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Abstract: In the wake of digitization of business processes, Software has turned into an approach to carrying out the businesses while 

considering software testing as an investment not as an expense. Now-adays, businesses focus on prioritizing scalability so that they may 

allow testers to make con-tinuous integration and testing without affecting end user’s experience towards the application. Regression 

Testing can be performed multiple times (if required) to either to whole application under test or to only part of the application to ensure 

the validity of the changes made. Because of the repetitive nature of Regression Testing, software testers need to automate the process to 

minimize the consumption of time and effort. This paper mainly focuses on one of the machine learning techniques i.e., Markov Chain 

Model that randomly selecting a path to generate test cases that may further identify those test cases which are most prospective to uncover 

the new bugs. This can be done by observing the transition from a state  in which no bugs have been found to a state in which a bug has 

been found. 
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1. Introduction 

Software Testing [1][2] is an evaluation procedure that attempts to 

verify and validate the software and its functionality. Expanded 

utilization of software applications and the complexity of its 

components, as well as abbreviated period of evaluation of 

software quality, have expanded the significance and need for 

automation of test case prioritization [3] in software testing. 

Automated software testing [4][5] tool by utilizing Machine 

Learning techniques [6] limits and minimizes errors in testing 

process [7], yet in addition permits a speedier assessment.  In 

consideration to these facts, a Machine Leaning framework is 

proposed in to prioritize the software test cases for automation of 

regression testing process [8].  

The framework will provide a suitable test case as well as 

learning models for software testing life cycle [9] to automate the 

process by analyzing and categorizing ML algorithms applicable 

to distinct testing phases. A software program change must be 

checked for accuracy [10] before being implemented. Testing [11] 

and repairing any regressions in the current features is also crucial 

for the success of a software product. Any faults or bugs that may 

have snuck into the earlier functionalities following the relevant 

change are referred to as regression issues. Regression testing [12] 

must be done effectively to maintain an application operating 

flawlessly after each small or significant update. Regression test 

cases [13] must be carefully chosen for execution in order for 

regression testing to be efficient. 

The sequencing of the testing of software modules [14] that are 

significant from the standpoint of the customer ultimately results 

in the selection of these regression test cases. This leads to the 

requirement for test case prioritization [15]. 

The business requirements, prior test cycle experience on the 

functionality of the existing features, and delivery schedules are 

taken into consideration when prioritizing test cases for regression 

testing. The goal is to propose one of the test case prioritization 

techniques [16] that will also incoperate risk-based testing [17]. 

The proposed technique will use test case execution history as the 

primary criterion of assessment. There are three key goals for this 

study. First, examine and summarize techniques for prioritizing 

test cases [18] based on their (Eloberate word their) history. Next, 

note the variations among the test case prioritization techniques 

[19] and lastly, evaluvate the proposed strategies to evaluate the 

efficacy. 

The subsequent sections of the paper are structured as follows. 

Section 1.1 provides an outline of the research background that lays 

the foundation for our proposed machine learning approach to test 

case prioritization. In Section 1.2, review and discuss the existing 

literature and research efforts that are relevant to our proposed 

machine learning approach for regression testing. Section 2 

presents our machine learning approach designed for regression 

testing, tailored to the intricacies of Markov Chain models, and 

describe the materials and methods that will be used to investigate 

and proper responces of the research questions, including the 

specific techniques for test case prioritization. In Section 3, deals 

with experimental results. Section 4 discusses the implications of 

the outcones and their potential impact. Finally, the conclusions of 

the study will be presented, along with suggestions for future 

research in section 5. 
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1.1 Research Background 

Test Case Prioritization 

This section deals with concise overview of significant  pieces of 

concerned work in the field of test case prioritization and its 

historical significance [20]. Regression testing, which constitutes 

80 percent of the testing process [21], plays a vital role in 

evaluating software against updated requirements and swiftly 

fixing bugs. However, it presents challenges due to its time-

consuming nature, limited resources, and frequent occurrence [22]. 

