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Abstract: Understanding and supporting individuals with autism involves recognizing and respecting their unique perspectives and 

abilities while fostering an inclusive and accommodating environment. Ongoing research seeks to unravel the complexities of autism and 

enhance interventions to improve the quality of life for those affected. In the quest for advancing autism classification, this research 

orchestrates Learning Embedded Neural Boost Classification (LENBC) through an innovative ensemble model by leveraging the Autism 

Image Dataset (AID). The journey begins with meticulous image preprocessing, incorporating resizing, normalization, grayscale 

conversion, Gaussian blurring, and edge detection. The extracted features, derived from Neural Network architecture, serve as the 

foundation for subsequent classification. The convolutional layers of the CNN are designed to capture intricate patterns and nuanced 

information from the images, enhancing the model's ability to discern relevant features for autism classification. The CatBoost classifier, 

known for its robustness and efficiency, complements the CNN by making predictions based on the extracted features. This paper details 

the step-by-step process of this novel ensemble model, emphasizing the synergy between deep learning and boosting techniques. We 

delve into the intricacies of image preprocessing, feature extraction, and the unique role each model plays in the final classification. The 

experimental results showcase the efficacy of our approach, with an impressive accuracy of 97.42% in autism classification. The 

amalgamation of these cutting-edge methodologies not only propels the accuracy of autism classification but also sheds light on the 

potential of interdisciplinary collaboration between computer vision and machine learning. This research opens new avenues for 

exploring the synergy between art-inspired image processing and state-of-the-art classifiers, offering a harmonious blend of creativity 

and intelligence in the realm of medical image analysis. 

Keywords: Autism Detection, Image Preprocessing, Gaussian blurring, Edge Detection, Learning Embedded Neural Boost Classification 

(LENBC), Feature Extraction. 

1. Introduction 

The neurodevelopmental disorder known as Autism 

Spectrum Disorder (ASD) affects a large percentage of the 

global population. Statistics show that ASD is quite 

common and has far-reaching social consequences. ASD is 

a significant and prevalent developmental disease, since 

recent estimates indicate that it affects around 1 in 54 

children in the US [1] [2]. Additionally, there is a 

documented male-to-female ratio of around 4:1 for ASD, 

meaning that males are more often diagnosed with the 

disorder than girls. This gender disparity raises intriguing 

questions about the potential role of biological, genetic, 

and environmental factors in ASD susceptibility. The 

global prevalence of ASD is not confined to a specific 

geographic region, emphasizing its widespread impact on 

diverse populations [3]. Additionally, research has 

identified a hereditary component in ASD, with a higher 

likelihood of ASD diagnosis among individuals with 

family members already affected by the disorder. Beyond 

the immediate challenges faced by individuals with ASD, 

statistical analyses illuminate the considerable economic 

burden associated with the condition. The lifetime cost of 

supporting an individual with ASD can be substantial, 

encompassing medical care, educational services, and 

therapeutic interventions [28]. As the understanding of 

ASD continues to evolve, ongoing statistical research 

remains pivotal in informing public health policies, 

resource allocation, and intervention strategies to enhance 

the well-being of individuals affected by ASN [4] [5]. 

Individuals with ASD may exhibit a range of symptoms, 

including difficulties in forming relationships, repetitive 

behaviors, and a preference for routines. ASD affects 

people of all ethnicities, socioeconomic backgrounds, and 

geographic regions, but it is more commonly diagnosed in 

males than females. Although the precise reason for ASD 

is still not known, researchers believe that environmental 

as well as genetic variables play a role in its development. 

Persons with ASD can have fulfilling lives with the aid of 

early intervention and appropriate care [6] [7]. Behavioral 

therapies, educational interventions, and, in some cases, 

medication can be employed to address specific challenges 

associated with ASD. Advances in research and increased 
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awareness have improved diagnostic capabilities, leading 

to earlier identification and intervention. Living with ASD 

poses unique challenges for individuals and their families, 

but with the right support, many individuals with ASD can 

thrive and contribute meaningfully to their communities. 

Continued research and understanding of ASD contribute 

to the development of effective strategies for diagnosis, 

intervention, and improving the overall quality of life for 

those affected by this spectrum disorder [8] [9]. 

In the realm of medical research and artificial intelligence, 

the quest for enhancing diagnostic accuracy and 

understanding complex neurological disorders has driven 

the integration of advanced technologies. Problems with 

social communication and repetitive behaviors are 

hallmarks of ASD, a neurodevelopmental disorder that 

poses its own diagnostic issues. The use of facial 

expressions to depict ASD is seen in Figure 1. Traditional 

diagnostic methods often rely on behavioral observations 

and subjective assessments, making the process time-

consuming and susceptible to human biases. In recent 

years, the fusion of computer vision and machine learning 

has emerged as a promising avenue for revolutionizing 

autism diagnosis, providing more objective and efficient 

tools for clinicians and researchers [10]. 

 

Fig. 1. ASD from Facial Expression 

The amalgamation of CNNs and CatBoost, a powerful 

gradient boosting algorithm, forms the backbone of 

Learning Embedded Neural Boost Classification (LENBC) 

approach, promising a symphony of techniques to achieve 

robust and accurate autism classification. ASN stands as a 

multifaceted challenge for both clinicians and researchers 

due to its heterogeneity in symptoms, ranging from mild to 

severe [11] [12]. To greatly enhance the quality of life for 

people with ASD, early and correct diagnosis is crucial for 

providing timely treatments and support. However, the 

traditional diagnostic process relies heavily on behavioral 

observations, clinical interviews, and standardized 

assessments, leading to subjectivity and potential delays in 

diagnosis [13]. 

The rise of medical imaging and machine learning has 

opened up new possibilities for objective and data-driven 

diagnostic tools. A number of recent investigations have 

investigated the possibility of identifying ASD-related 

patterns using neuroimaging data derived from MRI and 

functional MRI scans. However, the AID presents a unique 

opportunity to delve into the visual domain, harnessing the 

power of facial expressions and visual cues for a more 

nuanced understanding of ASD [14] [15]. The AID, a 

curated collection of facial images from individuals with 

and without ASD, serves as the cornerstone of our 

research. This dataset encapsulates a diverse array of 

expressions, illuminating the subtle nuances that may be 

indicative of autism-related traits. Each image in the 

dataset is a snapshot of the individual's facial features, 

capturing the intricate interplay of emotions and social 

expressions [16]. 

Understanding the potential inherent in these images 

requires advanced computational tools capable of 

extracting intricate patterns and features. This is where the 

synergy of CNNs and CatBoost comes into play, offering a 

robust and comprehensive approach to feature extraction, 

learning hierarchical representations, and making 

predictions based on the amalgamation of facial cues. 

CNNs are a great fit for the AID feature extraction job 

because of their outstanding performance in image 

categorization. Using their hierarchical structure, 

CNNs can automatically learn information visualizations, 

progressing from basic characteristics such as textures and 

edges to more complicated and abstract features that are 

critical for discriminating [17]. The convolutional layers 

specialize in recognizing local patterns, while subsequent 

layers aggregate this information to form a holistic 

understanding of the facial expressions. The depth and 

complexity of the CNN enable it to discern subtle nuances 

that may elude traditional diagnostic approaches.  

