

inception structure design, which leads to exceptional segmentation performance for the whole tumor (WT). The inception structure 

gathers multi-scale feature maps from various kernels and concatenation layer. On the other hand, the second U-Net tackles degradation 

problems and reduces training errors, making optimization less complex compared to conventional DNNs. The two-path residual 

network captures crucial information. In terms of performance and accuracy, the proposed models surpass state-of-the-art models. The 

high-performance models give great contribution to researchers and physicians for computer vision applications. 
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1. Introduction 

Glioma, composed of star-shaped astrocyte cells, is a highly 

dangerous brain tumor with a survival rate ranging from a few 

months to 15 years. Gliomas are categorized into four classes (I–

IV) depending on their malignancy by the World Health 

Organization [1]. Grade II and III gliomas form low-grade 

gliomas (LGG), whereas grade IV gliomas denote high-grade 

gliomas (HGG). The most perilous form of primary glioma is 

glioblastoma, which is grade IV gliomas [2]. Surgery can be used 

to treat grade I gliomas, which proliferate slowly [3]. In contrast, 

glioblastoma has a mean survival rate of just 15 months, making 

it the deadliest grade of glioma. Standard treatments for brain 

tumor diseases include chemotherapy, radiation therapy, and 

surgery. Medical experts consider factors such as tumor location, 

patient age, health status, and tumor sub-region mass to provide 

suitable treatment plans. The entire tumor is unable to be 

eliminated due to the deep penetration of the tumor and the 

intricate anatomy of the brain. The most commonly used 

diagnostic technique regarding brain scans is magnetic resonance 

imaging (MRI), which offers more accurate soft tissue and organ 

images than computed tomography (CT). By generating excellent 

3D images, the MRI technique offers a non-invasive way to 

diagnose brain problems. However, it is common for MR images 

to contain artifacts and noise caused by various imaging protocols 

and tools. Therefore, removing these non-brain images enhances 

the overall accuracy and effectiveness of the diagnosis.  

A DNN is crucial in the healthcare industry, as it enables medical 

professionals to provide advanced care with their support [4–6]. 

Modern computer-aided diagnostics suppresses errors and 

produces better results. The deep convolutional neural network 

(DCNN) successfully generates high sensitivity and specificity 

scores from the chest X-ray dataset [7]. Compared to U-Net [8], 

the notable design SDU-Net (stacked dilated convolution U-Net) 

offers a larger receptive area and a larger number of stages which 

results superior classification outcomes [9]. The intelligent 

medical image architecture detects mass, shape, and localization 

abnormalities [10]. Remote-sensing achieves data segmentation 

through ResUNet, which leverages various dice loss 

configurations using the ISPRS Potsdam dataset. The ResUNet 

model's residual block enhances performance by concatenating 

multiple atrous convolutions [11]. Furthermore, the SegNet 

architecture demonstrates improved semantic segmentation 

performance in both indoor and outdoor scenes [12]. The RDM-

Net achieved excellent segmentation in the brain tumor 

challenge. Deep residual dilate network utilizes a residual-dilated 

block to improve the performance [13]. The dual U-Net 
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architecture combines elements from two distinct U-Net 

frameworks. The first U-Net collects context data using the pre-

trained VGG-19 encoder architecture and atrous spatial pyramid 

pooling (ASPP). The 2015 MICCAI sub-challenge evaluates the 

ability to identify polyps, skin lesions, and nuclei [14]. 

Meanwhile, six tissues of the optic nerve head are separated using 

a dilated residual U-Net (DRUNET). The identity layer 1x1 of the 

residual block reduces the dimensionality. Additionally, various 

dilation rates are employed to transfer attributes from the encoder 

to the decoder structure and take advantage of contextual 

information [15]. 

Pre-processing techniques eliminate unwanted noise caused by 

magnetic fields. The N4ITK bias-correction method adjusts the 

image variance of each MRI sequence [34] [16, 17]. Some 

methodologies excluded zero-pixel-dominated slices to achieve 

optimal performance [18]. The top and bottom anomalies, which 

develop 1% of the data, are eliminated by the CNN model to 

improve the segmentation outcome. Data augmentation 

techniques achieved superior results [19]. The 3D-Fully CNN 

approach employs a conditional random field (CRF) with 

connected component assessment (CCA) to improve the 

segmentation results. A segmentation network's false positive 

score is decreased effectively by the CRF-CCA subsequent step. 

Additional threshold methods improve the hard-examples 

performance [20]. A completely interconnected CRF approach is 

used for intrinsic segmentation, showing encouraging results 

[21]. Lastly, the CNN architecture incorporates a volumetric 

constraint to eliminate error clusters. 

