

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 945

Machine Learning Approach for Regression Testing: A Case Study

in Markov Chain Model

Neelam Rawat1, Vikas Somani2, Arun Kr. Tripathi3

Submitted: 15/01/2024 Revised: 23/02/2024 Accepted: 01/03/2024

Abstract: In the wake of digitization of business processes, Software has turned into an approach to carrying out the businesses while

considering software testing as an investment not as an expense. Now-adays, businesses focus on prioritizing scalability so that they may

allow testers to make con-tinuous integration and testing without affecting end user’s experience towards the application. Regression

Testing can be performed multiple times (if required) to either to whole application under test or to only part of the application to ensure

the validity of the changes made. Because of the repetitive nature of Regression Testing, software testers need to automate the process to

minimize the consumption of time and effort. This paper mainly focuses on one of the machine learning techniques i.e., Markov Chain

Model that randomly selecting a path to generate test cases that may further identify those test cases which are most prospective to uncover

the new bugs. This can be done by observing the transition from a state in which no bugs have been found to a state in which a bug has

been found.

Keywords: digitization, scalability, Regression Testing, consumption, bug

1. Introduction

Software Testing [1][2] is an evaluation procedure that attempts to

verify and validate the software and its functionality. Expanded

utilization of software applications and the complexity of its

components, as well as abbreviated period of evaluation of

software quality, have expanded the significance and need for

automation of test case prioritization [3] in software testing.

Automated software testing [4][5] tool by utilizing Machine

Learning techniques [6] limits and minimizes errors in testing

process [7], yet in addition permits a speedier assessment. In

consideration to these facts, a Machine Leaning framework is

proposed in to prioritize the software test cases for automation of

regression testing process [8].

The framework will provide a suitable test case as well as

learning models for software testing life cycle [9] to automate the

process by analyzing and categorizing ML algorithms applicable

to distinct testing phases. A software program change must be

checked for accuracy [10] before being implemented. Testing [11]

and repairing any regressions in the current features is also crucial

for the success of a software product. Any faults or bugs that may

have snuck into the earlier functionalities following the relevant

change are referred to as regression issues. Regression testing [12]

must be done effectively to maintain an application operating

flawlessly after each small or significant update. Regression test

cases [13] must be carefully chosen for execution in order for

regression testing to be efficient.

The sequencing of the testing of software modules [14] that are

significant from the standpoint of the customer ultimately results

in the selection of these regression test cases. This leads to the

requirement for test case prioritization [15].

The business requirements, prior test cycle experience on the

functionality of the existing features, and delivery schedules are

taken into consideration when prioritizing test cases for regression

testing. The goal is to propose one of the test case prioritization

techniques [16] that will also incoperate risk-based testing [17].

The proposed technique will use test case execution history as the

primary criterion of assessment. There are three key goals for this

study. First, examine and summarize techniques for prioritizing

test cases [18] based on their (Eloberate word their) history. Next,

note the variations among the test case prioritization techniques

[19] and lastly, evaluvate the proposed strategies to evaluate the

efficacy.

The subsequent sections of the paper are structured as follows.

Section 1.1 provides an outline of the research background that lays

the foundation for our proposed machine learning approach to test

case prioritization. In Section 1.2, review and discuss the existing

literature and research efforts that are relevant to our proposed

machine learning approach for regression testing. Section 2

presents our machine learning approach designed for regression

testing, tailored to the intricacies of Markov Chain models, and

describe the materials and methods that will be used to investigate

and proper responces of the research questions, including the

specific techniques for test case prioritization. In Section 3, deals

with experimental results. Section 4 discusses the implications of

the outcones and their potential impact. Finally, the conclusions of

the study will be presented, along with suggestions for future

research in section 5.

1,2 Department of Computer Science and Engineering, Sangam University,

Atoon, Rajasthan 311001, India.
Email: neemarawat11@gmail.com

 https://orcid.org/0000-0003-0759-6583

Department of Computer Science and Engineering, Sangam University,
Atoon, Rajasthan 311001, India.

Email: vikas.somani@sangamuniversity.ac.in

 http://orcid.org/0000-0002-2562-2581

3Department of Computer Applications, KIET Group of Institutions, Delhi-

NCR,Ghaziabad, 201206 India.

Email: mailtoaruntripathi@gmail.com

 http://orcid.org/ 0000-0001-5138-2190

mailto:neemarawat11@gmail.com
https://orcid.org/0000-0003-0759-6583
https://orcid.org/0000-0003-0759-6583
mailto:vikas.somani@sangamuniversity.ac.in
https://orcid.org/0000-0003-0759-6583
mailto:mailtoaruntripathi@gmail.com
https://orcid.org/0000-0003-0759-6583

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 946

1.1 Research Background

Test Case Prioritization

This section deals with concise overview of significant pieces of

concerned work in the field of test case prioritization and its

historical significance [20]. Regression testing, which constitutes

80 percent of the testing process [21], plays a vital role in

evaluating software against updated requirements and swiftly

fixing bugs. However, it presents challenges due to its time-

consuming nature, limited resources, and frequent occurrence [22].

The real-time embedded system regression testing is particularly

rigorous, given the strict timing constraints in the simulation

environment and the oversight of various initiatives like Retest-

All, Regression Test Selection (RTS), Test Case Prioritization

(TCP) [23], and Test Suite Minimization (TSM). TCP is a

technique employed in regression testing to optimize the order of

test case execution.

 The primary objective of TCP is to identify and execute the

most significant test cases first, allowing the early detection of

potential issues in the software [24]. [64] To achieve safe

regression test selection, test cases that reveal at least one flaw are

chosen using a safe selection technique [24], though this does not

guarantee safety in all cases due to varying conditions. Conversely,

unsafe test case selection techniques lead to the discarding of

several test cases. TCP emphasizes that test cases having higher

priority should be executed more swiftly during testing. Offline

TCP is a cost and time-effective approach that is not considered an

expense [25].

