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Abstract: Knowing the shape patterns can be highly helpful for building extraction in very high-resolution satellite (VHRS) images, which 

is among the most fascinating and difficult topics. For a variety of purposes, including land-cover mapping, managing urban resources, 

keeping track of natural disasters, and locating illegal structures. Deep-learning-based semantic segmentation networks have significantly 

improved building footprint generation performance when compared to more traditional processes. Some of the existing methods like CLP-

CNN, and RegGAN have disadvantages that are unavoidably impacted by a number of circumstances, such as unpredictable backgrounds, 

blurry buildings in the background, obstructions, etc. These methods can utilize local texture and context data, but they are unable to record 

patterns of building shapes. A solution based on deep learning is suggested to regularize building borders in order to overcome this problem. 

The Mask R-CNN technique is employed for detection and Masking. For boundary regularization of buildings Guided filter is used to 

refine the output masks. These refined masks of two images at different timelines are used to perform change detection. This method has 

given the regularized building footprints as the output in the form of masks with the changes detected. The performance of the proposed 

system is measured and obtained an accuracy of 0.92, F1-score of 0.95, precision score of 0.93 and recall score of 0.98. By incorporating 

guided filters for boundary regularization and change detection, the proposed method achieves high precision in detecting building changes 

and offers a versatile, non-intrusive solution for various applications, including land-cover mapping and urban resource management. 

Keywords: Convolutional Neural Network, Mask R-CNN, High-Resolution Satellite Imagery, Boundary Regularization, Semantic 

Segmentation 

 

1. Introduction 

In order to capture small objects and features like particular 

buildings, trees, roadways, and other man-made structures, VHRS 

have a high spatial resolution, usually less than one metre per pixel. 

These images offer an excellent representation of the earth's 

surface. Semantic segmentation can be applied on these images in 

order to regularize Building boundaries. After the segmentation 

and regularizing the boundaries of two same images at different 

timelines, change detection can be performed. Such work helps 

real estate industry, flood management and updation of GIS maps. 

The building boundary regularization model is built using the 

satellite images of Mumbai city belonging to Maharashtra of India 

and a sample specimen is shown in Figure 1. Mumbai is a popular 

choice for urban studies and research due to its status as a megacity 

with a complex urban landscape, data accessibility, and policy 

implications. The proposed model seeks to address challenges 

including complex urban environments with high population 

density, unpredictable backgrounds, and dynamic changes. 

 

Fig 1: Dataset specimen 

1.1 Convolutional Neural Networks (CNN): 

Directly from pixel images, a Convolutional neural network is 

created to precisely identify visual patterns. A Convolutional layer, 

a pooling layer, and a fully connected layer are the layers that make 

up the model network. The model applies a series of filters on the 

input image in the Convolutional layer. Figure 2 presents CNN 

architecture is shown in a schematic diagram. 
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Figure 2: CNN architecture is shown in a schematic diagram.[1] 

 

1.2 Mask RCNN: 

The Mask R-CNN extends the Faster R-CNN model by including 

a segmentation branch, in order to build pixel-level masks for each 

item recognized in an image. Three key components the mask 

head, backbone network, and region proposal network (RPN) of 

the Mask R-CNN architecture are used. In order to gather 

characteristics from the original image, the backbone network is 

commonly a pre-trained CNN like ResNet or VGG. Candidate 

object bounding boxes are proposed by the RPN and subsequently 

refined using a bounding box regression head. The mask head then 

applies a series of Convolutional layers to the feature maps in order 

to create a binary mask for each proposed object. Figure 3 

represents its architecture. 

 

Figure 3: Mask R-CNN Architecture. [2] 

1.3 VHRS Images: 

Very High-Resolution Satellite (VHRS) images are satellite 

images with a high spatial resolution, allowing them to capture 

extremely tiny features on the surface of the Earth. Typically, 

satellites in low Earth orbit like WorldView-3, Pleiades, and 

GeoEye are used to take these images. 

1.4 Resnet Architecture: 

ResNet is known for being able to train neural networks with 

hundreds of layers or more without experiencing the issue of 

vanishing gradients that can arise in deep networks. ResNet is 

made up of a set of residual blocks, each of which has a number of 

Convolutional layers and shortcut connections. Figure 4 presents 

the architecture of Resnet-101. 

 

Figur 4: The structure of the ResNet-101-based deep feature 

extractor. [3] 

1.5 Instance Segmentation: 

Due to the fact that it calls for both object recognition and semantic 

segmentation, instance segmentation is a difficult task. The 

algorithms need to identify the objects in an image and then 

segment each object into its individual parts. The output of instance 

segmentation is a set of bounding boxes, one for each object found, 

and a mask identifying the pixels that make up the object. 

 

1.6 Raster to Vector Data: 

Converting raster to vector data refers to image transformation as 

a process or raster representation into a vector format. Raster data 

consists of a grid of pixels, where each pixel contains information 

about color or intensity. 

 

1.7 Shape File: 

A common geographical vector data format for storing geographic 

characteristics like points, paths, and polygons is called a shape 

file. It consists of multiple files (.shp, .shx, .dbf) that collectively 

keep track of the features' characteristics and shape. 

 

1.8 Motivation: 

Traditionally, boundary regularization of buildings have been 

carried out through manual mapping, a time-consuming process, 

labor-intensive, and having more chance of raising errors. There 

are some disadvantages of using traditional processes and those are 

unable to solve the problems like land-cover mapping, managing 

urban resources, monitoring natural disasters and identifying 

illegal constructions. 

The motivation behind this work is to increase the speed and 

accuracy of mapping, allowing for more efficient and effective 

method of boundary regularization of buildings by CNN one of the 

deep learning techniques. 