While CNNs excel at capturing spatial hierarchies, 

CatBoost complements this strength by addressing the 

temporal and sequential aspects of data. CatBoost, a 

gradient boosting algorithm, is particularly adept at 

handling tabular data and exploiting inter-feature 

dependencies [18] [19]. In our ensemble approach, 

CatBoost acts as a synergistic partner, enriching the feature 

set derived from CNNs with its expertise in handling 

structured data. The ensemble model is not merely a fusion 

of disparate algorithms; rather, it represents a harmonious 

collaboration where the strengths of each model 

compensate for the weaknesses of the other. This 

symbiotic relationship enhances the overall robustness and 

generalization capacity of our classification system. 

Ensemble learning has gained prominence for its ability to 

harness the collective intelligence of multiple models, 

resulting in enhanced predictive performance. In our 

symphony of ensembled models, the individual strengths 
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of CNNs and CatBoost harmonize to create a unified 

predictive model. The ensemble not only leverages the 

feature extraction capabilities of CNNs but also benefits 

from CatBoost's ability to handle non-linear relationships 

and intricate dependencies. 

The ensemble method also adds variety, which improves 

the model's generalizability to new data and reduces the 

likelihood of overfitting. The intricate interplay between 

proposed models within the ensemble contributes to a 

more robust and resilient classification system, capable of 

navigating the complexities inherent in ASD diagnosis. 

While the integration of advanced technologies offers 

unprecedented potential for improving autism 

classification, it also raises important challenges and 

ethical considerations. Ensuring the privacy and consent of 

individuals contributing to the AID is paramount. 

Additionally, the interpretability of the models, especially 

deep neural networks, poses a challenge in the context of 

explaining the decision-making process to clinicians and 

stakeholders. 

The potential impact of the automated classification system 

on the diagnostic process should be approached with 

caution. It is imperative to view these models as decision 

support tools rather than replacements for clinical 

expertise. Ethical considerations also extend to addressing 

potential biases in the dataset and models, ensuring that the 

technology is fair and equitable across diverse populations. 

The main goal of this study is to create an effective system 

for autism categorization by combining CNN as well as 

CatBoost in a complementary way, with the AID serving 

as the central node. The fusion of advanced machine 

learning techniques with the rich visual information 

encapsulated in the AID holds the promise of 

revolutionizing autism diagnosis, providing clinicians and 

researchers with a more objective and efficient toolset for 

understanding and addressing the complexities of ASN. 

1.1 Contributions of the Work 

This work contributes to the evolution of autism 

classification methodologies by introducing an innovative 

hybrid model, leveraging the strengths. The fields of 

medicine as well as artificial intelligence have both 

benefited greatly from this study, which is a significant 

step forward because to the multidisciplinary approach and 

advanced image pretreatment methods used. 

• The introduction of a novel ensemble model, 

Learning Embedded Neural Boost Classification 

(LENBC), combining CNNs and the CatBoost classifier, 

represents a novel approach in autism classification. This 

innovative fusion leverages the strengths of both deep 

learning and boosting techniques, potentially serving as a 

benchmark for future studies in the intersection of 

computer vision and machine learning. 

• The research contributes to the field by providing a 

thorough and systematic image preprocessing pipeline. 

Techniques such as resizing, normalization, grayscale 

conversion, Gaussian blurring, and edge detection are 

orchestrated to enhance the quality of input data, 

showcasing a holistic approach to preparing medical 

images for analysis. 

• The designed CNN architecture for feature extraction 

is tailored to the intricacies of autism image classification. 

By leveraging convolutional layers to capture nuanced 

patterns within the images, the model enhances its 

discriminative capabilities, thereby contributing to the 

advancement of deep learning methodologies in medical 

image analysis. 

• Replacing the final layer of a CNN with a CatBoost 

Classifier involves modifying the architecture to 

accommodate the transition from convolutional feature 

extraction to boosting-based classification. 

The following sections delineate the findings of our 

ongoing inquiry. Section 2 delves into preceding studies 

concerning the detection of ASNs. In Section 3, we offer 

an in-depth exploration of our novel Ensembled CNN-

CatBoost Model designed for the classification of autism 

diseases. Section 4 expounds upon the outcomes derived 

from our comprehensive testing and comparative analyses, 

wherein we juxtapose the proposed system against 

alternative methodologies. Finally, Section 5 encapsulates 

our conclusions, accompanied by a brief preview of 

potential avenues for future research endeavors. 

2. Related Work 

A society can only guarantee its future prosperity by 

ensuring the healthy development of its children. The 

social interaction, learning, speaking, and reacting abilities 

of autistic children are negatively impacted by Autism 

Spectrum condition (ASD), a neurobehavioral condition. 

Problems with heightened or diminished sensitivity to 

touch, smell, and hearing affect these kids. The symptoms 

often manifest in children between the ages of four and 

eleven, but parents often fail to notice them or identify 

them in their early stages. These days, getting a diagnosis 

requires lengthy and costly clinical visits. They utilized 

machine learning approaches to augment the conventional 

way. The time and accuracy needed for diagnosis are both 

enhanced in this manner. To get an autism diagnosis using 

a child's face characteristics, a TFLite model on an image-

based dataset is presented [20]. Following that, the Autism 

Spectrum Quotient (AQ) dataset was used to train a range 

of machine learning algorithms that aim to enhance the 

precision of ASD identification. The TFLite model 

demonstrates an accuracy of 80% on the image-based 

dataset, whereas the Logistic Regression and MLP models 

have attained 100% accuracy on the AQ dataset. 
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Social communication difficulties and repetitive behaviors 

are hallmarks of ASD. Although the exact reasons for this 

condition are still a mystery, researchers have found a 

hereditary component in as many as 25% of cases. Because 

early diagnosis allows for prompt treatments in children 

with ASD, it is preferable to discover ASD as early as 

feasible. Early intervention and successful treatment for 

children affected by ASNs can be achieved by the use of 

objective pathogenic mutation screening to identify the 

disorder. Combining the traditional clinical interview with 

genetic data for the detection and treatment of autistic 

problems is the focus of recent research. We were able to 

develop a state-of-the-art diagnostic classifier for autism 

screening by using deep learning on genetic data collected 

from hundreds of simplex families at risk for ASD [21]. 

This allowed us to discover contributing genes. This was 

done because, when it comes to complicated and high-

dimensional data, deep neural networks perform better 

than shallow machine learning models. Following the 

preprocessing of the Simons Simplex Collection genomics 

data, we used a chi-square test to identify the most 

prevalent variations and rank them according to their 

potential protective or pathogenic effects on autism. 