2. Literature review 

A bottom residual net along with a deep V-Net create the DSSE-

V-Net. The squeeze and excite blocks generate the best suitable 

activation map using various parameters. The DSSE-V-Net 

reduces overfitting and converges faster using a deep supervision 

area [22]. The prediction stage extracts 192 clipped inputs from 

the brain image. With multi-class dice loss functions, the reliable 

CNN technique has reduced patching dimensions [23]. The 

context accumulation path of the CNN-adopted U-Net acquired 

an input abstraction, while the localization route stored the key 

features. The decoder’s conjunction stages eliminate certain map 

functions. There are 128×128×128 patches in the training phase. 

The training performance improves as the batch size increases. 

For each MRI sequence, the SegNet model was created [24]. 

Based on the best probability of the class, the SegNet networks 

generate four characteristic maps, and each of them is classified 

as edema (ED), enhancing tumor (ET), necrosis or non-enhancing 

tumor (NCR/NET), or backdrop. The inclusion of a decision tree 

classification in the SegNet network improves quality. The shrink 

image removes a portion of the backdrop elements.  

The ED, ET, and NCR/NET components comprise the two-path 

hierarchy design. The top pathway extracts WT, and the bottom 

pathway classifies four classes using multi-class classifiers. The 

38×38×38 patch successfully fixes the class unbalance problem, 

and densely connected blocks boost performance even more [25]. 

The most recent models evaluate the Brain Tumor Segmentation 

Challenge (BraTS) 2017 dataset [26][35]. However, the existing 

literature had some flaws. The CNN-based U-Net model gives 

poor results due to its smaller batch size; the DSSE-V-Net model 

does not perform well due to its narrow receptive field; and the 

SegNet model struggles because it discards 1% of the greatest 

and lowest values. The two-route pathway is unable to record 

dependency histories due to the patch-wise learning strategy. The 

new models, inception-based U-Net (IMU-Net) and upgraded 

residue U-Net (RU-Net) deal with such problems. 

3. Proposed work 

This section provides explanation of proposed methodology. It 

includes dataset selection, pre-processing techniques, proposed 

DNN model and post-processing techniques. The following are 

the centrepieces of the provided work: 

 

• The multi-modal 2D MRI sequences converge faster 

with undesirable MRI image slices.  

• The convolved residual (CR) block converges rapidly 

and captures fine-grained attributes. 

• The modified inception (MI) unit collects multi-

parametric feature maps while minimizing over-fitting 

concerns. 

3.1 Dataset selection 

The dataset has 210 HGG and 75 LGG volumes. The dataset's 

images have been interpolated and skull-stripped to a resolution 

of 1 mm3. The pre-operative multi-institutional MRI scan images 

contain LGG and HGG volumes. Each volume includes the 

image modalities T1w, T2w, T1Gd, and Flair. The presence of 

cerebrospinal fluid (CSF) differentiates T1w and T2w MR 

images. The CSF is whitish and opaque in T1w and T2w imaging 

scans. The gadolinium compound can distinguish active lesions 

from healthy tissue. White matter abnormalities are sensitively 

picked up by the Flair MRI modality, which mutes the CSF 

signal. The dataset contains information labelled "1" as NCR or 

NET, "2" as ED, "4" as ET, and "0" as miscellaneous. Glioma 

sub-regions are made up of several labels, which are represented 

as 𝑌𝑊𝑇 = 𝑌𝑁𝐶𝑅/𝑁𝐸𝑇 + 𝑌𝐸𝐷 + 𝑌𝐸𝑇 , 𝑌𝐸𝑇 and 𝑌𝑇𝐶 = 𝑌𝑁𝐶𝑅/𝑁𝐸𝑇 +

𝑌𝐸𝑇.  

Fig.1 Architecture of IMU-Net 

3.2 Pre-processing 

T1w, T2w, Flair, and T1Gd MRI images are input for the 

proposed IMU-Net, whereas any two MRI sequences are input 

for the designated task for the RU-Net. Both DNN models 

supplied data using improved N3 bias correction, data 

standardization, and augmentation procedures. The improved N3 

bias correction method eliminates the intensity gradient in raw 

images. The bias-corrected images show significant standard 

deviations and the same scale of intensities. Intensity 
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normalization produces a narrower spectrum of data with a mean 

close to zero and a standard variation around one [27]. The Z-

score standardization is an improved solution for healthcare 

imaging, which must cope with anomalies. MRI data is rescaled 

across all modalities. The image augmentation process increases 

the number of images in the model, expands it, and prevents 

overfitting [28]. Augmentation techniques, including flipping 

direction, whirl, elasticity evolve, movement, change, 

compression, and magnification, are used in the proposed models. 