 

1.9 PROBLEM STATEMENT: 

The goal of the project is to regularise the boundaries of buildings 

in metropolitan areas by creating a model utilising deep learning 

techniques. In order to capture small objects and features like 

individual buildings, trees, roads, and other man-made structures, 

VHRS images must have a high spatial resolution, typically less 

than one metre per pixel. In order to regularise Building borders 

and detect changes between two images taken at various timelines, 

we must employ semantic segmentation from these images. Such 

work supports the real estate sector, flood management, map 

updates, and loss estimation during natural disasters. 

 

1.10 Objectives: 

The following is a list of this work's main goals: 

• To Create Indian dataset specific to the Maharashtra State, 

Mumbai City. 

• To develop a deep learning model that accurately identifies 

building footprints and regularizes boundaries from VHRS 

images. 

• To update the GIS maps with the change detection 

 

1.11 Organization 

This paper follows the following structure: A literature review of 

various building regularization and change detection efforts is 

given in Section 2. The proposed approach and architecture are 

then presented in the section 3. Results achieved and conclusions 

are discussed in section 4. 
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2. Related Works 

This section provides a list of numerous literature reviews that are 

used as references. The authors of article [4] described FER-CNN 

approach as a way to improve building detection and classification 

accuracy. There are two steps to Faster R-CNN’s work. The feature 

extractor and the VGG16 model are used in the first stage to 

process the initial data. A map of the features created as a 

consequence of this method is used in the following step. The 

second network does structure detection using the regions created 

by the first network, also known as the (RPN), also referred to as 

region proposals. 

Advantages: FER-CNN method has a substantially more accuracy 

in the recognition of minute objects (like a garage). Improved 

resistance to shadow areas, which are frequently visible in satellite 

images of urban areas, is another advantage of this network. 

Disadvantages: Their algorithm does not pick up on objects that 

are completely shaded and have roofs that only slightly contrast 

with their surroundings. 

Authors of [5] suggested a network for generating building 

footprints with regularized boundaries and that is named as 

RegGAN. Based on their nature, tasks can be split into two 

categories: building boundaries regularization and semantic 

segmentation. They suggest integrating boundary regularization 

and semantic segmentation without sacrificing their semantic 

accuracy. Generator and discriminator are the two modules that 

make up RegGAN. The regularization path and the reconstruction 

path are the two main paths of the generator. 

Advantages: The best results were obtained using this strategy, 

which combined boundary regularization with semantic 

segmentation into an end-to-end network. 

Disadvantages: RegGAN requires the use of loss after 

regularization and discriminator of multiscale to further enhance 

the regularization of building result. 

The method outlined in [6] models the patterns of building shape 

that improve building segmentation accuracy. An adversarial 

shape learning network (ASLNet) is suggested by the authors. In 

ASLNet, the adversarial learning method and a Convolutional 

Neural Network shape regularizer are both added to explicitly 

reflect the form restrictions and enhance the embedding of the 

shape features. 

Advantages: It is crucial for many applications, including mapping 

the land cover, managing resources of urban areas, finding 

unauthorized structures, etc. 

Disadvantages: The ED-FCN produces segmentation results that 

are typically round-edged. 

The LSI-RNN aims to detect line segments directly rather than 

edges. Its explanation can be found in [7]. In order to produce an 

(AFM), LSI-RNN employs a neural discriminative dimensionality 

reduction (NDDR) layer, another contained branch. These 

method's four consecutive parts are the backbone, NDDRCNNs, 

AFM, recurrent decoder, and skip features with care. 

Convolutional features were learned from a given image using the 

Resnet-50 as a foundation. RNN receives both the location of the 

initial corner and the skip feature paired with AFM in order to 

make future predictions of building corners. 

Advantages: In three datasets, the LSI-RNN performed better than 

competing methods and produced the best results. The geometry 

of the buildings can be described more precisely using this way. 

Disadvantages: The LSI-RNN designation has a tendency to 

highlight the rough edges of structures in order to depict their 

angular shapes, neglecting the curve's smooth vertices in the 

process. 

According to the methodology described in [8], CLP-CNN 

technique is used to make the segmentation of boundaries of 

building automatic from remote sensing images. Three 

components make up the system: 

1) A border predictor is used to gather the rough polygonal bounds 

of each RoI; 

2) To customize the vertices of the retrieved polygonal boundaries, 

a concentric loop-shaped Convolutional model with bidirectional 

coupling loss is utilized; 

3) At the manual delineation stage, their borders are eventually 

regularized to polygons using a refinement block. 

Advantages: This technique makes it possible to accurately 

delineate building footprints in surveying and mapping without the 

need for manual labor. 

Disadvantages: It is unavoidably impacted by a number of 

circumstances, such as unpredictable backgrounds, blurry 

buildings in the background, obstructions, etc. 

Methodology of [9] uses WSSS method, which comprises building 

CAMs and then training a network for segmentation using those 

CAMs The methodology contains two networks: BEN and PANet. 

For PANet, a model that has been pretrained on the City Scapes 

dataset serves as the foundation for feature extraction. 

Advantages: The PANet intends to maximize the quality of CAMs 

by utilizing global pixel-wise affinities. 

Disadvantages: It is reliable to reliable pixel wise affinities only. It 

is more concentrated on weak supervised buildings. 

There are two primary steps in the method described in [10]. The 

first is a HED unit, which is modeled after the fundamental edge 

detector, HED, and is coupled to a backbone encoder. 

Advantages: It improves automated systems' capacity to recognize 

the limits of semantic segmentation masks while extracting 

buildings from remote sensing data. 

Disadvantages: The model is implemented in building boundary 

extraction with U-Net architectures only. 

The methodology described in [11] describes a quick border 

identification method based on a reduction dimensionally strategy 

in order to increase automation and guarantee correctness. They 

improved the algorithm upon sleeve, which necessitates a large 

number of iterations, by converting the borders detected by the 

alpha shape algorithm to a 2Dimensional image and applying 

Gaussian filtering recursively. This method increases the accuracy 

of detection. 