The real-time embedded system regression testing is particularly 

rigorous, given the strict timing constraints in the simulation 

environment and the oversight of various initiatives like Retest-

All, Regression Test Selection (RTS), Test Case Prioritization 

(TCP) [23], and Test Suite Minimization (TSM). TCP is a 

technique employed in regression testing to optimize the order of 

test case execution.  

 The primary objective of TCP is to identify and execute the 

most significant test cases first, allowing the early detection of 

potential issues in the software [24]. [64] To achieve safe 

regression test selection, test cases that reveal at least one flaw are 

chosen using a safe selection technique [24], though this does not 

guarantee safety in all cases due to varying conditions. Conversely, 

unsafe test case selection techniques lead to the discarding of 

several test cases. TCP emphasizes that test cases having higher 

priority should be executed more swiftly during testing. Offline 

TCP is a cost and time-effective approach that is not considered an 

expense [25].  

 There are two primary forms of test case prioritization: first 

one is version-specific prioritization [26] and another one is 

generic prioritization. While prioritization ordering is beneficial 

for later versions of software. General test case prioritization [27] 

techniques and version-specific prioritization [28] techniques 

focus solely on optimizing test case order for a particular software 

version. 

1.2 Related Work  

Following are the highlights of different research studies 

related to prioritization techniques in associatation with  machine 

learning techniques with reference to software testing. Each study 

applies various approaches and performance metrics to analyze the 

effectiveness of various proposed techniques. Datasets used in 

these studies vary from open-source projects to specific domains 

like automotive and financial institutions. 

 

Ref. Id Authors and Year Prioritization Technique 

Machine 

Learning 

Technique 

Performance Metric Data Set 

[1] 
Haghighatkhah et al. 

(2018) [1] 

Diversity-Based Test 

Prioritization (DBTP) and 

History-Based Test 

Prioritization (HBTP) 

Not mentioned 

Time and 

number/percentage of 

Faults Detected. 

Six open-source 

projects 

[4] Hajri et al. (2011) 
Fault tendency of 

Requirements 

Classification 

Framework 
Not mentioned 

Industrial product on 

automotive domain. 

[6] Vu Nguyen et. al. (2021) Weighted Coverage Graph 
Reinforcement 

Learning 

Number of test faults 

detected 

Nine data sets from two 

web applications 

[8] Lousada et al. 
Network Approximator and 

Test Case Failure Reward 

Reinforcement 

Learning 

Normalized percentage 

of Fault Detection 

(NAPFD) 

Financial Institution 

dataset 

[10] Bagherzadeh et al. Ranking Models 
Reinforcement 

Learning 

Normalized Rank 

Percentile Average 

(NRPA) & Average 

Percentage of Faults 

Detected (APFD) 

Not specified 

[13] Lachmann et al. 

Failure Count, Failure 

Priority, Execution Cost, 

Requirement Coverage 

Supervised 

machine learning - 

SVM Rank 

algorithm 

APFD 

Body Comfort System 

& Automotive Industry 

Data 

[14] Zhang et al. Requirement Coverage 

Metaheuristic 

optimization 

algorithm - Ant 

Colony 

Optimization 

Algorithm 

Enhanced Average 

Percentage of Win-cost 

Coverage (eAPWC) 

Triangle classification 

program 

[15] Zhao et al. Code Coverage Bayesian Networks APFD 
Java projects with 

mutants 

[16] Mirarab et al. 
Change in source code, test 

coverage 
Bayesian Networks APFD 

8 consecutive versions 

of a software 

[18] Lousada et al. Random selection Neural Network APFD NA 

[20] Carlson et al. 
Code coverage & 

Complexity 

Clustering 

approach 
APFD 

Microsoft Dynamics 

Ax (industrial software 

product) 

[28] Jahan et al. Test Cases Complexity ANN 

Fault detection rate, 

accuracy, precision, and 

recall 

Two applications -

Registration-Verifier 
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Application & Credit 

Card Approval System 

[30] Kashyap et al. Model-based approach 
Markov Chain & 

HMM 
NA 

Two case studies on a 

web application usage 

[34] Spieker et al. 
Random selection, failed test 

cases with higher priority 

Reinforcement 

Learning 
NAPFD 

Industrial data sets 

from ABB Robotics 

[36] Konsaard et al. Coverage-Based apprach Genetic Algorithm 

Average Percentage of 

Code Coverage (APCC) 

metric. 