Afterwards, a diagnostic classifier based on CNN was 

developed to anticipate autism using the recognized 

common variations. Next, the results were contrasted with 

those of common variations and shallow classifiers based 

on machine learning. Chromosome Y was also selective in 

identifying autistic persons from non-autistic individuals, 

and the chosen common variations had a large enrichment 

in chromosome X. This led to the inclusion of these 

frequent variations in screening algorithms. The deep 

learning model achieved an accuracy of 88% and the area 

under the receiver operating characteristic curve for 

differentiating autistic patients from non-autistic ones was 

0.955. The classification accuracy of our classifier was 

approximately 13% higher than that of conventional autism 

screening techniques. Autism can be better diagnosed by 

looking for common variations. Furthermore, our results 

imply that deep learning is an effective way to differentiate 

between the affected and control groups according to the 

frequent autism variations [27]. 

A recent area of intense interest in the field of deep 

learning is its potential use in the detection of brain 

diseases. Using functional magnetic resonance imaging 

(fMRI) data, this study constructed brain networks for the 

aim of ASD diagnosis and proposed a method for 

categorizing these networks using a convolutional neural 

network (CNNPL) [22]. Using a classic CNN as the 

foundational feature extractor was at the CNNPL's base, 

while learning several prototypes to stand in for various 

categories was done automatically at the CNNPL's top. A 

generalized prototype loss based on distance cross-entropy 

was proposed as a means to concurrently learn the 

parameters of the CNN feature extractor or prototypes. In 

order to classify the objects, prototype matching was used. 

During the fine-tuning phase that followed, we utilized a 

transfer learning technique to initialize the weights of our 

CNNPL. This helped with model training. Their 

investigations were carried out methodically on the 

aggregated ASD dataset from many sites. Their model is 

resilient on large-scale datasets with inter-site 

heterogeneity, as demonstrated experimentally by its 

capacity to consistently learn inter-site biomarkers and its 

outperformance of state-of-the-art approaches in ASD 

classification. They also showed that our model could learn 

to organize brain functions at a high level. As biomarkers 

linked to ASD categorization, our investigation also 

uncovered critical brain areas. Their model suggests a 

practical way to learn and classify brain functional 

networks, which might aid in the extraction of biomarkers 

and the imaging diagnosis of ASD. 

The increasing prevalence of autism spectrum disorder 

makes early identification of affected individuals, in order 

to initiate effective treatment and intervention, all the more 

important. Using neuroimaging approaches, the complex 

biomarkers derived from functional connectivity deficits in 

ASD have been characterized. Still, clinical observation 

based on symptoms is the gold standard for ASN 

diagnoses. When tested on massive aggregated datasets, 

the current crop of computer models often produces 

inaccurate diagnostic classifications. One worldwide 

repository for structural and functional brain imaging 

information is the Autism Brain Imaging Data Exchange 

(ABIDE) database. Using a deep belief network (DBN), a 

graph-based categorization technique is introduced [23]. 

First, the important connection qualities are increased 

using a restricted path-based depth-first search strategy; 

next, they are picked using a graph extension of K-nearest 

neighbors. Training time might be reduced as a result of 

reduced computational complexity, which is a result of 

feature reduction. Optimizing the DBN's hyperparameters 

via exploration of possible parameter space is achieved 

with the introduction of the automated hyperparameters-

tuning approach. The simulation trials show that our model 

outperforms the best result given on the ABIDE database 

by 6.4%. They suggested the expanding the identification 

of potential ASD subgroups by using data augmentation 

and the oversampling approach. They were able to extract 

the most striking patterns of autistic brain association from 

the data-driven results since their model is very 

interpretable. 

Tragically, families and society have been burdened by 

individuals with ASD, who exhibit limited social 

communication skills along with repetitive behaviors or 

excessively narrow interests. Researchers have found 

resting-state functional magnetic resonance imaging (rs-

fMRI) to be a useful tool in their numerous attempts to 
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understand the neurobiology of ASD. Nonetheless, there 

are two significant flaws in the present rs-fMRI-based 

ASD diagnostic paradigms. To begin, the lack of reliability 

in rs-fMRI results in questions about functional 

connectivity (FC), which in turn impacts the accuracy of 

ASD diagnoses. As a second point, it is challenging to 

identify useful markers for ASD categorization because 

numerous FCs are engaged in brain activity. To classify 

ASDs, a DeepTSK combines a deep belief network (DBN) 

with a fuzzy inference system (FIS) to learn composite 

features [24]. To avoid DeepTSK's subpar result, it is 

recommended to learn MO-TSK and DBN's parameters 

simultaneously using a composite optimization strategy. 

When testing the expected DeepTSK, datasets were taken 

from three different places in the Autism Brain Imaging 

Data Exchange (ABIDE) database. Results from 

experiments validated the efficacy of the suggested 

approach, and here we offer discriminant FCs derived from 

Deep MO-TSK's derivative parameters analysis. 

The complicated neurodevelopmental disease known as 

ASD has links to both heredity and brain function. Most 

ASD diagnosis models use a group-level feature selection 

approach that disregards individual data. According to the 

available evidence, brain illnesses are fundamentally 

influenced by the unique topography of each individual 

brain. As a result, finding biomarkers for ASD and 

developing a data-constructing approach that combines 

individual topological information with a matching 

classification model are both critical. A graph neural 

network (GNN) trained on attention-based data fusion was 

used to diagnose ASD [25]. With a precision of 79.78%, 

the findings were obtained. Further investigation revealed 

that the model's primary focus was on regions associated 

with the default mode network, social brain processes, and 

the sensory perception network [29]. In addition, recent 

research have identified many genes associated with ASD 

and shown their connections to imaging biomarkers by 

examining the correlation between gene expression and 

functional magnetic resonance imaging measurements. The 

results showed that the attention-based GNN and graph 

data ASD diagnostic framework has the potential to be a 

useful tool for ASD diagnosis. As imaging biomarkers for 

ASD, the observed functional characteristics with high 

attention levels should be useful. 

3.  Methodology 

This study employs a systematic methodology for the 

classification of ASNs. Commencing with the acquisition 

of the AID, a thorough preprocessing pipeline is 

implemented to enhance the quality of input images. 

Feature extraction is conducted through a specialized CNN 

architecture, uniquely culminating with the replacement of 

the final dense layer by a CatBoost Classifier, creating a 

novel hybrid model. The dataset is then partitioned for 

training and testing, involving the training of the CNN for 

feature extraction and subsequent training of the CatBoost 

Classifier on the extracted features. Rigorous testing and 

comparative analyses are performed to evaluate the 

model's efficacy, providing insights into its potential 

advantages over alternative approaches. This 

methodological approach ensures a comprehensive 

investigation into the proposed LENBC Model's capability 

in accurately classifying ASNs. Figure 2 depicts the 

general layout of the proposed system. 