Advantages: The technique increases the accuracy of building 

boundary detection while simultaneously speeding up data 

processing. 

Disadvantages: The overall method generates more accurate 

building footprints, however it does not take into account the 

intensity image for further improving the findings through 

regularization. 

In very high resolution aerial images, the methodology in [12] 

proposed a change detection model based on Convolutional neural 

networks that can identify instances of changed buildings as well 

as changing building pixels. These two binary maps are then 

provided to the change detection network as input. It produced a 

change map from the two input images of buildings. 

Advantages: The framework's unique asset is its ability for self-

training, which is crucial for deep learning-based change detection. 

Disadvantages: The model is less accurate for the object level 

segmentation. 

In order to extract spatial and spectral correlations as well as 

additional discriminative properties, the methodology in [13] uses 

a dual-branch deep network with a parallel spatial-channel 

attention mechanism. The difference between altered objects and 
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backdrops was made easier by using spatial attention in deep 

features, which quantified the rich context of local features. 

Advantages: The outcomes showed that this strategy improved the 

evaluation metrics for accuracy in the two datasets for LEVIR-CD 

and BCDD. 

Disadvantages: As it is particularly difficult to identify the exact 

shape of building modifications, edges are not removed accurately 

in locations with high building density. 

There are two steps in the process in [14]. Utilizing the bi-temporal 

images as input is the initial stage.  Then, each building's related 

temporal image was compared using comparison metrics including 

PSNR and MSE. They used each image's HSV representation for 

this comparison. SVM and Random Forest were used as two 

classifiers to determine whether there had been alterations to 

buildings. 

Advantages: This approach only looked at the identification of 

changes in buildings, neglecting other kinds of objects like tracks 

and roadways. 

Disadvantages: Building detection directly influences change 

detection, hence increasing the accuracy of this phase is required 

to increase the accuracy of the whole model. 

 

2.1 Software Requirements 

The basic software requirements include: 

Operating System: Windows 10 or above. 

Development Environment: Google Colab. 

Python Libraries: numpy,pandas , PIL 

Deep Learning Frameworks:Tensor Flow or PyTorch 

 

2.2 Hardware Requirements 

The criteria for the functional platform are 

RAM: 8GB 

Processor: 11th Gen Intel(R) Core(TM) i3-1115G4 @ 3.00GHz 

3.00 GHz 

3. Methods 

This section describes the system's design as well as the 

methodology and dataset that will be applied. 

 

3.1 Architecture: 

Figure 5 presents the proposed system model. For prediction and 

segmentation of the buildings and their boundaries, the model is 

trained using MASK R-CNN by taking training images and their 

annotated images. 

To predict and segment the building boundaries the images are first 

preprocessed removing noise and enhancing the image. Training 

will be done in the back end which contains the backbone network, 

RPN, and mask head. 

 

Figure 5: Proposed System Model 

Table 1 presents the comparison of the existing Mask R-CNN with 

the proposed model used in this study. 

TABLE1. MODIFIED MASK R-CNN  MODEL 

Parameters Existing 

Model[25] 

Modified Model 

Channels in the input 

image 

3 (RGB) 3 (RGB) 

The shape of input image Variable 1024 x1024 

Strides [4, 8, 16, 32] [4, 8, 16, 32] 

Input Kernel size 7x7 7x7 

Initial Number of Filters 256 256 

Parameters ~30.2 million ~30.2 million 

Pooling type ROI Pooling ROI Pooling 

Size of Max Pooling at 

every layer 

2x2 3x3 

Number of Layers Varies 3 

Channels in the output 

image 

81 (including 

background 

class) 

81 (including 

background 

class) 

 

3.2 Methodology: 

This section talks about the many sections used in the work. 

Preprocessing, labeling the images, boundary regularization of 

buildings using Mask-RCNN, post-processing using Edge 

Detection, Change Detection using pixel-based change detection 
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approach, the conversion of the image data into vector data, and 

the generation of Shape files using vector data for GIS map 

updating purposes are among the modules included. 

 

3.2.1 Preprocessing: 

In this phase, the Preprocessing step involves the following steps: 

(i) Resizing:The images are resized from 8192 * 4902 to 1024 

*1024. 

(ii) Noise Removal: Image noise is removed from the images using 

the Median filtering technique.And then the PSNR value is 

calculated which denotes the amount of noise in the before and 

after images. 

(iii) Image Enhancement:The images from which noise is removed 

then are enhanced using the Unsharp Masking technique. 

 

3.2.2 Labelling 

In this phase, the preprocessed images are labeled and they are 

saved in a folder where training images are saved. These labeled 

images are utilized to train the model as ground truth images that 

correlate to the training images. And also for the evaluation of the 

model the predicted image by the model and the ground truth 

image are compared. 

 

3.2.3 Boundary Regularization 

The Boundary regularization of buildings is carried out using the 

Mask R-CNN model. It is mainly built using three components: 

• Backbone network: ResNet, a CNN, is commonly utilized as 

the backbone network to extract features from the initial image. 

• The Region Proposal Network (RPN) is in charge of 

recommending potential object regions in the image. Based on 

the features retrieved from the backbone network, it produces 

a set of candidate regions and the corresponding scores. 

• Mask head: The mask head is responsible for generating binary 

masks for each detected object instance. It takes as input the 

region of interest (RoI) proposals generated by the RPN and 

the features gathered from the backbone network It outputs a 

binary mask for each detected object instance. 

 

3.2.4 Post-processing: 

In this phase-guided filter, a post-processing technique is used to 

refine the output mask and reduce noise and artifacts. Post-

processing is typically applied to a source image to produce a 

filtered output image that preserves the structure and details of the 

original image while reducing noise and artifacts. 