NA 

[39] Sharif, A et.al. 
History-Based Test 

Prioritization (HBTP) 

Deep Neural 

Network 

APFD 

NAPFD 

Industrial and Synthetic 

Datasets  

[46] Gökçe, N. et.al. 
Event sequence, pair-wise 

coverage 

Unsupervised 

Neural Network 

Clustering 

MSE 
Case study on 

RealJukebox (RJB) 

[47] Gökçe, N. et.al. Model-based approach 
Un-supervised 

neural network 

Number of Events 

Capturing Unique 

Faults, Repetitive 

Faults, Nonrepetitive 

Faults & All Faults 

Web-based tourist 

services system 

[51] Gökçe, N. et.al. Model-based apprach 

Multilayer 

perceptron (MLP) - 

Feed Forword 

Neural Network 

MSE  

[56] Mirarab, S. et.al. 
History-Based Test 

Prioritization (HBTP) 
Bayesian Networks APFD 

Five open-source Java 

objects 

 While regression metrics are commonly used for evaluating 

machine learning techniques in [15][16][18][20][34][36][39] 

[46][47] [51][56], TCP is a specific task where classification and 

clustering metrics can also be highly relevant and valuable for 

evaluation. TCP involves organizing test cases based on their 

likelihood of detecting faults or their importance in terms of 

covering critical functionalities. Therefore, using classification and 

clustering metrics can provide deeper insights into the performance 

of machine learning techniques for this task[65]. 

2.  Proposed Method 

 The initial step of this study is to identify the meaning of the 

Research Queries as in Figure 1 that helps to identify the objective 

of this paper. As the interest of applying ML techniques are 

evolving in TCP [29], through this paper we expect to appreciate 

and audit a portion of the parts of the software/ application. To 

accomplish this objective, we enunciated four Research Queries. 

 Through these inquiries, we plan to survey all the methods of 

ML utilized to show what the most proper strategies are to help 

Developers and Testers for additional investigation so that they 

may choose the suitable method for Test Case Prioritization [30]. 

We will likewise explore the most utilized metrics that evaluate the 

effectiveness [31] of the proposed techniques in TCP. In this regard, 

following research queries (RQs) are set that aims to answer based 

on the existing literature in the field. These questions are designed 

to guide the review process and provide a framework for test case 

prioritization using an effective machine learning technique. 

 Research Queries (RQs) defined as follows: 

RQ1.  Which machine learning techniques can be practical and 

efficient at various stages of the software testing life cycle 

to rank test cases? 

RQ2.  What are the qualities and shortcomings of each learning 

technique with regards to testing? 

RQ3.  How would we be able to decide the best possible type of 

learning technique for different stages of software testing 

process? 

RQ4.  What are the focused points where Machine Learning & 

Deep Learning contributes to software testing process? 

2.1 Data Collection for each Research Queries 

In our survey paper, 60 papers were comprehended for our 

detail review to identify ML techniques used for TCP. We then, at 

that point, extricated related information from the papers as 

indicated by defined research queries. Table 1 displays the essential 

data corresponding to each research inquiry. The kind of 

information contemplated the objective that each research query 

addresses.  

 

 

Table 1: Data Required for Each RQs 

 

After reviewing 60 research papers, it was concluded that HMM 

model needs to be explored more. As the exhibited modelling 

approaches can be implemented in test plan generation, concept of 

test case selection, formulation of requirements [32], design and 

verification of systems. The whole review process insight us to 

capture how any ML model is important to generate test cases and 

prioritize [33] them using a likelihood-based method. The 

likelihood-based approach makes use of the probabilistic data 

pertaining to the system states, their interactions with system users, 

and their surroundings. 