3.3 Deep Neural Networks 

Fig. 1 shows the segmentation of the WT using the proposed 

IMU-Net design [29], whereas Fig. 2 shows the segmentation of 

the TC and ET using the proposed RU-Net architecture [17]. Both 

networks use different modules incorporated into the well-known 

U-Net architecture. There is a bottleneck layer and four encoder-

decoder stages in both deep DNNs. The IMU-Net aggregates 

broad context and intermediate-level features. The inception 

framework is more complicated than the conventional U-Net 

architecture. Fine local features and context data are both 

captured by RU-Net. The residual connections outperform the 

gradient data with regard to growth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Architecture of RU-Net 

Both networks have an encoder path with a down-sampling layer 

and an IM-unit or CR-block, and a decoder path with an IM-unit 

or CR-block, upward sampling, and concatenated layers. Fig. 3 

and Fig. 4 show the basic functional blocks IM-unit and CR-

block for the encoder-decoder structure. The IM-unit has triple 

path of 5×5, 3×3 and 1×1 convolution kernels to collect multi-

scale features. The CR-block has residual path for faster 

converges. For encoder routes, the channel count is doubled while 

the spatial dimension is reduced by a factor of two. The decoder 

pathways lower the total number of channels by half while 

increasing the dimension of space by a factor of two. The 

addition step improves learning precision. The output of the 

concatenation layer is sent into the prior-stage upsampling layer, 

as well as the necessary coder output. With fine-grained features, 

the concatenation result produces high-resolution images. The top 

layer makes a distinction between the tumor and uninterested 

regions. 

 

 

 

3.4 Post-processing 

By reducing false-positive scores, the CRF post-processing 

technique enhances the predicted pattern's performance even 

more. Misclassified labels are removed from the predicted pattern 

using the CRF approach. 

 

Fig.3 The basic structure of IM-unit 

Fig.4 The basic structure of CR-block 

4. Results and Discussion 

This section comprises the experimentation on the proposed 

methodology. It also describes the selection of evaluation metrics 

and performance comparison with state-of-the-art methods. 

4.1 Model Configuration 

The proposed DNN architectures employ the dice similarity 

coefficient (DSC) as a measure of performance, the dice-loss cost 

function, and Adam as an optimizer function. DSC is the 

preferred statistical metric in the MICCAI competitions for 

segmentation challenges. It works better for medical images, 

which have a lot of background pixels [30, 31]. The scale ranges 

from 0 (no matching samples) to 1 (a perfect match); it assesses 

the resemblance between two data points. The assessment of DSC 

is illustrated by Equation (1), wherein Xi is the actual data item 

and Yi is the anticipated example. A differentiable dice loss 

handles the imbalanced datasets efficiently. It calculates the 

discrepancy between the anticipated samples and the actual 

samples. 

 

DSC =
2(Xi∩Yi)

Xi+Yi
        (1) 

 

The Adam method optimizes the gradients of the model 

parameters. It is effective for models with a large number of 

parameters or limited information [32]. It added the benefits of 

the root mean square propagation (RMSP) and momentum 

approaches. When model parameters are modified, the learning 

rate changes. The aforementioned qualities need less memory and 

reach global minima sooner. The Adam optimizer first sets the 
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Fig.5 Dice score of (a) WT (b) TC (c) ET vs epochs of the proposed DNN 

models 

following parameters: the adaptive learning rate (η) is 30e-05, the 

rate of loss of the first inertia (β1) is 9e-1, the rate of loss of 

the second inertia (β2) is 9.99e-1, and ξ is 1e-08 to rapidly 

converge the model. The skewed first inertia (pt) and skewed 

second inertia (qt) are described in Equations (2) and (3). At time 

t, gt is a gradient of parameter w. 

 

pt = β
1
pt−1 + (1 − β

1
)gt     (2) 

 

qt = β2qt−1 + (1 − β2)gt
2     (3) 

 

Equations (4) and (5) are used to determine the skewed-

corrected first and second inertia.  

 

p̂t =
pt

1−β1
t          (4) 

 

q̂t =
qt

1−β2
t          (5) 

 

Equation (6) contains the parameter updating rule for the 

Adam optimizer.  

 

wt = wt−1 − η
p̂t

√q̂t+ξ
       (6) 

  

where wt-1 denotes the preceding parameter matrix. The relu non-

linear activity function generates an improved non-linear 

framework and solves the vanishing gradient issue. The sigmoid 

activation function differentiates the background and tumor sub-

regions in the classification layer. 