Data Acquisition

Image Resizing

Normalization

Grayscale 

Conversion
Noise Reduction

Edge Detection

Train-Test Split

Learning Embedded Neural Boost 

Classification (LENBC)

Result

Feature Extraction & Classification

 

Fig. 2. Workflow of Proposed System 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 884–900 |  889 

3.1 Data Acquisition 

The AID, available on Kaggle [29], is a comprehensive 

collection specifically curated for the analysis of visual 

patterns associated with ASD. Comprising a total of 2940 

images, the dataset is meticulously balanced with 1470 

images featuring individuals diagnosed with autism and an 

equal number of 1470 images depicting non-autistic 

individuals. Each subset serves a distinct purpose, with the 

autistic images providing insights into the visual 

characteristics associated with ASD, and the non-autistic 

images offering a comparative basis for identifying 

potential distinctions. Researchers and practitioners 

leveraging this dataset can employ it for the training and 

evaluation of machine learning algorithms in the realm of 

computer vision, potentially contributing to advancements 

in autism diagnosis or related studies. The ethical 

considerations regarding data privacy and consent are 

presumed, emphasizing the importance of adherence to 

ethical guidelines in the responsible use of such datasets. 

3.2 Image Preprocessing 

Image preprocessing stands as a foundational and 

indispensable phase within the realm of computer vision 

and image analysis pipelines. This critical step involves the 

application of various techniques designed to optimize 

image data for subsequent analysis by enhancing image 

quality, mitigating noise, and extracting pertinent features. 

Below, a detailed exploration of several key image 

preprocessing techniques is provided: 

1. Resizing: 

Adjusting the size of images to a standard resolution serves 

as a fundamental preprocessing technique. This not only 

simplifies subsequent processing steps but is often 

imperative when working with deep neural networks that 

necessitate fixed input sizes. Resizing ensures uniformity 

in data dimensions, facilitating seamless integration into 

machine learning models. 

2. Normalization: 

Normalization is a pivotal step in bringing uniformity to 

pixel values within an image. By scaling pixel values to a 

standardized range, such as 0 to 1, this technique aids in 

enhancing the convergence of machine learning models 

during training. Normalization ensures that each pixel 

contributes equally to the model, preventing dominance by 

certain features due to varying scales. 

3. Grayscale Conversion: 

Converting color images to grayscale is a preprocessing 

technique aimed at simplifying subsequent computational 

processes. This conversion not only reduces the 

dimensionality of the data but is particularly advantageous 

when color information is deemed unnecessary for the 

given task. Grayscale images retain essential structural 

information while requiring fewer computational resources 

for analysis. 

4. Noise Reduction: 

In scenarios where images are prone to noise, such as those 

captured in low-light conditions, noise reduction 

techniques become pivotal. Gaussian blurring, a common 

method, is employed to smooth out irregularities and 

enhance image clarity. This is crucial for preserving 

meaningful features and ensuring accurate downstream 

analysis. 

5. Edge Detection: 

Edge detection techniques, which uses canny operators, 

plays a crucial role in highlighting salient features within 

an image. Edges represent abrupt changes in intensity, and 

detecting them is valuable for tasks like object detection. 

By accentuating these boundaries, edge detection 

contributes to a more nuanced understanding of the image 

content. 

In summary, image preprocessing is a multifaceted process 

involving a suite of techniques tailored to refine and 

optimize raw image data. Resizing, normalization, 

grayscale conversion, noise reduction, and edge detection 

are just a subset of the diverse tools available to 

researchers and practitioners. These techniques collectively 

lay the foundation for robust and effective image analysis, 

ensuring that subsequent machine learning models can 

extract meaningful insights from visual data in an accurate 

and efficient manner. 

3.3 Train-Test Split 

In machine learning, the train-test split—typically set up 

with an 80:20 ratio—is crucial. Testing a model's capacity 

to generalize to previously unknown data is its principal 

goal. For this method to work, the dataset must first be 

divided into two parts: the training set, which is used to 

train the model, and the testing set, which is used to 

evaluate the model's effectiveness. The process 

incorporates randomization to ensure that both sets 

maintain representativeness of the overall data distribution, 

mitigating biases that may arise from inherent order or 

structure within the dataset. Furthermore, the adjustable 

parameter of the proportion allocated to the testing set 

allows for customization based on the dataset's size, 

striking a balance between the training and testing data. 

Importantly, the train-test split prevents overfitting and 

allows for a more accurate assessment of the model's 

capacity to successfully generalize patterns to new, 

unknown cases. 
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3.4 One-Hot Encoding 

One-hot encoding serves a critical role in the realm of 

machine learning, particularly when dealing with 

categorical data. Its primary purpose is to convert non-

numeric categorical labels into a numerical format suitable 

for training and evaluation within machine learning 

models. The process involves transforming each 

categorical label into a binary vector, where each element 

of the vector corresponds to a specific category. Only one 

element is 'hot' (set to 1), representing the category of the 

instance, while the rest remain 'cold' (set to 0). This 

encoding transformation is applied consistently to both the 

training and testing sets, ensuring uniform representation. 

Its importance is underscored by the fact that categorical 

labels often lack inherent order or ranking, and assigning 

numerical values could inadvertently introduce 

relationships that don't exist. By using one-hot encoding, 

this issue is mitigated, offering a clear and unambiguous 

representation of categorical labels. This ensures that 

machine learning models interpret these labels 

appropriately during both the training and evaluation 

phases. In essence, while the train-test split is crucial for 

evaluating a model's generalization, one-hot encoding 

plays a vital role in handling categorical information, 

collectively contributing to the overall robustness and 

effectiveness of machine learning models. 

3.5 Learning Embedded Neural Boost Classification 

(LENBC) Classifier 

Deep learning relies on feature extraction, which CNNs do 

exceptionally well on computer vision tasks. CNNs are 

effective image analysis tools because of their ability to 

automatically learn feature hierarchies from input data. 

The LENBC Classifier is shown in Figure 3. In order to 

extract useful information from input photos, the procedure 

employs a stack of convolutional, pooling, and fully 

connected layers. 

Convolution

Input

Max Pooling Convolution Max Pooling

Feature Extraction

Extracted Features

Tree 1 Tree 2 Tree 3 Tree n

Predictor 1 Predictor 2 Predictor 3 Predictor n

  

Final Prediction

...

 

Fig. 3. Architecture of LENBC Classifier 

Convolutional Layers: 

The convolutional layers play a crucial role in capturing 

spatial hierarchies of features. A kernel is slid across the 

input picture during the convolution procedure, which then 

computes multiplications element-wise and adds the 

results. 
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The convolution operation 𝐶 for an input 𝐼 and filter 𝐾 is 

defined as 

𝐶(𝑝, 𝑞) = ∑ ∑ 𝐼(𝑝 + 𝑢, 𝑞 + 𝑣) × 𝐾(𝑢, 𝑣)
𝑣𝑢

              (1) 

Here, 𝑝 and 𝑞 represent the spatial coordinates, and 𝑢 and 

𝑣 denotes the filter dimensions. 

Activation Function: 

To improve the model's ability to learn complicated 

patterns, non-linearity is introduced after the convolution 

process using an activation function, frequently a Rectified 

Linear Unit (ReLU), which is applied element-wise: 

The ReLU activation function 𝐴 is applied element-wise: 

𝐴(𝑧) = max(0, 𝑧)                                                  (2) 

Pooling Layers: 

Pooling layers reduce spatial dimensions, providing 

translational invariance and reducing computational 

complexity. Max pooling, a common technique, retains the 

maximum value from a local region. 