 

Research 

Queries 
Extracted Data 

RQ1 ML methods employed for TSP and its noted 

advantages and disadvantages RQ2 

RQ3 

Feature sets utilized in data collecting and 

prediction processes 

Subjects, experiment ideas and evaluation metrics 

RQ4 

Results of Machine Learning-Based TSP Methods 

in Terms of Accuracy 

Accessibility of Datasets and Comprehensive 

Results 
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Fig. 1: RQs addressed in Research Papers 

 

Furthermore, within this research, both a simulated case study 

and a real-world web application dataset are employed to analyse 

the efficiency of modelling and test case prioritization strategies. 

For investigation of system’s time domain progression, we used 

Markov chains. Only software-based systems have been validated 

by the exhibited approach, and more study is required to determine 

its application to hardware spheres. The applicability of the method 

described in this study is also constrained by the fact that not all 

software systems have usage data sets that include time domain 

data. The strategy can be expanded in situations where time domain 

data are not accessible by modelling the system as discrete Markov 

chains and employing hidden Markov models (HMM). The 

exhibited methodology's ability to discover faults has not been 

tested, which is another study disadvantage. It is advised to conduct 

additional research, such as the creation of a software-based system 

and the seeding of it with recognized problems, to analyse the fault 

detection performance. 

2.2 Test Cases based on Hidden Markov Model 

A test case is a series of states or transitions that move through 

the Markov test chain from the starting state to the ending state 

when creating test cases for embedded software using the Markov 

use model. The following is how the Markov test chain is created 

from the usage model: The test chain is first constructed using the 

usage chain's structure, and each edge's transition probability is 

changed to a counter with an initial value of 0. The number of the 

edge then goes up by 1 as more test cases pass it as the testing 

process [34] progresses. Finally, depending on the statistical 

findings, the counter for each edge is transformed to transition 

probability. In this article, we offer a method for creating test cases 

[35] for software reliability tests based on the Markov consumption 

model. 

Input: A Markov chain M, a positive integer n. 

Output: A sequence of n test cases. 

Step 1. Let A be an nXn matrix whose i, j entry is pi, j for 1 ≤ i, 

j ≤ n.  

Step 2. From initial distribution of M, generate a random vector 

x0 and let x0 = (x0,1, x0,2, ..., x0,n), where x0,j is the component of x0 

corresponding to state j.  

Step 3. For k = 1, 2, ..., n  

Step 3.1 Generate a random number u from the uniform 

distribution on [0, 1].  

Step 3.2 Compute j = min{l | 1 ≤ l ≤ n and u ≤ A(xk−1,l)}.  

Step 3.3 Set xk = (xk1, xk2, ..., xkn), where xkj is the component 

of xk corresponding to state j.  

Step 3.4 Output the test case xk. 

In the aforementioned algorithm, test instances are created 

using uniform random distribution that are compared to the Markov 

model's transition probability. This algorithm takes into account the 

statistical (transition) probability of code coverage [36] in addition 

to satisfying the randomness of the test case generation process and 

TCP [37] process. The prioritization of a test case Xk as in equation 

(1) computed as: 

 

 W(Xk) = W1(Xk) + W2(Xk)   (1) 

 

where: 

• W1(Xk) is the weight of the test case Xk with respect to the 

test coverage. 

• W2(Xk) is the weight of the test case Xk with respect to the 

test case difficulty. 

 

W1(Xk) is computed as: 

W1(Xk) = (C(Xk) / Cmax)   (2) 

where C(Xk) is the number of covered requirements by the test case 

Xk and Cmax is the total number of requirements. 
 

W2(Xk) is computed as: 

W2(Xk) = (E(Xk) / Emax)   (3) 
 

where E(Xk) is the number of executed requirements by the test case 

Xk and Emax is the total number of requirements. 