 

3.2.5 Change Detection: 

In this step a pixel-based change detection approach is discussed. 

It analyses corresponding pixels in the before and after images and 

looks for differences in pixel intensity to identify changes. To find 

the modified pixels, it computes the absolute difference between 

the binary masks of the before and after images. The system then 

performs additional analysis on the altered pixels to identify the 

type of change (such as new construction, demolished structures, 

or unmodified buildings) based on the pixels in various categories. 

 

3.2.6 Vector Data: 

To represent geographical properties or objects with geometric 

shapes like points, lines, and polygons, vector data is utilized to 

create a shape file. Vector data is used to provide the borders and 

characteristics of the features to be represented when creating a 

shape file. The shape file can be created by specifying the features' 

geometry and properties using vector data. Geographic 

Information Systems (GIS) and geographical analytic jobs 

frequently employ the shape file format because it makes it 

possible to store and organize spatial data effectively. 

 

3.2.7 Shape File: 

A common geospatial vector data format used in GIS software is 

called a shape file. It is made up of several files that collectively 

represent attribute and spatial data. Numerous forms of geometric 

shapes, including points, lines, and polygons, can be stored in the 

shape file format, which is widely supported.Due to their ease of 

use, interoperability, and support in a variety of GIS tools, 

shapefiles are frequently used for storing and transferring spatial 

data. They can be used for spatial searches, spatial analysis, and 

integration with other geospatial datasets and tools. They can also 

be used for visualizing and analyzing geographic aspects. 

 

3.3 Algorithm: 

Following is a description of the image preparation algorithm: 

Step 1: Noise Removal using Median Filter for each pixel in the 

image: 

Step 1.1: Create a window centered on the pixel with size n x n 

Step 1.2: Sort the pixel values in the window in ascending order. 

Step 1.3: The median of the sorted pixel values should be used in 

place of the pixel value. 

O(i, j) = median(I(x, y)) (1) 

Where n is the window size, which can be adjusted to achieve 

distinct levels of noise removal 

Step 2: Image Enhancement using Guided Filter 

Step 2.1: Convert the input image to grayscale. 

Step 2.2: Create a blurred version of the grayscale image using a 

Gaussian filter. 

Step 2.3: To create a high-pass filtered image, subtract the blurred 

image from the grayscale image. 

Step 2.4: Multiply the high-pass filtered image by a scaling factor. 

Step 2.5: To create the sharpened image, combine the original 

grayscale image with the scaled high-pass filtered image. 

Output image = Original image + Amount of edge enhancement * 

(Original image - Blurred image) (2) 

Where ”Original image” is the input image. ”Blurred image” is the 

input image convolved with a Gaussian filter to blur it. ”Amount 

of edge enhancement” is a scalar factor that controls the strength 

of the edge enhancement. It is usually set to a value between 0 and 

1. A higher value results in a stronger edge enhancement. 

 

3.3.2 Labeling Images 

In this, a human annotator manually assigns labels to each image 

by viewing and analyzing the content of the image. 

Gather and prepare the images for labeling. This may involve 

resizing, cropping, or enhancing the images to make them suitable 

for labelling. 

 

3.3.3 Boundary Regularization of Buildings 

Instance segmentation in Mask R-CNN entails identifying the 

objects in an image and segmenting every instance of the object 

class separately to provide precise and non-overlapping 

segmentations for every instance of the object class. This is 

accomplished by creating a binary mask for each proposal and then 

improving the masks. 

Step 1: Enter an RGB image of a city with buildings. 

Step 2: Use the Resnet-101 (CNN) as a backbone network to 

extract Low-Level Features, Textural Features, Shape Features, 

and Contextual Features from the input Image. 

Step 3: Generate a collection of candidate object regions known as 

RoI proposals using the backbone network's properties. For each 
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proposal, the RPN forecasts the bounding box positions and 

objectness ratings. 

Step 4: Align each RoI proposal's features to a set size to ensure 

precise pixel-to-pixel mapping for ensuing procedures. 

Step 5: Determine the item category by running the aligned RoI 

features through a classifier (usually a fully connected network). 

For each RoI proposal, class probabilities are generated in this 

stage. 

Step 6: Carry out bounding box regression to improve the object 

bounding box coordinates. 

Step 7: Include a parallel branch for pixel-level segmentation in 

the network. Each object proposal receives a binary mask 

prediction based on the RoI characteristics, indicating the 

segmentation of the object at the pixel level. 

Step 8: End-to-end train the network using annotated data, 

employing object class labels, bounding box coordinates, and 

instance masks as the ground truth. 

Step 9: The network predicts object classes, bounding boxes, and 

instance masks for new images during the inference phase. 

Step 10: Use a guided filter as a post-processing approach to smear 

the edges of the identified mask. 

 

3.3.4 Post-Processing the image 

Perform the post-processing method on regularized building masks 

using Guided Filter. 

The steps involved in applying the guided filter to boundary 

regularization of buildings using Mask R-CNN are as follows: 

Step 1: Generate initial object masks using Mask R-CNN on the 

input image. 

Step 2: Convert the initial object masks to grayscale format. 

Grayscale image = R*0.299+ G*0.587+B*0.114  (3) 

where R, G, and B are the red, green, and blue channels of the input 

image. 

Step 3: Generate a guidance image using the Canny edge detection 

algorithm [24] 

Step 3.1: Apply Gaussian smoothing to reduce noise in the image: 

Smoothed image: S(x, y) = G(x, y) * H(x, y), (4) 

where H(x, y) is the Gaussian filter. 

Gaussian filter formula: H(x, y) = (1 / (2 * pi * sigma^2)) * exp(-

(x^2 + y^2) / (2 * sigma^2)), (5) 

where sigma is the standard deviation of the Gaussian kernel. 