 There are two primary forms of test case prioritization: first

one is version-specific prioritization [26] and another one is

generic prioritization. While prioritization ordering is beneficial

for later versions of software. General test case prioritization [27]

techniques and version-specific prioritization [28] techniques

focus solely on optimizing test case order for a particular software

version.

1.2 Related Work 

Following are the highlights of different research studies

related to prioritization techniques in associatation with machine

learning techniques with reference to software testing. Each study

applies various approaches and performance metrics to analyze the

effectiveness of various proposed techniques. Datasets used in

these studies vary from open-source projects to specific domains

like automotive and financial institutions.

Ref. Id Authors and Year Prioritization Technique

Machine

Learning

Technique

Performance Metric Data Set

[1]
Haghighatkhah et al.

(2018) [1]

Diversity-Based Test

Prioritization (DBTP) and

History-Based Test

Prioritization (HBTP)

Not mentioned

Time and

number/percentage of

Faults Detected.

Six open-source

projects

[4] Hajri et al. (2011)
Fault tendency of

Requirements

Classification

Framework
Not mentioned

Industrial product on

automotive domain.

[6] Vu Nguyen et. al. (2021) Weighted Coverage Graph
Reinforcement

Learning

Number of test faults

detected

Nine data sets from two

web applications

[8] Lousada et al.
Network Approximator and

Test Case Failure Reward

Reinforcement

Learning

Normalized percentage

of Fault Detection

(NAPFD)

Financial Institution

dataset

[10] Bagherzadeh et al. Ranking Models
Reinforcement

Learning

Normalized Rank

Percentile Average

(NRPA) & Average

Percentage of Faults

Detected (APFD)

Not specified

[13] Lachmann et al.

Failure Count, Failure

Priority, Execution Cost,

Requirement Coverage

Supervised

machine learning -

SVM Rank

algorithm

APFD

Body Comfort System

& Automotive Industry

Data

[14] Zhang et al. Requirement Coverage

Metaheuristic

optimization

algorithm - Ant

Colony

Optimization

Algorithm

Enhanced Average

Percentage of Win-cost

Coverage (eAPWC)

Triangle classification

program

[15] Zhao et al. Code Coverage Bayesian Networks APFD
Java projects with

mutants

[16] Mirarab et al.
Change in source code, test

coverage
Bayesian Networks APFD

8 consecutive versions

of a software

[18] Lousada et al. Random selection Neural Network APFD NA

[20] Carlson et al.
Code coverage &

Complexity

Clustering

approach
APFD

Microsoft Dynamics

Ax (industrial software

product)

[28] Jahan et al. Test Cases Complexity ANN

Fault detection rate,

accuracy, precision, and

recall

Two applications -

Registration-Verifier

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 947

Application & Credit

Card Approval System

[30] Kashyap et al. Model-based approach
Markov Chain &

HMM
NA

Two case studies on a

web application usage

[34] Spieker et al.
Random selection, failed test

cases with higher priority

Reinforcement

Learning
NAPFD

Industrial data sets

from ABB Robotics

[36] Konsaard et al. Coverage-Based apprach Genetic Algorithm

Average Percentage of

Code Coverage (APCC)

metric.

NA

[39] Sharif, A et.al.
History-Based Test

Prioritization (HBTP)

Deep Neural

Network

APFD

NAPFD

Industrial and Synthetic

Datasets

[46] Gökçe, N. et.al.
Event sequence, pair-wise

coverage

Unsupervised

Neural Network

Clustering

MSE
Case study on

RealJukebox (RJB)

[47] Gökçe, N. et.al. Model-based approach
Un-supervised

neural network

Number of Events

Capturing Unique

Faults, Repetitive

Faults, Nonrepetitive

Faults & All Faults

Web-based tourist

services system

[51] Gökçe, N. et.al. Model-based apprach

Multilayer

perceptron (MLP) -

Feed Forword

Neural Network

MSE

[56] Mirarab, S. et.al.
History-Based Test

Prioritization (HBTP)
Bayesian Networks APFD

Five open-source Java

objects

 While regression metrics are commonly used for evaluating

machine learning techniques in [15][16][18][20][34][36][39]

[46][47] [51][56], TCP is a specific task where classification and

clustering metrics can also be highly relevant and valuable for

evaluation. TCP involves organizing test cases based on their

likelihood of detecting faults or their importance in terms of

covering critical functionalities. Therefore, using classification and

clustering metrics can provide deeper insights into the performance

of machine learning techniques for this task[65].

2. Proposed Method

 The initial step of this study is to identify the meaning of the

Research Queries as in Figure 1 that helps to identify the objective

of this paper. As the interest of applying ML techniques are

evolving in TCP [29], through this paper we expect to appreciate

and audit a portion of the parts of the software/ application. To

accomplish this objective, we enunciated four Research Queries.

 Through these inquiries, we plan to survey all the methods of

ML utilized to show what the most proper strategies are to help

Developers and Testers for additional investigation so that they

may choose the suitable method for Test Case Prioritization [30].

We will likewise explore the most utilized metrics that evaluate the

effectiveness [31] of the proposed techniques in TCP. In this regard,

following research queries (RQs) are set that aims to answer based

on the existing literature in the field. These questions are designed

to guide the review process and provide a framework for test case

prioritization using an effective machine learning technique.

 Research Queries (RQs) defined as follows:

RQ1. Which machine learning techniques can be practical and

efficient at various stages of the software testing life cycle

to rank test cases?

RQ2. What are the qualities and shortcomings of each learning

technique with regards to testing?

RQ3. How would we be able to decide the best possible type of

learning technique for different stages of software testing

process?