 The importance weight of the test case Xk is computed as the 

sum of the weights W1(Xk) and W2(Xk) from equation (2) and (3). 

2.3 Performance Measure 

Following steps are taken to calculate the performance of HMM 

for prioritization of software test cases through the accuracy, 

precision, and recall values: 

Step 1: Train the HMM model 

• Define the observation sequences for each test case. 

• Define the ground truth labels for each test case. 

• Create an HMM model with the desired number of states. 

• Fit the HMM model to the observation sequences. 

 

Step 2: Predict the test case priorities. 

• Calculate the probability of each observation sequence 

belonging to each state using the trained HMM model. 

• Assign the most probable state to each observation 

sequence. 

• Map the states to the corresponding ground truth labels to 

generate the predicted test case priorities. 

 

Step 3: Calculate Accuracy, Precision, and Recall values. 

• Compare the predicted test case priorities with the ground 

truth labels to calculate the fol-lowing: 

• True Positives (TP): The number of test cases correctly 

classified as high priority. 

• False Positives (FP): The number of test cases incorrectly 

classified as high priority. 

Select the best appropriate 

ML technique 

Check its performance 

through various 

performance metrics 

Review ML techniques 

based upon based on the 

performance metrics 

Evaluate to improving 

automated TCP in 

terms of accuracy & 

effectiveness 

Research Questions 

(RQ) 

Data Extractions for 

each RQ 
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• False Negatives (FN): The number of test cases 

incorrectly classified as low or medium priority. 

• Calculate the Accuracy, Precision, and Recall values 

using the following formulas: 

Accuracy = (TP + TN) / (TP + TN + FP + FN) 

Precision = TP / (TP + FP) 

Recall = TP / (TP + FN) 

3. Results 

Out of 60 research papers reviewed, 34 papers including 

surveys were used Machine Learning techniques [38], 6 papers used 

Deep Learning techniques [39]-[44] and remaining ones are non-

ML techniques. From figure 2, research papers that address 

research questions are typically structured in a way that includes 

56.7% covers RQ1, 16.7% RQ2 & RQ3, 10% RQ1 

Fig 2: RQs addressed in Research Papers 

 

A comprehensive and rigorous research design, and a detailed 

analysis of the data that provides insights into the topic being 

studied. In order to find the solutions, we have outlined the research 

question to summarize the utilization of ML techniques for test case 

prioritization [45][46] process with performance metrics mentioned 

in Figure 3. Our methodical survey aims to give priority values to 

choose defined ML techniques for TCP [47]. In this way, we intend 

to evaluate ML methods to ensure capability of improvising 

automated [48] TCP in terms of accuracy and effectiveness.  

Fig.3: ML Technique used for TCP 

 

Now, we may need to choose only those test cases/ suites 

[49][50] that provide the maximum code coverage in the quickest 

amount of time in subsequent testing rounds where time could be 

one of the limited constraints. To improve testing efficiency, Test 

Impact Analysis [51]-[56] is another optimization technique that is 

used to identify which tests execute a particular code and what time 

it has taken while executing that code. The snippet of a Hidden 

Markov Model approach in the following code figure 3 with three 

states (Low, Medium, and High) that can be used for test case 

prioritization of modelling [57]. 

 

 In figure 4 code, the test_cases parameter is a list of test case 

objects. Each test case object has a get_observation_sequence() 

method that returns a sequence of observations from the execution 

of the test case. Observation sequence can be any measurable aspect 

of the test case, such as time taken to execute the test case, or  

 

Fig. 4: Snippet of HMM for three priorities states 

 

number of defects found during execution. The code creates an 

HMM with three states (Low, Medium, and High) and fits the 

model to the observation sequences. It then calculates the 

probability of each observation sequence belonging to each state 

and calculates the expected value of each state based on the state 

probabilities. The test cases are then sorted based on the expected 

value of their respective observation sequences [58], with the 

regression test cases [59] that are expected to have the highest 

impact on the software application [60] appearing first in the sorted 

list. 