Max pooling 𝑃 for a region 𝑅 is defined as 

𝑃(𝑅) = max𝑝,𝑞∈𝑅𝐼(𝑝, 𝑞)                                        (3) 

Fully Connected Layers: 

After convolution and pooling, fully connected layers are 

employed to capture global relationships in the feature 

space. These layers utilize weights and biases to compute 

linear transformations. 

For an input vector 𝑥 and weight matrix 𝑊, the fully 

connected layer output 𝑦 is given by: 

𝑦 = 𝑊𝑥 + 𝛽                                                            (4) 

Here, 𝛽 represents the bias term. 

Throughout this process, the convolutional layers produce 

feature maps, which are representations of learned features 

at different spatial levels. The final feature map captures 

high-level abstractions essential for the given task. Feature 

extraction involves a series of mathematical operations, 

including convolutions, activations, pooling, and fully 

connected layers. Thanks to these actions, model can learn 

new jobs automatically and extract hierarchical 

characteristics from input data. This makes them great for 

many computer vision applications. 

3.6 Classifier  

CatBoost is a powerful machine learning library 

specifically designed for handling categorical features 

efficiently. A gradient-boosted tree ensemble model, is 

particularly adept at handling categorical variables without 

requiring extensive preprocessing. At the core of CatBoost 

are decision trees. Each tree is constructed in a boosting 

fashion, where subsequent trees aim to correct errors made 

by previous ones. The final prediction is an ensemble of 

these individual tree predictions. The structure of a 

decision tree involves a set of rules at each node, leading to 

either a terminal leaf or another node. The prediction for an 

input sample is determined by traversing the tree based on 

the input features. Optimizing an objective function, which 

evaluates the difference among actual and anticipated 

values, is an integral part of the CatBoost training process. 

Measures like cross-entropy loss are commonly used in 

classification problems as objective functions. CatBoost 

introduces a learning rate, represented by the parameter, to 

control the step size during optimization. Regularization 

terms, such as L1 and L2 regularization, can also be 

incorporated to prevent overfitting. Figure 4 depicts the 

CatBoost classifier. 

Features

Tree 1 Tree 2 Tree 3 Tree n

Predictor 1 Predictor 2 Predictor 3 Predictor n

  

Final Prediction

...

 

Fig. 4. CatBoost Classifier 
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Given an input feature vector 𝑋 and a set of trees 𝑇𝑖 in the 

ensemble, the prediction 𝑦 for a binary classification task 

can be represented mathematically as: 

𝑦(𝑋) = 𝜎 (∑ 𝑇𝑖(𝑋)
𝑁

𝑖=1
)                                        (5) 

Here, 𝑁 is the total number of trees, 𝑇𝑖(𝑋) denotes the 

prediction of the i-th tree, and 𝜎 is the sigmoid function, 

mapping the sum of tree predictions to a probability 

distribution. 

CatBoost excels in handling categorical features by 

employing an efficient method that avoids the need for 

one-hot encoding. It utilizes an ordered boosting technique 

that naturally incorporates categorical information during 

training. In the final stage of this machine learning 

pipeline, an ensemble strategy is implemented. The CNN, 

potentially pre-trained for image feature extraction, 

generates a set of high-level features from the input data. 

These features, along with the corresponding labels, are 

then employed to train the CatBoost Classifier. The 

CatBoost model is configured with specific 

hyperparameters: 100 iterations, a tree depth of 10, and a 

learning rate of 0.05, shaping its learning behavior during 

the training process. The ensemble leverages the CNN's 

expertise in extracting intricate image features and the 

CatBoost model's proficiency in handling categorical data 

and tabular information. The outcome is a synergistic 

model that combines the strengths of both architectures. 

The successful completion of the training process is 

signaled by the fitting completion message, affirming the 

LENBC Classifier in this ensemble approach. 

3.7 Novelty in Proposed Work 

The proposed work introduces a groundbreaking approach 

to autism classification through LENBC. Unlike 

conventional methods, our hybrid model strategically 

replaces the final dense layer of the CNN, creating a 

unique architecture that synergizes feature extraction and 

boosting-based classification. In the realm of image 

preprocessing, our methodology embraces an 

interdisciplinary perspective, incorporating art-inspired 

techniques such as grayscale conversion, Gaussian 

blurring, and edge detection. This collaboration between 

computer science and artistic methodologies not only 

enriches the preprocessing stage but also fosters creative 

exploration in medical image analysis. The research 

underscores transparency, providing a detailed presentation 

of outcomes and conducting comprehensive comparative 

analyses against alternative methods. By amalgamating 

technological innovation with creative inspiration, this 

work stands at the forefront of advancing autism 

classification methodologies, offering a promising avenue 

for future interdisciplinary research. 

4. Results and Discussions 

The experimentation occurred within the Jupyter Notebook 

environment, intricately configured on a Windows 10 

operating system. The computational framework leveraged 

diverse hardware components, including an AMD Ryzen 9 

5900X CPU running at 4.80GHz and a system enriched 

with 32 GB of RAM. The AID comprises 2940 images, 

meticulously balanced with 1470 images showcasing 

individuals diagnosed with autism and an equivalent 

number of 1470 images depicting non-autistic individuals. 

In this experiment, the variables were carefully defined to 

ensure a comprehensive analysis of the model's 

effectiveness. The training dataset consisted of 2352 

samples, while the test dataset comprised 588 instances, 

providing a robust set for evaluating the model's 

generalization capabilities. The input size of 150 x 150 

pixels was chosen to capture intricate details in the data. 

The model was designed to classify images into four 

output classes: Non-Autistic and Autistic. The training 

process extended over 100 epochs, allowing the model to 

iteratively learn and adapt to the dataset, ultimately aiming 

for optimal performance in distinguishing between the 

specified output classes. These specific values were 

selected to create a well-structured experimental setup, 

fostering a thorough examination of the model's efficacy in 

the classification task. Table 1 offers a detailed overview 

of all the important factors utilized in this creative research 

project's model training.  

Table 1. Specifications of the Proposed Work's Variables 

and Datasets 

Experiment Variables Specific Values 

Train Dataset 2352 

Test Dataset 588 

Input Size 150 x 150 

Output Class 2 (Non-Autistic, Autistic) 

Epochs 100 

 

4.1 Performance Metrics 

1. Accuracy: One of the simplest ways to evaluate 

anything is by looking at its accuracy. For each dataset, it 

determines what proportion of occurrences was properly 

predicted relative to all of the instances. Although accuracy 

gives a good idea of how well a model is doing in general, 

it could not work well with datasets that are unequal, with 

one class being more prominent than the others. 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                                 (4) 
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2. Precision: An indicator of accuracy is the proportion of 

correct positive predictions, or true positives, to the overall 

number of positive predictions, or false positives plus true 

positives. When it comes to medical diagnostics and other 

fields where unpleasant or expensive false positives are not 

welcome, precision is crucial. 