RQ4. What are the focused points where Machine Learning &

Deep Learning contributes to software testing process?

2.1 Data Collection for each Research Queries

In our survey paper, 60 papers were comprehended for our

detail review to identify ML techniques used for TCP. We then, at

that point, extricated related information from the papers as

indicated by defined research queries. Table 1 displays the essential

data corresponding to each research inquiry. The kind of

information contemplated the objective that each research query

addresses.

Table 1: Data Required for Each RQs

After reviewing 60 research papers, it was concluded that HMM

model needs to be explored more. As the exhibited modelling

approaches can be implemented in test plan generation, concept of

test case selection, formulation of requirements [32], design and

verification of systems. The whole review process insight us to

capture how any ML model is important to generate test cases and

prioritize [33] them using a likelihood-based method. The

likelihood-based approach makes use of the probabilistic data

pertaining to the system states, their interactions with system users,

and their surroundings.

Research

Queries
Extracted Data

RQ1 ML methods employed for TSP and its noted

advantages and disadvantages RQ2

RQ3

Feature sets utilized in data collecting and

prediction processes

Subjects, experiment ideas and evaluation metrics

RQ4

Results of Machine Learning-Based TSP Methods

in Terms of Accuracy

Accessibility of Datasets and Comprehensive

Results

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 948

Fig. 1: RQs addressed in Research Papers

Furthermore, within this research, both a simulated case study

and a real-world web application dataset are employed to analyse

the efficiency of modelling and test case prioritization strategies.

For investigation of system’s time domain progression, we used

Markov chains. Only software-based systems have been validated

by the exhibited approach, and more study is required to determine

its application to hardware spheres. The applicability of the method

described in this study is also constrained by the fact that not all

software systems have usage data sets that include time domain

data. The strategy can be expanded in situations where time domain

data are not accessible by modelling the system as discrete Markov

chains and employing hidden Markov models (HMM). The

exhibited methodology's ability to discover faults has not been

tested, which is another study disadvantage. It is advised to conduct

additional research, such as the creation of a software-based system

and the seeding of it with recognized problems, to analyse the fault

detection performance.

2.2 Test Cases based on Hidden Markov Model

A test case is a series of states or transitions that move through

the Markov test chain from the starting state to the ending state

when creating test cases for embedded software using the Markov

use model. The following is how the Markov test chain is created

from the usage model: The test chain is first constructed using the

usage chain's structure, and each edge's transition probability is

changed to a counter with an initial value of 0. The number of the

edge then goes up by 1 as more test cases pass it as the testing

process [34] progresses. Finally, depending on the statistical

findings, the counter for each edge is transformed to transition

probability. In this article, we offer a method for creating test cases

[35] for software reliability tests based on the Markov consumption

model.

Input: A Markov chain M, a positive integer n.

Output: A sequence of n test cases.

Step 1. Let A be an nXn matrix whose i, j entry is pi, j for 1 ≤ i,

j ≤ n.

Step 2. From initial distribution of M, generate a random vector

x0 and let x0 = (x0,1, x0,2, ..., x0,n), where x0,j is the component of x0

corresponding to state j.

Step 3. For k = 1, 2, ..., n

Step 3.1 Generate a random number u from the uniform

distribution on [0, 1].

Step 3.2 Compute j = min{l | 1 ≤ l ≤ n and u ≤ A(xk−1,l)}.

Step 3.3 Set xk = (xk1, xk2, ..., xkn), where xkj is the component

of xk corresponding to state j.

Step 3.4 Output the test case xk.

In the aforementioned algorithm, test instances are created

using uniform random distribution that are compared to the Markov

model's transition probability. This algorithm takes into account the

statistical (transition) probability of code coverage [36] in addition

to satisfying the randomness of the test case generation process and

TCP [37] process. The prioritization of a test case Xk as in equation

(1) computed as:

 W(Xk) = W1(Xk) + W2(Xk) (1)

where:

• W1(Xk) is the weight of the test case Xk with respect to the

test coverage.

• W2(Xk) is the weight of the test case Xk with respect to the

test case difficulty.

W1(Xk) is computed as:

W1(Xk) = (C(Xk) / Cmax) (2)

where C(Xk) is the number of covered requirements by the test case

Xk and Cmax is the total number of requirements.

W2(Xk) is computed as:

W2(Xk) = (E(Xk) / Emax) (3)

where E(Xk) is the number of executed requirements by the test case

Xk and Emax is the total number of requirements.

 The importance weight of the test case Xk is computed as the

sum of the weights W1(Xk) and W2(Xk) from equation (2) and (3).

2.3 Performance Measure

Following steps are taken to calculate the performance of HMM

for prioritization of software test cases through the accuracy,

precision, and recall values:

Step 1: Train the HMM model

• Define the observation sequences for each test case.

• Define the ground truth labels for each test case.

• Create an HMM model with the desired number of states.

• Fit the HMM model to the observation sequences.

Step 2: Predict the test case priorities.

• Calculate the probability of each observation sequence

belonging to each state using the trained HMM model.

• Assign the most probable state to each observation

sequence.

• Map the states to the corresponding ground truth labels to

generate the predicted test case priorities.

Step 3: Calculate Accuracy, Precision, and Recall values.

• Compare the predicted test case priorities with the ground

truth labels to calculate the fol-lowing:

• True Positives (TP): The number of test cases correctly

classified as high priority.

• False Positives (FP): The number of test cases incorrectly

classified as high priority.

Select the best appropriate

ML technique

Check its performance

through various

performance metrics

Review ML techniques

based upon based on the

performance metrics

Evaluate to improving

automated TCP in

terms of accuracy &

effectiveness

Research Questions

(RQ)

Data Extractions for

each RQ

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 949

• False Negatives (FN): The number of test cases

incorrectly classified as low or medium priority.