Step 3.2: Calculate the gradient magnitude and direction at each 

pixel using gradient operators: 

Gradient magnitude: M(x, y) = sqrt(Gx(x, y)^2 + Gy(x, y)^2) (6) 

where Gx(x, y) and Gy(x, y) are the gradients in the x and y 

directions, respectively. 

Gradient direction: D(x, y) = atan2(Gy(x, y), Gx(x, y)) (7) where 

atan2 calculates the arctangent of the ratio of Gy to Gx, taking the 

sign of both into account. 

Step 3.3: Perform non-maximum suppression to keep only the 

local maximum pixels along the edge direction: 

Non-maximum suppressed image: N(x, y) = 0 if M(x, y) is not the 

maximum in the direction D(x, y), else N(x, y) = M(x, y). (8) 

Step 3.4: Apply double thresholding to classify pixels as strong, 

weak, or non-edge pixels: 

Strong edge pixel: P(x, y) = 1 if N(x, y) is above a high threshold. 

Weak edge pixel: Q(x, y) = 1 if N(x, y) is between the high and 

low thresholds. 

Non-edge pixel: R(x, y) = 0 otherwise. 

Step 3.5: Perform edge tracking by hysteresis to connect weak edge 

pixels to strong edge pixels in the neighborhood: 

Edge map: E(x, y) = 1 if P(x, y) == 1 or (Q(x, y) == 1 and at least 

one of the eight neighboring pixels is a strong edge. 

Step 3.5: Normalize the edge map to obtain values between 0 and 

1: 

Normalized edge map: G'(x, y) = E(x, y) / max(E(x, y)) (9) 

Optional: Further enhancement or refinement of the guidance 

image based on specific requirements or domain knowledge. 

Output: The generated guidance image, denoted as G'(x, y). 

Step 4: Apply a guided filter to the grayscale object masks using 

the guidance image as the guide, with a suitable radius and 

threshold value. 

Step 4.1: Pre-compute mean values: 

For the input image I: mean_I = boxFilter(I, r) (where boxFilter is 

a function that computes the mean value in a local window of size 

(2r+1)x(2r+1)) 

For the guidance image P: mean_P = boxFilter(P, r) 

Step 4.2: Pre-compute correlation values: 

For the input image I: corr_I = boxFilter(I * I, r) 

For the guidance image P: corr_IP = boxFilter(I * P, r) 

Step 4.3: Pre-compute variance values: 

var_I = corr_I - mean_I * mean_I 

cov_IP = corr_IP - mean_I * mean_P 

Step 4.4: Compute the coefficients a and b: 

a = cov_IP / (var_I + eps) 

b = mean_P - a * mean_I 

Compute the mean of the coefficients a and b in a local Step 4.5: 

Window: 

mean_a = boxFilter(a, r) 

mean_b = boxFilter(b, r) 

Compute the output image Q: 

Step 4.6: Q = mean_a * I + mean_b   (10) 

In the equation (10), 'r' represents the radius of the local window 

used for filtering, and 'eps' is a small constant added, where 

guided_filter is the guided filter algorithm, grayscale_image is the 

grayscale object mask, guidance_image is the guidance image 

generated in step 3, radius of the filter window, and eps is the 

threshold value. 

Step 5: Use Otsu's Threshold method [25] to produce final binary 

masks for each object. 

Step 5.1: Compute the histogram of the input grayscale image, 

denoted as H(i), where i ranges from 0 to L-1 (L is the number of 

levels in gray color, typically 256). 

Step 5.2: By dividing each value by the whole amount of pixels in 

the image, N, normalize the histogram: 

P(i) = H(i) / N 

Step 5.3: Calculate the cumulative sum of normalized histogram 

values: 

P_cumulative(i) = ∑[j=0 to i] P(j) 

Calculate the cumulative mean of the image intensities: 

m_cumulative(i) = ∑[j=0 to i] j * P(j) 

Initialize variables for maximum between-class variance 

(var_max) and optimal threshold value (threshold). 

Step 5.4: Iterate through all possible threshold values from 0 to L-

1: 

Compute the background probability: w0 = P_cumulative(t) 

Compute the foreground probability: w1 = 1 - w0 

Compute the background mean: m0 = m_cumulative(t) / w0 (avoid 

division by zero) 

Compute the foreground mean: m1 = (m_cumulative(L-1) - 

m_cumulative(t)) / w1 (avoid division by zero) 

Compute the between-class variance: var_between = w0 * w1 * 

(m0 - m1)^2 

Update var_max and threshold if var_between is greater than 

var_max. 
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Step 5.5: The threshold that maximizes the between-class variation 

provides the ideal threshold value. 

Once you have the optimal threshold value, you can apply it to the 

original image to obtain the binary image with foreground and 

background regions separated. 

The chosen threshold value for the filtered image is the optimal 

threshold value that is given by the threshold that maximizes the 

between-class variance. 

 

3.3.5 Change Detection 

Change detection is performed using a pixel-based change 

detection approach. It involves the following steps: 

Step 1: Load the before and after images. 

Step 2: Extract the file names without extensions. 

Step 3: Obtain the paths to the before and after mask images based 

on the provided folders and file names. 

Step 4: Load the mask images as grayscale. 

Step 5: Convert the grayscale mask images to binary images using 

thresholding. 

Step 6: Compute the change mask by taking the absolute difference 

between the before and after masks and thresholding the result. 

Step 7: Perform bitwise operations between the before and after 

masks to detect changes in buildings: 

demolished_buildings represent buildings present in the before 

mask but not in the after mask. 

new_buildings represent buildings present in the after mask but not 

in the before mask. 

unchanged_buildings represent buildings present in both the 

before and after masks. 

Step 8: Count the number of non-zero pixels (white pixels) in each 

category. 

Step 9: Determine the change type based on the counts of 

demolished and new buildings. 

Step 10: Create visualizations by highlighting the changes on the 

before and after images: 

Step 10.1: Mark demolished buildings in red. 