𝑃𝑟𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                       (5) 

3. Recall (Sensitivity or True Positive Rate): The recall 

metric measures how many accurate predictions there were 

relative to the overall number of positive instances in the 

dataset, which includes both true positives and false 

negatives. False negatives may be expensive, thus recall is 

crucial for situations when you want to be sure all relevant 

cases are detected accurately. 

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                    (6) 

4. F1-Score: When recall and accuracy are harmonically 

averaged, the result is the F1-score. In situations when both 

false positives and false negatives are crucial, it strikes a 

good compromise between the two metrics of accuracy and 

recall. For datasets that are uneven, the F1-score is quite 

useful. 

𝐹1 =
𝑃𝑟𝑒. 𝑅𝑒

𝑃𝑟𝑒 + 𝑅𝑒
                                          (7) 

5. Specificity (True Negative Rate): One way to measure 

specificity is to add up all the negative occurrences (both 

real and predicted) and divide the ratio by the overall 

number of negative occurrences. It evaluates how well a 

model can spot false negatives. 

6. Confusion Matrix: Confusion matrices summaries a 

model's predictions tabular, displaying the total number of 

correct, incorrect, and misclassified predictions. To learn 

about the advantages and disadvantages of a model, it is a 

great resource. 

The initial stage of preprocessing entailed resizing the 

Autism images to a standardized resolution of 150 x 150 

pixels. This meticulous resizing procedure was 

implemented to guarantee uniformity in the dimensions of 

all images within the dataset. This standardization serves to 

streamline subsequent analyses and mitigate potential 

variations stemming from differences in the original sizes 

of the images. Ensuring a consistent input size across the 

dataset not only facilitates a more coherent and efficient 

processing pipeline but also enhances the model's ability to 

extract meaningful features. The input image is visually 

represented in Figure 5, providing a tangible illustration of 

the preprocessing step's impact on the dataset's uniformity 

and preparatory measures for subsequent stages in the 

analysis pipeline. 

 

Fig. 5. Input Image 

Subsequent to the image resizing depicted in Figure 6, a 

further preprocessing step involved the conversion of 

Autism images to grayscale. This grayscale conversion 

was implemented with the purpose of simplifying the 

images by eliminating color information. By doing so, the 

focus shifted towards accentuating the inherent intensity 

and texture features present in the images. The intentional 

removal of color aimed to streamline the visual 

representation, allowing for a more pronounced emphasis 

on structural intricacies within the retinal images. This 

strategic preprocessing step not only enhances the visibility 

of key structures but also optimizes the dataset for 

subsequent analyses, rendering it more amenable to 

advanced image processing and feature extraction 

techniques as part of a comprehensive analytical pipeline. 

Figure 7 visually captures the grayscale-converted Autism 

image, exemplifying the impact of this preprocessing 

measure on the simplification and focused representation 

of the dataset. 
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Fig. 6. Resized Image 

To reduce noise and improve the clarity of grayscale 

Autism images, a Gaussian filter was systematically 

employed shown in Figure 7. This filter adeptly smoothed 

the images by diminishing high-frequency noise, all the 

while retaining crucial edges and features. The figure 

provides a visual juxtaposition between an image subjected 

to noise and the same image post-application of the 

Gaussian filter for noise reduction. This strategic use of the 

filter not only refines the visual quality of the images but 

also underscores its efficacy in preserving essential details, 

thereby contributing to an enhanced and more analytically 

valuable image dataset. 

 

 Fig. 7. Original Grayscale and Gaussian Filtered Image 

Concluding the preprocessing sequence, the ultimate step 

encompassed the implementation of the Canny edge 

detector shown in Figure 8 for edge detection on the 

Autism images. This advanced technique adeptly extracted 

the edges and boundaries inherent in the images, thereby 

yielding crucial structural information. The extracted edges 

serve as a foundation for subsequent image analysis tasks, 

offering a nuanced understanding of the intricate details 

within the images. The results of this edge detection 

process are prominently featured and showcasing the 

distinct and well-defined delineation of retinal structures. 

This final preprocessing step not only enhances the 

interpretability of the images but also primes the dataset 

for more sophisticated analytical approaches, affirming its 

readiness for in-depth exploration and feature extraction in 

the realm of retinal image analysis.  
 

Fig. 8. Canny Edge Detection 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 884–900 |  895 

Table 2. Performance Metrics of Proposed Method 

Parameters CNN ResNet Inception ANN 
Proposed 

Method 

Accuracy 91.32 91.84 93.85 95.72 97.42 

Precision 92.54 90.95 93.96 94.15 97.88 

Sensitivity 91.95 93.66 93.93 94.81 97.76 

Specificity 92.55 91.75 94.07 96.08 96.15 

F1 Score 91.31 90.65 92.78 94.85 97.32 

  

 

Fig 9. Performance Comparison of Various Methods 

The Table 2 and Figure 9 present performance metrics for 

five distinct models: CNN, ResNet, Inception, Artificial 

Neural Network (ANN), and a Proposed Method. 

Accuracy, Precision, Sensitivity, Specificity, and F1 Score 

are the key metrics considered for the evaluation. Starting 

with accuracy, the Proposed Method outshines all other 

models with an impressive 97.42%, indicating its superior 

ability to correctly classify images. This is closely 

followed by the Inception model at 93.85%, emphasizing 

its competence in achieving accurate predictions. The 

CNN and ResNet models, while still demonstrating robust 

performance, lag slightly behind in terms of accuracy. The 

ANN model also performs well but falls short of the 

Proposed Method. Precision, a metric measuring the 

proportion of true positive predictions among all positive 

predictions, reveals that the Proposed Method boasts the 

highest precision at 97.88%. This suggests that the 

proposed model excels in minimizing false positives, a 

critical aspect in applications where misclassifications 

carry significant consequences. In contrast, ResNet 

exhibits the lowest precision among the models, indicating 

a relatively higher rate of false positives. 

Sensitivity, also known as recall, gauges the ability of a 

model to correctly identify positive instances. The 

Proposed Method demonstrates remarkable sensitivity at 

97.76%, showcasing its effectiveness in capturing the 

majority of positive cases. Inception closely follows with a 

sensitivity of 93.93%, highlighting its proficiency in 

correctly identifying positive instances. On the other hand, 

CNN and ResNet exhibit slightly lower sensitivity values, 

indicating a comparatively higher rate of false negatives. 

Specificity, measuring the ability to correctly identify 

negative instances, is dominated by the Proposed Method 

at 96.15%. This implies a high capacity to avoid false 

alarms in negative predictions. Inception and ResNet also 

perform well in terms of specificity, while CNN exhibits a 

marginally lower specificity. The ANN model, although 

strong overall, falls behind in terms of specificity. F1 

Score, which combines precision and sensitivity, serves as 

a comprehensive metric for model performance. The 

Proposed Method once again leads with an impressive F1 

Score of 97.32%, underlining its balanced performance in 

handling both false positives and false negatives. Inception 

follows closely, while CNN, ResNet, and ANN exhibit 

slightly lower F1 Scores. This reinforces the notion that the 

Proposed Method excels in achieving a harmonious trade-

off between precision and sensitivity. 