• Calculate the Accuracy, Precision, and Recall values

using the following formulas:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

Precision = TP / (TP + FP)

Recall = TP / (TP + FN)

3. Results

Out of 60 research papers reviewed, 34 papers including

surveys were used Machine Learning techniques [38], 6 papers used

Deep Learning techniques [39]-[44] and remaining ones are non-

ML techniques. From figure 2, research papers that address

research questions are typically structured in a way that includes

56.7% covers RQ1, 16.7% RQ2 & RQ3, 10% RQ1

Fig 2: RQs addressed in Research Papers

A comprehensive and rigorous research design, and a detailed

analysis of the data that provides insights into the topic being

studied. In order to find the solutions, we have outlined the research

question to summarize the utilization of ML techniques for test case

prioritization [45][46] process with performance metrics mentioned

in Figure 3. Our methodical survey aims to give priority values to

choose defined ML techniques for TCP [47]. In this way, we intend

to evaluate ML methods to ensure capability of improvising

automated [48] TCP in terms of accuracy and effectiveness.

Fig.3: ML Technique used for TCP

Now, we may need to choose only those test cases/ suites

[49][50] that provide the maximum code coverage in the quickest

amount of time in subsequent testing rounds where time could be

one of the limited constraints. To improve testing efficiency, Test

Impact Analysis [51]-[56] is another optimization technique that is

used to identify which tests execute a particular code and what time

it has taken while executing that code. The snippet of a Hidden

Markov Model approach in the following code figure 3 with three

states (Low, Medium, and High) that can be used for test case

prioritization of modelling [57].

 In figure 4 code, the test_cases parameter is a list of test case

objects. Each test case object has a get_observation_sequence()

method that returns a sequence of observations from the execution

of the test case. Observation sequence can be any measurable aspect

of the test case, such as time taken to execute the test case, or

Fig. 4: Snippet of HMM for three priorities states

number of defects found during execution. The code creates an

HMM with three states (Low, Medium, and High) and fits the

model to the observation sequences. It then calculates the

probability of each observation sequence belonging to each state

and calculates the expected value of each state based on the state

probabilities. The test cases are then sorted based on the expected

value of their respective observation sequences [58], with the

regression test cases [59] that are expected to have the highest

impact on the software application [60] appearing first in the sorted

list.

After all this comparison, Markov Model would be able to

generate test cases and prioritize test cases as per execution order

and execution time mentioned in figure 5 with the help of

evaluating aggregate code coverage and time taken while executing

the test suites. For example, we have taken a sample of only for 200

test suites. Test suite 1 gives 29.208% code coverage with

computation test time of 0.000681 seconds. Test suite 2, will be

having both code coverage of test suite 1 and test suite 2 i.e., 32.921

with computation time of 0.00115 and so on. Generally, test cases

are ordered based on the following priority levels:

• High priority: Test cases that cover functionality that is

critical to the application.

• Medium priority: Test cases that cover functionality that is

important, but not critical.

• Low priority: Test cases that cover functionality that is not

important.

RQ1
56.70%

RQ2
16.70%

RQ3
16.70%

RQ4
10%

N
o

n
-M

L,
 2

0

N
N

, 5

B
N

, 3

A
N

N
, 3

R
L,

 3

M
ar

ko
v

M
o

d
el

,
2

C
lu

st
er

in
g

M
et

h
o

d
, 3

D
L,

 4

SV
M

, 2

G
A

, 1

Use of ML techniques in Research Papers

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 950

Fig. 5: Prioritization of Unit Test Cases

From 200 test cases, the ground truth priorities are as follows:

• 50 test cases are high priority.

• 100 test cases are medium priority.

• 50 test cases are low priority.

The prioritization model based on Hidden Markov predicts the

following priorities:

• 40 high priority test cases

• 100 medium priority test cases

• 60 low priority test cases

 Hence, Out of 200 test cases, total 40 test cases are

classified as high priority test cases.

4. Discussions and Conclusions

Based on the comprehensive analysis, the paper suggests that

Markov Chain Model is a useful machine learning technique

employed for generating test cases that are most likely to uncover

new bugs. By examining the transition probabilities between states

in the model, it is possible to identify the test cases that are most

likely to move from a state where no bugs have been found to a state

where a bug has been discovered. This strategy has the potential to

enhance the efficiency and efficacy of the testing procedure,

enabling developers to promptly and precisely detect and rectify

bugs. Although machine learning has shown great potential in

improving the effectiveness and effi-ciency of test case

prioritization. By training classifiers on large and diverse datasets,

we can identify patterns and relationships between various factors

that can influence the priority of test cases. This allows us to

develop accurate and robust models that can prioritize test cases

based on their relative importance. In addition to, Hidden Markov

Models (HMM) have shown potential for test case prioritization by

modeling the temporal behavior of software systems. By using

HMM to capture the sequence of states that a system transitions

through during execution, we can prioritize test cases based on their

ability to trigger transitions between high-priority states.

One of the limitations is that HMM assumes a stationary and

ergodic system, which may not hold for all software systems.

Additionally, HMM may is not suitable for capturing complex or

non-linear relationships between states in the system.

A delimitation of using HMM is the availability of sufficient

data to train the model. HMM requires a large amount of data to

accurately model the behavior of the software system, which may

be a challenge for smaller or less mature systems. Additionally, the

performance of HMM may be sensitive to changes in the system or

the underlying data, which can affect the accuracy and reli-ability

of the prioritization results.

Future work in this area can focus on addressing these

limitations and delimitations and exploring new approaches to

improve the effectiveness and efficiency of HMM-based TCP.

Some potential areas for future research include:

• Developing methods for identifying and mitigating non-

stationary and non-ergodic behavior in software systems.