Step 10.2: Mark new buildings in green. 

Step 10.3: Mark unchanged buildings in blue. 

Step 11:Display the visualizations. 

 

3.3.6 Vector Data 

The vector data contains information about the spatial location and 

attributes of the features. 

The process of converting raster data into vector data involves 

several steps. Here is an algorithmic overview of the conversion 

process: 

Step 1: Read the raster image in PNG format 

Step 2: Preprocess the image: Perform any necessary 

preprocessing steps on the raster image to enhance the quality and 

extract meaningful information. This include operations like 

resizing, filtering, thresholding and edge detection. 

Step 2.1: Resizing: Images are resized from 8192*4902 to 

1024*1024. 

Step 2.2: Noise Removal(Median Filter):O(i, j) = median(I(x, y)), 

where (i, j) represents the coordinates of a pixel in the output 

image, and (x, y) represents the coordinates of the corresponding 

pixel within the window centered at (i, j). 

The median(I(x, y)) function calculates the median value of the 

pixel intensities within the window at position (x, y) in the input 

image I. 

Step 2.3: Image Enhancement(Unsharp Masking): 

Start with the input image, denoted as I(x, y). 

Mask(x, y) = I(x, y) - B(x, y)(Blurred image). 

AdjustedMask(x, y) = Mask(x, y) * factor. 

Sharpened(x, y) = I(x, y) + AdjustedMask(x, y). 

Step 3: Identify and extract features: Identify the features or objects 

of interest in the raster image. This is done by the feature extraction 

algorithm and canny edge detection algorithm. 

Step 4: Convert boundaries to vector format: Convert the extracted 

boundaries or contours into a vector format representation, such as 

polygons, polylines, or points. Each boundary represents a separate 

feature, and it can be represented as a set of coordinates or vertices. 

Step 4.1: For each boundary or contour, process the boundary 

points or pixels. 

Step 4.2: If the boundary is already in a pixel-based format, use the 

contour tracing algorithm and Moore-Neighbor tracing algorithm 

to extract the sequence of connected points.  The Moore-Neighbor 

tracing algorithm is a simple and efficient algorithm for contour 

tracing. It follows the boundary pixels in a clockwise direction. 

The steps are as follows: 

Step 4.2.1: Start from a specified point on the boundary. 

Step 4.2.2: Check the neighboring pixels in a clockwise manner 

(starting from the top-left neighbor). 

Step 4.2.3: Move to the first neighbor pixel that is part of the 

boundary (i.e., has a value indicating an edge or boundary). 

Step 4.2.4: Continue tracing the boundary by following the 

boundary pixels in a clockwise direction until you reach the 

starting point again, forming a closed contour. 

The algorithm keeps track of the current position and the direction 

of the previous step to ensure correct traversal of the contour. 

Step 4.3: If the boundary represents a closed loop, apply the 

polygonization technique, Douglas-Peucker algorithm to convert it 

into a polygon. The Douglas-Peucker algorithm is a widely used 

algorithm for polygonization. It simplifies a curve by recursively 

removing unnecessary vertices while preserving the overall shape. 

The algorithm works as follows: 

Step 4.3.1: Given a curve represented by a sequence of points, find 

the point with the maximum distance from the line segment 

connecting the start and end points. 

Step 4.3.2: If the maximum distance is greater than a specified 

threshold, split the curve at that point and recursively apply the 

algorithm to both sub-curves. 

Step 4.3.3: Repeat the process until no points exceed the threshold 

distance. The resulting points form the polygonal approximation 

of the curve. 

Step 4.4: If the boundary is a curve, apply the curve fitting 

technique Polynomial fitting to approximate it with polylines or 

splines. Polynomial fitting involves fitting a polynomial function 

to the givenpoints. The complexity of the curve depends on the 

degree of the polynomial.The most common method for 

polynomial fitting is the least squares method, where the 

polynomial coefficients are adjusted to minimize thedata points 

and the curve. Higher degree polynomials can capture more 

complex curves but may also be prone to overfitting. 

Step 4.5: Store the vector representation of the boundary, which 

can include a set of coordinates or vertices that define the shape. 

Step 5: Assign attributes: Assign attributes or properties to the 

vector features if needed. This can include assigning unique 

identifiers, labels, or any other relevant attributes to describe the 

features. The attributes are described as follows: 

Unique identifier: Assign a unique identifier to each vector feature. 

This can be a numerical or alphanumeric value that uniquely 

identifies the feature within the dataset. 

Step 6: Create a vector data structure: Create a data structure, such 

as a shape file or a GeoJSON file, to store the vector data. Define 
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the appropriate schema or fields to accommodate the attributes and 

geometry of the features. 

Step 7: Store vector features: Store the vector features in the data 

structure by adding them as individual features with their 

corresponding attributes and geometry. 

Step 8: Save the vector data: Save the vector data structure, such 

as the shape file or GeoJSON file, to disk. This allows for easy 

sharing, visualization, and analysis of the converted vector data. 

 

3.3.7 Shapefile 

Step 1: Create a new shape file: Initialize a new shape file object 

with the desired shape file type (e.g., point, line, or polygon). 

Specify the shape file path and the shape file mode (e.g., read or 

write). 

Step 1.1: Import the required libraries: Import the shape file library 

and the geopandas library. 

Step 1.2: Initialize a new shape file object: Create a new instance 

of a shape file object with the desired shape file type (point, line, 

or polygon). This object will be used to write the geometries and 

attributes to the shape file. 

Step 1.3: Specify the shape file path and mode: Provide the file 

path and name for the new shape file. You'll also need to specify 

the mode, which can be "w" for write or "r" for read. If the shape 

file already exists, you may need to delete it or choose a different 

file path to avoid overwriting existing data. 