 

Fig.6 Dice loss vs epochs of the proposed DNN models 

4.2 Experimentation 

IMU-Net extracts WT from the four MRI sequences. According 

to the RU-Net, the T1Gd and Flair MRI sequences partition the 

region known as the ET, whereas the T1Gd and T2w sequences 

split the TC. For evaluation reasons, WT comprises NCR/NET 

sub-regions in addition to TC, which covers ET and ED. The 

actual input dimensions are fed into the model, where 2402 refers 

to the 2-dimensional data of an input. The proposed method only 

employs MRI image slices from 51 to 110 due to the 

predominance of background pixels; all other slices are 

eliminated. The random data divides training and validation data 

into two partitions of 80:20. 

The N4ITK approach removes non-uniformity from the data. The 

Z-score standardization transforms unnormalized data into 

normalized data. From a single sample, the data augmentation 

technique generates eight alternative samples. Finally, there are 

437760 images in the training data for the WT task, and 328320 

images in the training data for the ET and TC tasks. The CRF 

method avoids false negatives and effectively classifies labels in 

order to find patterns. To cut down on computational costs, the 

suggested models acquire data in batches, with each including 16 

images. The suggested methods implement the TensorFlow 

framework, the TensorLayer deep learning library[36], and the 

NVIDIA DGX-1 cluster [33]. 

Table 1 Comparison of evaluation results with existing methods 

Methods Input 
 DSC  

WT TC ET 

SegNet [24] 192×192×3 0.84 0.8 0.79 

U-Net [23] 128×128×128 0.86 0.75 0.65 

DSSE-V-Net [22] 128×128×128 0.88 0.78 0.71 

Two-pathway [25] 38×38×38 0.73 0.83 0.8 

Proposed IMU-Net 240×240×4 0.91 - - 

Proposed RU-Net 240×240×2 - 0.8 0.82 

 

4.3 Comparison with state-of-the-art methods 

The proposed IMU-Net extracts deep features from four different 

MRI modalities and creates patterns for all sub-regions to make 

WT. The MI-unit captured multi-scale features such as low-, 

middle-, and high-level features. Another advantage of the MI-
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unit is that it reduces dimensionality over the U-Net structure. 

Through identical information flow through all layers, the 

proposed RU-Net converges quickly. The use of multi-modality 

MRI sequences in conjunction with 2D slices reduces 

computational costs. Fig. 5 displays the efficacy study for the 

presented approaches, with dice scores and epochs provided for 

all tumor regions. The 5-fold cross-validation improves the 

model's generalization. The validation process strengthens the 

model's accuracy even more. The dice loss optimizes the 

proposed framework with different parameter configurations. Fig. 

6 depicts the dice loss during the training stage for each tumor 

region. During the training step, the dice loss decreases with each 

epoch, validating the proposed model in terms of reliability. 

U-Net and modified V-Net applied convolution kernels made up 

of 128×128×128 patches with modest batch sizes. These 

architectures can't be used to collect every tumor sub-region. The 

SegNet models require a significant amount of training time and 

training variables. The maximal feature map approach, however, 

is unable to more accurately predict WT. The two-pathway 

architecture, which combines two small patches, is insufficient to 

forecast the WT pattern. The majority of modern models use 

patch-wise training to accelerate computation, although this 

results in redundant data. To overcome these limitations, the 

proposed methods concentrate on the full-sized 240×240 image. 

In addition, the 60 slices of 2D MRI images lower the 

computational cost. Depending on the tumor area, the proposed 

models incorporate particular MRI modalities. During the 

training phase, the adaptive gradient modifies the model's 

parameters and produces a well-fit model. The CRF post-

processing method also accurately categorizes tumor sub-regions 

and backdrops. Table 1 compares the performance of the 

proposed model to that of cutting-edge models. Fig. 7 shows the 

visual comparison of proposed method with existing methods. 

From the Fig.7 and Table 1, the proposed models are the most 

successful segmentation approaches when compared to modern 

algorithms for the WT and ET regions. The TC zone, on the other 

hand, is where the two-pathway model achieves the greatest 

accuracy. The small patch methodology tries to extract depth 

features to segment TC and ET regions effectively rather than WT 

region. 

 

Fig.7 Performance comparison with existing methodologies 

5. Conclusion and future work 

The proposed segmentation architectures use deep layers to 

collect contextual and fine-grained details. MI-unit generates 

multi-scale features using different kernels. The CR-block creates 

regional context information, overcomes gradient loss difficulties, 

and facilitates faster convergence. In the CR-block, the pixel-wise 

addition layer uses less processing power and memory than the 

concatenation layer. The suggested models outperform 

segmentation scores and acquire low- to high-level feature maps. 

In contrast, the proposed approach employs fewer training 

parameters than current deep segmentation networks. Finally, the 

proposed DNN models provide high accuracy and low 

computation. By incorporating different modules into the 

proposed architecture or changing the arrangement of modules, 

the segmentation of TC will be improved. 
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