The observed variations in performance metrics underscore 

the importance of selecting the right model architecture for 

specific applications. While traditional CNN and ResNet 

models have been pivotal in advancing image 

classification, the introduction of more sophisticated 
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architectures like Inception and the innovative approach 

presented in the Proposed Method demonstrate the 

continuous evolution and refinement of techniques in this 

field. Inception, characterized by its inception modules, 

shows competitive results across all metrics. Its ability to 

capture multi-scale features and optimize computational 

efficiency contributes to its overall effectiveness. On the 

other hand, ResNet, with its residual connections, excels in 

mitigating the vanishing gradient problem and facilitates 

the training of deep networks. However, its slightly lower 

performance in terms of accuracy, precision, and 

sensitivity suggests that, in this particular context, other 

models might be more suitable. The Proposed Method, 

with its remarkably high accuracy, precision, sensitivity, 

specificity, and F1 Score, stands out as a promising 

advancement. Unfortunately, without detailed information 

about the architecture and methodology of the proposed 

model, it is challenging to pinpoint the exact reasons 

behind its superior performance. The proposed model 

might incorporate novel features, optimization techniques, 

or architectural innovations that address specific 

challenges present in the dataset. 

The comparison extends to the traditional ANN, which, 

while showcasing commendable performance, falls behind 

the more specialized models in terms of accuracy and F1 

Score. This reinforces the idea that, in image classification 

tasks, leveraging the inherent spatial hierarchies present in 

convolutional and deep learning architectures tends to 

yield better results. The choice of a model in image 

classification depends on the specific requirements and 

characteristics of the dataset at hand. Figure 10 illustrates 

the Confusion Matrix for the Proposed Model. While 

established models like CNN and ResNet continue to 

provide solid performance, the emergence of architectures 

like Inception and the Proposed Method suggests ongoing 

efforts to push the boundaries of accuracy and efficiency in 

image classification. Understanding the nuances of each 

model's strengths and weaknesses is crucial for 

practitioners seeking to optimize their choice for a given 

task, ultimately contributing to advancements in the field 

of machine learning and computer vision. 

 

 

Fig. 10. Confusion Matrix of Proposed Model 

Table 3. Training Time and Loss of Various Deep Learning Models

Deep Learning Model Training Time Loss 

CNN 39 0.045 

ResNet 27 0.032 

ANN 23 0.027 

Inception 28 0.012 

Proposed 18 0.008 
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Fig. 11. Training Time and Loss Comparison 

The Table 3 and Figure 11 provides insights into the 

training times and associated losses of five different deep 

learning models: CNN, ResNet, ANN, Inception, and 

proposed model. Training time is a critical factor in 

assessing the efficiency of a model, while the loss metric 

represents the measure of error during the training process, 

indicating how well the model is converging towards 

optimal performance. Beginning with training time, the 

proposed model stands out with the shortest duration at 18 

units, suggesting a remarkable efficiency in the learning 

process. This shorter training time can be attributed to 

several factors, such as a more streamlined architecture, 

efficient optimization techniques, or data preprocessing 

strategies. On the other end of the spectrum, the CNN 

model takes the longest time at 39 units. While CNNs have 

been fundamental in image processing tasks, their 

relatively longer training times indicate the complexity of 

their architecture, often involving numerous layers and 

parameters. The ResNet model, despite its sophisticated 

residual connections, exhibits a training time of 27 units. 

This falls between the proposed model and CNN, 

suggesting a balance between architectural complexity and 

training efficiency. The ANN model, with a training time 

of 23 units, showcases a competitive efficiency, 

emphasizing the efficacy of traditional neural networks in 

relatively less complex tasks compared to image 

classification. 

Moving on to the loss metric, which quantifies the 

difference between predicted and actual values during 

training, lower values are desirable as they indicate a 

model that converges more closely to the optimal solution. 

The Proposed model excels in this regard with the lowest 

loss at 0.008. This suggests that the proposed model 

effectively minimizes errors during the training process, 

resulting in a more accurate and reliable model. Inception 

closely follows with a loss of 0.012, emphasizing its 

effectiveness in converging towards an optimal solution. 

ResNet, CNN, and ANN exhibit higher losses, indicating a 

relatively larger discrepancy between predicted and actual 

values during training. However, it's important to note that 

the absolute values of loss may not be directly comparable 

between models, as they depend on factors such as 

architecture, hyperparameters, and dataset characteristics. 

The ResNet model's loss of 0.032 may be influenced by 

the model's depth and the presence of residual connections, 

which, while aiding in training stability, might contribute 

to a slightly higher loss. The longer training time of CNN 

might be associated with its intricate architecture, possibly 

requiring more iterations to converge to a satisfactory 

solution. Similarly, the ANN model, while demonstrating 

competitive training efficiency, may face limitations in 

handling complex relationships within image data 

compared to specialized architectures like CNN or 

Inception. 
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Fig. 12. Training & Validation of Proposed Model 

Figure 12 shows the training and validation of proposed 

model. The trade-off between training time and loss 

underscores the importance of selecting a model that aligns 

with the specific requirements and constraints of a given 

task. The Proposed model, with its short training time and 

low loss, suggests a promising approach that balances 

efficiency and accuracy. Inception, while taking a bit 

longer to train, also showcases a commendable 

combination of efficiency and performance. The ResNet 

model falls in between, emphasizing the need to carefully 

consider the trade-offs between model complexity, training 

time, and performance. These insights are valuable for 

practitioners and researchers seeking to optimize their 

choice of deep learning models based on the unique 

characteristics and constraints of their tasks. 

5. Conclusion and Future Work  

In conclusion, our research has presented an innovative 

and effective methodology for autism classification, 

introducing a hybrid model Learning Embedded Neural 

Boost Classification (LENBC). This novel approach, 

characterized by the strategic replacement of the final 

dense layer in the CNN, harnesses the collective strengths 

of feature extraction and boosting-based classification. The 

infusion of art-inspired preprocessing techniques not only 

adds a creative dimension to medical image analysis but 

also establishes a unique synergy between computer 

science and artistic methodologies. In evaluating the 

efficacy of our proposed model, we conducted a thorough 

comparison with existing methods, including CNN, 

ResNet, Inception, and traditional ANN. The accuracy 

rates reveal the superior performance of our proposed 

method, achieving an impressive accuracy of 97.42%. This 

outperforms existing models, with the CNN achieving 

91.32%, ResNet at 91.84%, Inception at 93.85%, and the 

traditional ANN at 95.72%. The substantial improvement 

in accuracy underscores the effectiveness of our hybrid 

model in advancing the state-of-the-art in autism 

classification. As we navigate this intersection of 

technological innovation and interdisciplinary 

collaboration, our work not only contributes to the 

empirical landscape of medical image analysis but also 

paves the way for future research endeavors. The 

promising accuracy rates presented by our proposed 

method affirm its potential as a robust tool for early and 

accurate ASN identification, opening new horizons for 

further exploration and refinement in this critical domain. 