• Exploring the application of alternative probabilistic

frameworks, like Markov Decision Processes (MDP), for

capturing intricate and non-linear interdependencies among

system states.

• Investigating the use of domain-specific features and metrics

that can capture the unique charac-teristics and requirements of

different types of software systems and applications.

• Integrating HMM-based prioritization with other testing

techniques such as regression testing, mutation testing, and fuzz

testing to create more comprehensive and effective testing

strategies.

 Overall, the use of HMM for test case prioritization holds great

promise for improving the quality and efficiency of software

testing, particularly for systems that exhibit stationary and ergodic

behavior. With continued research and development, we can expect

to see more sophisticated and effective HMM-based prioritization

models that can be applied to a wide range of software systems and

applications.

Acknowledgements

We extend our heartfelt appreciation to the KIET Group of

Institutions and Sangam University for their generous support,

which made this work possible. Additionally, we are immensely

grateful to the reviewers, colleagues, and guides who dedicated

their time and effort to provide valuable and constructive feedback

during the review process. Their insightful input has significantly

contributed to enhancing the quality of this manuscript.

References

[1] Haghighatkhah, A., Mäntylä, M., Oivo, M., & Kuvaja, P. (2018). Test

Prioritization in Continuous Integration, Environments. J. Syst. Softw.,

146, 80-98, https://doi.org/ 10.1016/ j.jss.2018.08.061.

[2] Noorian, M. Bagheri, E., & Du, W. (2011). Machine Learning-Based

Software Testing: Towards a Classification Framework. In SEKE, pp.

225–229.

[3] Lou, Y., Chen, J., Zhang, L., & Hao, D. (2019). A Survey on

Regression Test-Case Prioritization. In Advances in Computers;

Elsevier, pp 1–46, https://doi.org/ 10.1016/zbs.adcom.2018.10.001

[4] Hajri, I., Goknil, A., Pastore, F., & Briand, L. C. (2020). Automating

System Test Case Classification and Prioritization for Use Case-

Driven Testing in Product Lines, Empir. Softw. Eng., 25(5), 3711–

3769. https://doi.org/ 10.1007/s10664-020-09853-4.

[5] Kim, J., Ryu, J. W., Shin, H. J., & Song, J. H. (2017).

Machine Learning Frameworks for Automated Software Testing

Tools: A Study. International Journal of Contents, 13(1), 38–44,

https://doi.org/10.5392/IJoC.2017.13.1.038

[6] Nguyen, V & Le, B. RLTCP: A Reinforcement Learning Approach to

Prioritizing Automated User Interface Tests. Inf. Softw. Technol. 2021,

136 (106574), 106574. https://doi.org/10.1016/j.infsof.2021.106574.

[7] Durelli, V. H. S., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M.

M., Dias, D. R. C. & Guimaraes, M. P. (2019) Machine Learning

Applied to Software Testing: A Systematic Mapping Study. IEEE

Trans. Reliab., 68(3), 1189–1212.

https://doi.org/10.1109/tr.2019.2892517.

[8] Lousada, J. & Ribeiro, M. (2020) Reinforcement Learning for Test

Case Prioritization. arXiv [cs.SE],. http://arxiv.org/abs/2012.11364.

[9] Li, Q. & Pham, H. Modeling Software Fault-Detection and Fault-

Correction Processes by Considering the Dependencies between Fault

Amounts. Appl. Sci. (Basel) 2021, 11(15), 6998.

https://doi.org/10.3390/app11156998.

[10] Bagherzadeh, M., Kahani, N. & Briand, L. Reinforcement Learning

for Test Case Prioritization. IEEE Trans. Softw. Eng. 2022, 48(8),

2836–2856. https://doi.org/10.1109/tse. 2021.3070549.

[11] Agarwal, D. Tamir, D. E. Last, M. Kandel, A. (2012).

A Comparative Study of Artificial Neural Networks and Info-Fuzzy

Networks as Automated Oracles in Software Testing, IEEE Trans.

https://doi.org/10.1007/s10664-020-09853-4
https://doi.org/10.5392/IJoC.2017.13.1.038
https://doi.org/10.1016/j.infsof.2021.106574
https://doi.org/10.1109/tr.2019.2892517
http://arxiv.org/abs/2012.11364
https://doi.org/10.3390/app11156998
https://doi.org/10.1109/tse.2021.3070549

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 951

Syst. Man Cybern. A Syst. Hum.,

42(5), 1183–1193. https://doi.org/10.1109/tsmca.2012. 2183590.

[12] Path, O. C. (2019). Heuristic based Regression Test Case Prioritization

Algorithm with Analysis for Test Cost Reduction and Optimized Cost

Path Generation. Journal of Theoretical and Applied Information

Technology, No. 17.

[13] Lachmann, R., Schulze, S., Nieke, M., Seidl, C., &

Schaefer, I. (2016). System-Level Test Case Prioritization Using

Machine Learning. In 2016 15th IEEE International Conference on

Machine Learning and Applications (ICMLA), IEEE.,

https://doi.org/10.1109/ICMLA.2016. 0065

[14] Zhang, W., Qi, Y., Zhang, X., Wei, B., Zhang, M., &

Dou, Z. On Test Case Prioritization Using Ant Colony Optimization

Algorithm. In 2019 IEEE 21st International Conference on High

Performance Computing and Communications; IEEE 17th

International Conference on Smart City; IEEE 5th International

Conference on Data Science and Systems (HPCC/SmartCity/DSS);

IEEE, 2019.

https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00388

[15] Zhao, X., Wang, Z., Fan, X., & Wang, Z. (2015).