Step 1.4: Define the shape file fields: Specify the attribute fields 

that will be associated with the shape file features. This includes 

the field names and data types for storing attributes such as unique 

identifiers, labels, or other relevant information. 

Step 1.5: Write geometries and attributes: Use the shape file object 

to add geometries and their associated attribute data to the shape 

file. This involves creating feature objects, setting their geometry 

and attribute values, and appending them to the shape file. 

Step 1.6: Close the shape file: After writing all the desired features, 

make sure to close the shape file to ensure that the data is properly 

saved and the file is released. 

Step 2: Define the shape file attributes: Add attribute fields to the 

shape file to store additional information associated with the vector 

features. Define the field names, types, and lengths as needed. 

Define attribute fields in a shape file using equation (11). This 

formula and description illustrate the concept of defining attribute 

fields in a shape file, allowing for the storage of various types of 

information associated with the vector features. 

Attribute Field = Field Name (Field Type, Field Length) (11) 

Where, Attribute fields are used to store additional information in 

a shape file. Each attribute field has a name, a type, and a length to 

define its properties. The field name is a descriptive name for the 

attribute. The field type determines the data type of the attribute 

(e.g., character, numeric, date). The field length specifies the 

maximum length or size of the attribute value. 

Step 3: Open the source vector data: Open the source vector data 

that contains the features you want to convert into the shape file. 

The file format is GeoJSON. 

Step 4: Iterate over the features: For every feature in the source 

vector data, extract the geometry and attribute values. Iterate over 

the features as follows: 

Step 4.1: Read the vector data using a suitable library like 

Geopandas. 

Step 4.2: Iterate over the features using a for loop. 

Step 4.3: Extract the geometry of the feature. 

Step 4.4: Extract the attribute values of the feature. 

Step 4.5: Extract the geometry and attributes within the loop. 

Step 5: Add features to the shape file: Add each feature as a new 

shape file record. Set the geometry of the record using the extracted 

geometry, and assign attribute values to the corresponding fields. 

To add features to a shape file by creating new shape file records 

with extracted geometry and attribute values, follow these steps: 

Step 5.1: Initialize a new shape file object. 

Step 5.2: Define the shape file attributes (fields). 

Step 5.3: Iterate over the features. 

Step 5.4: Set the geometry of the record using the extracted 

geometry. 

Step 5.5: Assign attribute values to the corresponding fields. 

 

3.4 Dataset Collection: 

Very High-Resolution Satellite Images are taken from 

GoogleEarthPro for the Mumbai city at different timelines in the 

year 2015 and 2022. From the total 150 images, 120 images are 

taken as training and remaining images are taken for testing the 

proposed system. From the dataset provided by National Remote 

sensing center (NRSC) for the Hyderabad city, images are taken 

for validation. Figure 6 presents the sample image taken from 

GoogleEarthPro. Figure 7 represents the study area of Mumbai 

city. Figure 8 represents the Validation image provided by NRSC. 

 

Fig 6: Mumbai city during the year 2022 

 

Fig 7 Study area 
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3.5. Evaluation Metrics: 

Some of the measurements taken are listed below: 

A range of metrics, such as precision (P), recall (R), crossroads 

upon union (IoU, Jaccard Index), and F1 score (Dice coefficient), 

are used for evaluating the proposed system’s effectiveness. 

The number of pixels that were correctly detected as buildings is 

known as True Positive (TP). The number of pixels that were 

incorrectly classified as backgrounds is known as false positives 

(FP). The number of pixels that were correctly classified as 

backgrounds is known as True Negative (TN). The amount of 

pixels that were mistakenly classified as structures is known as 

False Negative (FN) 

The IoU ranges between 0 and 1, where a higher value indicates a 

better overlap between the predicted and ground truth masks. An 

IoU of 1 means a perfect match, while an IoU of 0 means no 

overlap at all. 

𝐼𝑂𝑈 =  
𝑇𝑃

(𝑇𝑃+𝐹𝑃+𝐹𝑁)
                       (12) 

𝑀𝑒𝑎
∑ 𝐼𝑂𝑈𝑖

𝑁
𝑖=1

𝑁
⁄                          (13) 

 

Where IOU1, IOU2, ...,IOUn are the IoU values for each class, and 

N is the total number of classes. 

 

Fig 8 Validation image 

The classification metrics are Accuracy, Precision, Recall, and F1 

Score. 

Accuracy: The classifier's whole precision is measured by 

accuracy. 

Accuracy=            TP+TN                     (14) 

                      TP+TN+FP+FN 

 

Precision: The percentage of accurately anticipated positive 

samples out of all expected positive samples is known as precision. 

Precision=       TP                                  (15) 

                    TP+FP 

 

The percentage of accurately anticipated positive samples among 

all actual positive samples is calculated as recall. 

Recall=         TP                                    (16) 

                 TP+FN 

 

The harmonic mean of recall and precision, which is the F1 score, 

offers a fair comparison of the two. 

F1 score=  2×Precision×Recall                  (17) 

                    Precision+Recall 

 

Where TP: True Positive (number of correctly predicted positive 

samples) 

TN: True Negative (number of correctly predicted negative 

samples) 

FP: False Positive (number of incorrectly predicted positive 

samples) 

FN: False Negative (number of incorrectly predicted negative 

samples) 

FPR: False Positive Rate (FPR) is a metric represents the 

proportion of actual negative instances (other than buildings) that 

are incorrectly classified as positive instances (buildings). 

The false positive rate is a statistical concept that measures the 

probability of a test or diagnostic procedure incorrectly indicating 

the presence of a condition or attribute when it is not actually 

present. In other words, it quantifies the likelihood of a false 

positive result. 

Lower false positive rates are generally desirable because they 

indicate a lower probability of incorrect positive results. 