After all this comparison, Markov Model would be able to 

generate test cases and prioritize test cases as per execution order 

and execution time mentioned in figure 5 with the help of 

evaluating aggregate code coverage and time taken while executing 

the test suites. For example, we have taken a sample of only for 200 

test suites. Test suite 1 gives 29.208% code coverage with 

computation test time of 0.000681 seconds. Test suite 2, will be 

having both code coverage of test suite 1 and test suite 2 i.e., 32.921 

with computation time of 0.00115 and so on. Generally, test cases 

are ordered based on the following priority levels: 

• High priority: Test cases that cover functionality that is 

critical to the application. 

• Medium priority: Test cases that cover functionality that is 

important, but not critical. 

• Low priority: Test cases that cover functionality that is not 

important. 
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Fig. 5: Prioritization of Unit Test Cases  

 

From 200 test cases, the ground truth priorities are as follows: 

• 50 test cases are high priority. 

• 100 test cases are medium priority. 

• 50 test cases are low priority. 

The prioritization model based on Hidden Markov predicts the   

following priorities: 

• 40 high priority test cases 

• 100 medium priority test cases 

• 60 low priority test cases 

 Hence, Out of 200 test cases, total 40 test cases are 

classified as high priority test cases. 

4. Discussions and Conclusions 

Based on the comprehensive analysis, the paper suggests that 

Markov Chain Model is a useful machine learning technique 

employed for generating test cases that are most likely to uncover 

new bugs. By examining the transition probabilities between states 

in the model, it is possible to identify the test cases that are most 

likely to move from a state where no bugs have been found to a state 

where a bug has been discovered. This strategy has the potential to 

enhance the efficiency and efficacy of the testing procedure, 

enabling developers to promptly and precisely detect and rectify 

bugs. Although machine learning has shown great potential in 

improving the effectiveness and effi-ciency of test case 

prioritization. By training classifiers on large and diverse datasets, 

we can identify patterns and relationships between various factors 

that can influence the priority of test cases. This allows us to 

develop accurate and robust models that can prioritize test cases 

based on their relative importance. In addition to, Hidden Markov 

Models (HMM) have shown potential for test case prioritization by 

modeling the temporal behavior of software systems. By using 

HMM to capture the sequence of states that a system transitions 

through during execution, we can prioritize test cases based on their 

ability to trigger transitions between high-priority states.  

One of the limitations is that HMM assumes a stationary and 

ergodic system, which may not hold for all software systems. 

Additionally, HMM may is not suitable for capturing complex or 

non-linear relationships between states in the system. 

A delimitation of using HMM is the availability of sufficient 

data to train the model. HMM requires a large amount of data to 

accurately model the behavior of the software system, which may 

be a challenge for smaller or less mature systems. Additionally, the 

performance of HMM may be sensitive to changes in the system or 

the underlying data, which can affect the accuracy and reli-ability 

of the prioritization results. 

Future work in this area can focus on addressing these 

limitations and delimitations and exploring new approaches to 

improve the effectiveness and efficiency of HMM-based TCP. 

Some potential areas for future research include: 

• Developing methods for identifying and mitigating non-

stationary and non-ergodic behavior in software systems. 

• Exploring the application of alternative probabilistic 

frameworks, like Markov Decision Processes (MDP), for 

capturing intricate and non-linear interdependencies among 

system states. 

• Investigating the use of domain-specific features and metrics 

that can capture the unique charac-teristics and requirements of 

different types of software systems and applications. 

• Integrating HMM-based prioritization with other testing 

techniques such as regression testing, mutation testing, and fuzz 

testing to create more comprehensive and effective testing 

strategies. 

 Overall, the use of HMM for test case prioritization holds great 

promise for improving the quality and efficiency of software 

testing, particularly for systems that exhibit stationary and ergodic 

behavior. With continued research and development, we can expect 

to see more sophisticated and effective HMM-based prioritization 

models that can be applied to a wide range of software systems and 

applications. 
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