A Clustering-Bayesian Network Based Approach for Test Case

Prioritization. In 2015 IEEE 39th Annual Computer Software and

Applications Conference; IEEE,. https://

doi.org/10.1109/COMPSAC.2015.154

[16] Mirarab, S., & Tahvildari, L. (2007). A Prioritization Approach for

Software Test Cases Based on Bayesian Networks. In Fundamental

Approaches to Software Engineering; Springer Berlin Heidelberg:

Berlin, Heidelberg, pp. 276-290. https://doi.org/10.1007/978-3-540-

71289-3_22

[17] Stallbaum, H., Metzger, A. & Pohl, K. (2008) An Automated

Technique for Risk-Based Test Case Generation and Prioritization. In

Proceedings of the 3rd international workshop on Automation of

software test; ACM: New York, NY, USA,

https://doi.org/10.1145/1370042.1370057

[18] Lousada, J., & Ribeiro, M. (2020). Neural Network Embeddings for

Test Case Prioritization. arXiv [cs.SE],

http://arxiv.org/abs/2012.10154.

[19] Meçe, E. K., Paci, H. & Binjaku, K. (2020). The Application of

Machine Learning in Test Case Prioritization-a Review. European

Journal of Electrical Engineering and Computer Science, 4(1),

https://doi.org/10.24018/ejece.2020. 4.1.128

[20] Carlson, R., Do, H., & Denton, A. (2011). A Clustering Approach to

Improving Test Case Prioritization: An Industrial Case Study. In 2011

27th IEEE International Conference on Software Maintenance

(ICSM); IEEE., https://doi.org/10.1109/ICSM.2011.6080805

[21] Gupta, N., Sharma, A. & Pachariya, M. K. (2022).

Multi-Objective Test Suite Optimization for Detection and

Localization of Software Faults. J. King Saud Univ. - Comput. Inf. Sci.,

34(6), 2897–2909. https://doi.org/ 10.1016/j.jksuci. 2020.01.009.

[22] Cheruiyot, V. (2021). Machine Learning Driven Software Test Case

Selection. University of Alberta Libraries. https://doi.org/10.7939/R3-

M9D9-9861.

[23] Xiao, H., Cao, M., & Peng, R. (2020). Artificial Neural Network-

Based Software Fault Detection and Correction Prediction Models

Considering Testing Effort. Applied Soft Computing, 94,

https://doi.org/10.1016/j.asoc.2020.106491

[24] Höstklint, N., & Larsson, J. (2021). Dynamic Test Case Selection

Using Machine Learning.

[25] Lima, J. A. P.; Vergilio, S. R. (2022). A Multi-Armed Bandit

Approach for Test Case Prioritization in Continuous Integration

Environments. IEEE Trans. Softw. Eng., 48 (2), 453–465.

https://doi.org/10.1109/tse.2020.2992428.

[26] Lachmann, R. (2017). Black-Box Test Case Selection and

Prioritization for Software Variants and Versions,

Universitätsbibliothek Braunschweig, https://doi.org/

10.24355/dbbs.084-201711021237

[27] Busjaeger, B. & Xie, T. (2016). Learning for Test Prioritization: An

Industrial Case Study. In Proceedings of the 2016 24th ACM

SIGSOFT International Symposium on Foundations of Software

Engineering; ACM: New York, NY, USA,

https://doi.org/10.1145/2950290.2983954

[28] Jahan, H., Feng, Z., Mahmud, S. M. H. & Dong, P. (2019). Version

Specific Test Case Prioritization Approach Based on Artificial Neural

Network. J. Intell. Fuzzy Syst. 2019,

36(6), 6181–6194, https://doi.org/10.3233/jifs-181998.

[29] Chen, J., Bai, Y., Hao, D., Xiong, Y., Zhang, H., Zhang, L., & Xie, B.

Test Case Prioritization for Compilers: A Text-Vector Based

Approach. In 2016 IEEE International Conference on Software

Testing, Verification and Validation (ICST); IEEE, 2016.

https://doi.org/10.1109/ ICST.2016.19

[30] Kashyap, A. (2013). A Markov Chain and Likelihood-Based Model

Approach for Automated Test Case Generation, Validation and

Prioritization: Theory and Application (Doctoral Dissertation).

[31] Chen, J., Hu, W., Hao, D., Xiong, Y., Zhang, H., Zhang, L., & Xie, B.

(2016). An Empirical Comparison of Compiler Testing Techniques.

In Proceedings of the 38th International Conference on Software

Engineering; ACM: New York, NY, USA,

https://doi.org/10.1145/2884781.2884878

[32] Kalyani, R., Mounika, P.S., Naveen, R., Maridu, G., &

Ramya, P. (2018). Test Case Prioritization Using Requirements

Clustering. International Journal of Applied Engineering Research,

13(15), 11776–11780.

[33] Chen, J., Bai, Y., Hao, D., Xiong, Y., Zhang, H. & Xie, B. (2017).

Learning to Prioritize Test Programs for Compiler Testing. In 2017

IEEE/ACM 39th International Conference on Software Engineering

(ICSE); IEEE, https://doi.org/ 10.1109/ICSE.2017.70

[34] Spieker, H. Gotlieb, A. Marijan, D & Mossige, M. (2017).

Reinforcement Learning for Automatic Test Case Prioritization and

Selection in Continuous Integration.