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒 = 𝐹𝑃⁄(𝐹𝑃 + 𝑇𝑁)      (18) 

4. Results and Discussions 

This section discusses the outcomes produced by the suggested 

system. Figure 9 to figure 11 presents the sequence of outputs 

produced in various phases of the proposed system. 

 

Fig 9: Resized Image 8192*4902 to 1024*1024. 

 

 

Fig 10: After Noise removal using Median filter. 
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Fig 11: Enhanced Image using unsharp masking. 

 

 
Fig 12: Image for the year 2022. 

 

 
Fig 13: Predicted Image of 2022. 

Figure 14 presents the original image of 2015 this gives the 

predicted image to which post-processing is added to get the 

regularized predicted mask as shown in Figure 15. 

 

 

 

Fig 14: Image of 2015. 

 

Fig 15: Predicted Image of 2015. 

The images of the same area at two different timelines are taken to 

detect the changes and classify which buildings are demolished, 

newly constructed, and unchanged. These classifications are 

shown in the following colors that are red, green and blue. These 

predicted images are taken as input for detecting the changes. The 

detected changes are shown according to the colors as follows: The 

redcolor represents the demolished buildings, the green color 

represents changed buildings and blue color represents unchanged 

buildings and the final image gives the total change detected. 

Figure 16, Figure 17, and Figure 18 present the images with red 

color for demolished buildings, green color for changed buildings, 

and blue color for unchanged buildings. Figure 19 presents the 

change detection over two time periods. 
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Fig 16: Demolished Buildings. 

 

 

Fig 17: Changed Buildings. 

 

Fig 18: Unchanged Buildings. 

Fig 19: Changed Detected Image. 

 

Fig 20: Epoch vs Loss curve 

A typical scenario for a well-performing model is that the loss 

curve decreases rapidly initially and then converges to a lower 

value as training progresses. In the curve shown in Figure 20, as 

epochs increase the loss curve is converging to a smaller value 

which represents the improvement in its predictions. 

A graphical representation of the performance of a semantic 

segmentation or object identification model across various 

Intersection over Union (IoU) thresholds is the IoU (Intersection 

over Union) curve and is required for the tasks where evaluating 

the overlap between anticipated and ground truth regions is 

required. In Figure21, it can be observed that the curve between 

the percentage of objects and the IoU threshold typically exhibits 

an increasing trend. As the IoU threshold becomes more lenient 

(i.e., lower threshold), the percentage of correctly detected or 

segmented objects tends to increase. The accuracy may initially be 

quite poor because the model only has a few training epochs. This 

is due to the model's early learning stages and the fact that it has 

not yet learned enough from the data. The model's accuracy tends 

to rise with the number of epochs. As the model gains knowledge 

from the training data and modifies its weights and biases to 

produce more accurate predictions, the curve exhibits an increasing 

trend. The accuracy might eventually peak or plateau. This shows 

that the model has learned everything it can from the training data 

and that adding more epochs has little effect on accuracy. Figure 

22 presents Epochs vs Accuracy Curve. 
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Fig 21: IOU Curve 

 

Fig 22: Epochs vs Accuracy 

The Performance analysis of the model is measured by calculating 

precision, f1-score, recall, and accuracy by validating the model 

using the Mumbai dataset. Accuracy of  92.27% and FPR is 5.24%. 

Table 2 and Table 3 present the performance of the proposed 

system during the training, testing, and validation phases. Table 4 

compares the performance of the system with the existing 

approaches. 

 

TABLE 2. Comparison Of Performance In Different Phases 

 

TABLE 3. PERFORMANCE METRICS 

 

 

 

 

 

TABLE 4. COMPARISON WITH OTHER MODELS 

 
Work Dataset Methodology Accuracy 

Test 

Accuracy 

[6] Massachusetts 

Dataset 

ASLNet F1-Score 88% 

[16] Presidente 

Prudente/Brazil 

dataset 

WICDS F1-Score 94% 

[26] Inria Dataset FCN F1-Score 86% 

[4] Inria Dataset FER-CNN F1-Score 85% 

[22] Chandigarh Ensemble of 

ResNet and U-

Net Model 

F1-Score 93% 

Proposed 

Model 

Chandigarh Mask R-CNN F1-Score 91% 

 

In the proposed model Mask R-CNN is used for the prediction of 

masks and additionally, post processing technique guided filter is 

used for more accurate regularized building boundaries and change 

detection is done by pixel-based change detection model. This 

study's accuracy metric makes sure the model accurately 

recognizes building boundaries. The F1-score guarantees that the 

model effectively minimizes false positives (areas that are 

mistakenly categorized as buildings when they are not) and false 

negatives (areas that are incorrectly classified as buildings when 

they are not), improving the overall quality of the segmentation 

findings. 

5. Conclusion and Future work 

For border regularization and distant sensing, CNN-based image 

processing has been extensively employed. The dataset of Mumbai 

city is prepared from GoogleEarthPro at 2015 and 2022 timelines. 

For Preprocessing the images, Noise removal of the image is done 

using a median filter and the image is enhanced using unsharp 

masking. For labeling images, the images are labeled manually for 

training and testing purpose. For Boundary Regularization of 

Buildings using Mask R-CNN, features are extracted using 

backbone network i.e. Resnet101, RPN is used for proposing 

candidate object regions in the image, and Mask head is used to 

form masks on the object regions. For post processing, guided filter 

is applied to the masked image for regularizing the building 

boundaries. Then the images of the same places at different 

timelines are given to the model to predict the buildings and change 

is detected between the images. The shape file is also generated 

and used for the updation of GIS maps using QGIS software. The 

performance is measured by calculating precision, f1score, recall, 

and accuracy. This method has obtained an accuracy of 0.92, 

F1score of 0.91, precision score of 0.89, and recall score of 0.94. 

Future work includes increasing the accuracy and extending the 

model to classify the buildings as residential, industry and holy 

places. 
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