In Proceedings of the 26th ACM SIGSOFT International Symposium

on Software Testing and Analysis; ACM: New York, NY, USA,

https://doi.org/10.1145/3092703.3092709

[35] Tonella, P., Avesani, P., & Susi, A. Using the Case-Based Ranking

Methodology for Test Case Prioritization. In 2006 22nd IEEE International

Conference on Software Maintenance; IEEE, 2006.

https://doi.org/10.1109/ICSM. 2006.74

[36] Konsaard, P., & Ramingwong, L. (2015). Total Coverage Based

Regression Test Case Prioritization Using Genetic Algorithm. In 2015

12th International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology (ECTI-

CON); IEEE, https://doi.org/10.1109/ECTICon.2015.7207103

[37] Improving Proceeding Test Case Prioritization with Learning

Software Agents. (2014). In Proceedings of the 6th International

Conference on Agents and Artificial Intelligence; SCITEPRESS -

Science and and Technology Publications,

https://doi.org/10.5220/0004920002930298

[38] Lachmann, R. (2018). 12.4 - Machine Learning-Driven Test Case

Prioritization Approaches for Black-Box Software Testing. In

Proceeding - ettc2018; AMA Service GmbH, Von-Münchhausen-Str.

49, 31515 Wunstorf, Germany, https://doi.org/10.5162/ettc2018/12.4

[39] Sharif, A., Marijan, D., & Liaaen, M. (2021). DeepOrder: Deep

Learning for Test Case Prioritization in Continuous Integration

Testing. In 2021 IEEE International Conference on Software

Maintenance and Evolution (ICSME);

IEEE, https://doi.org/10.1109/ICSME52107.2021.00053

https://doi.org/10.1109/tsmca.2012.%202183590
https://doi.org/10.1109/ICMLA.2016.%200065
https://doi.org/10.1109/HPCC/SmartCity/DSS.2019.00388
https://doi.org/10.1109/COMPSAC.2015.154
https://doi.org/10.1109/COMPSAC.2015.154
https://doi.org/10.1007/978-3-540-71289-3_22
https://doi.org/10.1007/978-3-540-71289-3_22
https://doi.org/10.1145/1370042.1370057
http://arxiv.org/abs/2012.10154
https://doi.org/10.24018/ejece.2020.%204.1.128
https://doi.org/10.1109/ICSM.2011.6080805
https://doi.org/10.1016/j.jksuci.2020.01.009
https://doi.org/10.7939/R3-M9D9-9861
https://doi.org/10.7939/R3-M9D9-9861
https://doi.org/10.1016/j.asoc.2020.106491
https://doi.org/10.1109/tse.2020.2992428
https://doi.org/10.24355/dbbs.084-201711021237
https://doi.org/10.24355/dbbs.084-201711021237
https://doi.org/10.1145/2950290.2983954
https://doi.org/10.3233/jifs-181998
https://doi.org/10.1109/ICST.2016.19
https://doi.org/10.1145/2884781.2884878
https://doi.org/%2010.1109/ICSE.2017.70
https://doi.org/10.1145/3092703.3092709
https://doi.org/10.1109/ICSM.2006.74
https://doi.org/10.1109/ECTICon.2015.%207207103
https://doi.org/10.5220/0004920002930298
https://doi.org/10.5162/ettc2018/12.4
https://doi.org/10.1109/ICSME52107.2021.00053

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(20s), 945–952 | 952

[40] Matcha, W., Touré, F., Badri, M., & Badri, L. (2020).

Using Deep Learning Classifiers to Identify Candidate Classes for

Unit Testing in Object-Oriented Systems. In SEKE,

pp 353–358.

[41] Medhat, N., Moussa, S. M., Badr, N. L., Tolba, M. F. A. (2020).

Framework for Continuous Regression and Integration Testing in IoT

Systems Based on Deep

Learning and Search-Based Techniques. IEEE Access, 8, 215716–

215726. https://doi.org/10.1109/access.2020.3039 931.

[42] Landin, C., Hatvani, L., Tahvili, S., Haggren, H., Längkvist, M., Loutfi,

A., & Håkansson, A. (2020). Performance Comparison of Two Deep

Learning Algorithms in Detecting Similarities between Manual

Integration Test Cases. In The Fifteenth International Conference on

Software Engineering Advances (ICSEA 2020); Porto, Portugal, pp.

90–97.

[43] Chen, Y., Wang, Z., Wang, D., Yao, Y., & Chen, Z. (2019). Behavior

Pattern-Driven Test Case Selection for Deep Neural Networks. In

2019 IEEE International Conference On Artificial Intelligence Testing

(AITest); IEEE, https://doi. org/10.1109/AITest.2019.000-2

[44] Omri, S., & Sinz, C. (2021). Machine Learning Techniques for

Software Quality Assurance: A Survey. arXiv [cs.SE],.

http://arxiv.org/abs/2104.14056.

[45] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (1999). Test

Case Prioritization: An Empirical Study. In Proceedings IEEE

International Conference on Software Maintenance - 1999 (ICSM’99).

“Software Maintenance for Business Change” (Cat. No.99CB36360);

IEEE, https://doi.org /10.1109/ICSM.1999.792604

[46] Gökçe, N., Eminov, M., & Belli, F. Coverage-Based, Prioritized

Testing Using Neural Network Clustering.

In Computer and Information Sciences – ISCIS 2006; Springer Berlin

Heidelberg: Berlin, Heidelberg, 2006,

pp. 1060–1071. https://doi.org/10.1007/11902140_110

[47] Gökçe, N., Belli̇, F., Emi̇nli̇, M., & Di̇nçer, B. T. (2015). Model-Based

Test Case Prioritization Using Cluster Analysis: A Soft-Computing

Approach. TURK. J. OF ELECTR. ENG. COMPUT. SCI. 23, 623–

640. https://doi.org/10.3906/elk-1209-109.

[48] Koochakzadeh, N. & Garousi, V. A (2010). Tester-Assisted

Methodology for Test Redundancy Detection. Adv. Softw. Eng., pp.

1–13. https://doi.org/10.1155/2010/ 932686.

[49] Singh, Y., Kaur, A., & Suri, B. (2010). Test Case Prioritization Using

Ant Colony Optimization. Softw. Eng. Notes, 35(4), 1–7.

https://doi.org/10.1145/1811226. 1811238.

[50] Paramshetti, P., & Phalke, D. A. (2014). Survey on Software Defect

Prediction Using Machine Learning Techniques. International

Journal of Science and Research, 3(12),

1394–1397.

[51] Gokce, N. & Eminli, M. (2014). Model-Based Test Case Prioritization

Using Neural Network Classification. Comput. Sci. Eng. Int. J., 4 (1),

15–25. https://doi.org/ 10.5121/cseij.2014.4102.

[52] Ribeiro, M., Grolinger, K., Capretz, M. A. M. (2015).

MLaaS: Machine Learning as a Service. In 2015 IEEE 14th

International Conference on Machine Learning and Applications

(ICMLA); IEEE, https://doi.org/10.1109/ ICMLA.2015.152

[53] Jiang, B., & Chan, W. K. (2015). Input-Based Adaptive Randomized

Test Case Prioritization: A Local Beam Search Approach. J. Syst.

Softw., 105, 91–106. https://doi.org/ 10.1016/ j.jss.2015.03.066.

[54] Yan, R., Chen, Y., Gao, H., & Yan, J. (2022). Test Case Prioritization

with Neuron Valuation-Based Pattern. Science of Computer

Programming, 215. https://doi.org/10.1016/ j.scico.2021.102761

[55] Korel, B., & Koutsogiannakis, G. (2009). Experimental Comparison

of Code-Based and Model-Based Test Prioritization. In 2009

International Conference on Software Testing, Verification, and

Validation Workshops; IEEE,

https://doi.org/10.1109/ICSTW.2009.45

[56] Mirarab, S. & Tahvildari, L. (2008). An Empirical Study on Bayesian

Network-Based Approach for Test Case Prioritization. In 2008

International Conference on Software Testing, Verification, and

Validation; IEEE,. https:// doi.org/10.1109/ICST.2008.57

[57] Wei, D., Sun, Q., Wang, X., Zhang, T., & Chen, B. (2020).

A Model-Based Test Case Prioritization Approach Based on Fault

Urgency and Severity. Int. J. Softw. Eng. Knowl. Eng. 30(02), 263–290.

https://doi.org/10.1142/s021819402050 0126.

[58] Chen, J., Zhu, L., Chen, T. Y., Huang, R., Towey, D.,

Kuo, F.-C., & Guo, Y. An Adaptive Sequence Approach for OOS Test

Case Prioritization. In 2016 IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW); IEEE, 2016.

https://doi.org/10 .1109/ ISSREW. 2016.29

[59] Muthusamy, T. K. S. (2014). Effectiveness of Test Case Prioritization

Techniques Based on Regression Testing.

Int. J. Softw. Eng. Appl., 5 (6), 113–123. https://doi.org/

10.5121/ijsea.2014.5608.

[60] King, T. M., Arbon, J., Santiago, D., Adamo, D., Chin, W., &

Shanmugam, R. (2019). AI for Testing Today and Tomorrow:

Industry Perspectives. In 2019 IEEE International Conference on

Artificial Intelligence Testing (AITest); IEEE,.

https://doi.org/10.1109/AITest.2019.000-3

[61] Rajora , K., & abdulhussein , N. salih. (2023). Reviews research on

applying machine learning techniques to reduce false positives for

network intrusion detection systems. Babylonian Journal of Machine

Learning, 2023, 26–30. https://doi.org/10.58496/BJML/2023/005

[62] Alsajri, A., & Steiti, A. (2023). Intrusion Detection System Based on

Machine Learning Algorithms:(SVM and Genetic Algorithm).

Babylonian Journal of Machine Learning, 2024, 15–29.

https://doi.org/10.58496/BJML/2024/002

[63] Alsajri, A. (2023). A Review on Machine Learning Strategies for

Real-World Engineering Applications. Babylonian Journal of

Machine Learning, 2023, 1–6.

https://doi.org/10.58496/BJML/2023/001

[64] T. Bhaskar, S. A. Shiney, S. B. Rani, K. Maheswari, S. Ray and V.

Mohanavel, "Usage of Ensemble Regression Technique for Product

Price Prediction," 2022 4th International Conference on Inventive

Research in Computing Applications (ICIRCA), Coimbatore, India,

2022, pp. 1439-1445, doi: 10.1109/ICIRCA54612.2022.9985521.

[65] Saravanan, P., Aparna Pandey, Kapil Joshi, Ruchika Rondon,

Jonnadula Narasimharao, and Afsha Akkalkot Imran. "Using machine

learning principles, the classification method for face spoof detection

in artificial neural networks." In 2023 3rd International Conference

on Advance Computing and Innovative Technologies in Engineering

(ICACITE), pp. 2784-2788. IEEE, 2023.

https://doi.org/10.1109/access.2020.3039%20931
http://arxiv.org/abs/2104.14056
https://doi.org/10.1007/11902140_110
https://doi.org/10.3906/elk-1209-109
https://doi.org/10.1155/2010/%20932686
https://doi.org/10.1145/1811226.%201811238
https://doi.org/10.5121/cseij.2014.4102
https://doi.org/10.1109/%20ICMLA.2015.152
https://doi.org/%2010.1016/%20j.jss.2015.03.066
https://doi.org/10.1016/%20j.scico.2021.102761
https://doi.org/10.1109/ICSTW.2009.45
https://doi.org/10.1142/s0218194020500126
https://doi.org/10%20.1109/%20ISSREW.%202016.29
https://doi.org/%2010.5121/ijsea.2014.5608
https://doi.org/%2010.5121/ijsea.2014.5608
https://doi.org/10.1109/AITest.2019.000-3
https://doi.org/10.58496/BJML/2023/005
https://doi.org/10.58496/BJML/2024/002
https://doi.org/10.58496/BJML/2023/001