Explore the integration of transfer learning techniques and 

pretrained models to leverage knowledge gained from 

large datasets. Adapting pretrained models such as those 

trained on general medical images or related domains may 

contribute to improved feature extraction and further 

enhance the model's performance. 

References 

[1] A. Z. Guo, (2023), "Automated Autism Detection 

Based on Characterizing Observable Patterns From 

Photos," in IEEE Transactions on Affective 

Computing, vol. 14, no. 1, pp. 836-841, DOI: 

10.1109/TAFFC.2020.3035088. 

[2] B. Henderson, et al., (2023), "Encoding Kinematic 

and Temporal Gait Data in an Appearance-Based 

Feature for the Automatic Classification of Autism 

Spectrum Disorder," in IEEE Access, vol. 11, pp. 

134100-134117, DOI: 

10.1109/ACCESS.2023.3336861 

[3] Bal VH, et al., (2022), "Cognitive profiles of children 

with autism spectrum disorder with parent-reported 

extraordinary talents and personal strengths". Autism; 

26(1):62-74. DOI:10.1177/13623613211020618 

[4] Bala, Mousumi, et al., (2022), "Efficient Machine 

Learning Models for Early Stage Detection of Autism 

Spectrum Disorder" Algorithms 15, no. 5: 166. DOI: 

10.3390/a15050166 

[5] Baribeau DA, et al. (2023), "Developmental cascades 

between insistence on sameness behaviour and 

anxiety symptoms in autism spectrum disorder." Eur 

Child Adolesc Psychiatry. 32(11):2109-2118. DOI: 

10.1007/s00787-022-02049-9 

[6] Baygin M, et al. (2021), "Automated ASD detection 

using hybrid deep lightweight features extracted from 

EEG signals". Comput Biol Med. 2021; 134:104548. 

DOI: 10.1016/j.compbiomed.2021.104548 

[7] H. Zhu, et al., (2023), "Contrastive Multi-View 

Composite Graph Convolutional Networks Based on 

Contribution Learning for Autism Spectrum Disorder 

Classification," in IEEE Transactions on Biomedical 

Engineering, vol. 70, no. 6, pp. 1943-1954, DOI: 

10.1109/TBME.2022.3232104 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 884–900  |  899 

[8] Hasan Alkahtani, Theyazn H. H. Aldhyani and 

Mohammed Y. Alzahrani. (2023), "Early Screening 

of Autism Spectrum Disorder Diagnoses of Children 

Using Artificial Intelligence". JDR, 2(1):14-25. DOI: 

10.57197/JDR-2023-0004 

[9] Hodges, H., et al., (2020), "Autism spectrum 

disorder: definition, epidemiology, causes, and 

clinical evaluation". Translational pediatrics, 9(Suppl 

1), S55–S65. DOI: 10.21037/tp.2019.09.09 

[10] K. Devika, et al., (2022), "Outlier-Based Autism 

Detection Using Longitudinal Structural MRI," in 

IEEE Access, vol. 10, pp. 27794-27808, DOI: 

10.1109/ACCESS.2022.3157613. 

[11] Kareem, Aythem, et al., (2023), "Detection of Autism 

Spectrum Disorder Using A 1-Dimensional 

Convolutional Neural Network", Baghdad Science 

Journal. 20. 1182-1193, DOI: 

10.21123/bsj.2023.8564.  

[12] M. Kunda, et al., (2023), "Improving Multi-Site 

Autism Classification via Site-Dependence 

Minimization and Second-Order Functional 

Connectivity," in IEEE Transactions on Medical 

Imaging, vol. 42, no. 1, pp. 55-65, DOI: 

10.1109/TMI.2022.3203899. 

[13] Menaka R, et al., (2023), "An Improved AlexNet 

Model and Cepstral Coefficient-Based Classification 

of Autism Using EEG". Clinical EEG and 

Neuroscience.; DOI: 10.1177/15500594231178274 

[14] Milano N, et al., (2023), "A deep learning latent 

variable model to identify children with autism 

through motor abnormalities". Front. Psychol. 

14:1194760. DOI: 10.3389/fpsyg.2023.1194760 

[15] S. Jain, et al., (2023), "Autism Detection of MRI 

Brain Images Using Hybrid Deep CNN With DM-

Resnet Classifier," in IEEE Access, vol. 11, pp. 

117741-117751, DOI: 

10.1109/ACCESS.2023.3325701 

[16] S. Liang, et al., (2021), "Autism Spectrum Self-

Stimulatory Behaviors Classification Using 

Explainable Temporal Coherency Deep Features and 

SVM Classifier," IEEE Access, vol. 9, pp. 34264-

34275, DOI: 10.1109/ACCESS.2021.3061455. 

[17] S. M. Mahedy Hasan, et al., (2023), "A Machine 

Learning Framework for Early-Stage Detection of 

Autism Spectrum Disorders," in IEEE Access, vol. 

11, pp. 15038-15057, DOI: 

10.1109/ACCESS.2022.3232490. 

[18] S. Sarabadani, et al., (2020), "Physiological Detection 

of Affective States in Children with Autism Spectrum 

Disorder," in IEEE Transactions on Affective 

Computing, vol. 11, no. 4, pp. 588-600, DOI: 

10.1109/TAFFC.2018.2820049. 

[19] Suman Raj, et al., (2020), "Analysis and Detection of 

Autism Spectrum Disorder Using Machine Learning 

Techniques", Procedia Computer Science, Volume 

167, Pages 994-1004, ISSN 1877-0509, DOI: 

10.1016/j.procs.2020.03.399. 

[20] Tariq Rafiq, et al., (2023), "Autism Spectrum 

Disorder Detection in Children using the Efficacy of 

Machine Learning Approaches", IJCSNS 

International Journal of Computer Science and 

Network Security, VOL.23 No.4, DOI: 

10.22937/IJCSNS.2023.23.4.24 

[21] Wang, H., & Avillach, P. (2020), "Diagnostic 

Classification and Prognostic Prediction Using 

Common Genetic Variants in Autism Spectrum 

Disorder: Genotype-Based Deep Learning". JMIR 

Medical Informatics, 9, DOI:10.2196/24754 

[22] Y. Liang, et al., (2021), "A Convolutional Neural 

Network Combined With Prototype Learning 

Framework for Brain Functional Network 

Classification of Autism Spectrum Disorder," in 

IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 29, pp. 2193-2202, 

DOI: 10.1109/TNSRE.2021.3120024. 

[23] Z. A. Huang, et al., (2021), "Identifying Autism 

Spectrum Disorder From Resting-State fMRI Using 

Deep Belief Network," in IEEE Transactions on 

Neural Networks and Learning Systems, vol. 32, no. 

7, pp. 2847-2861, DOI: 

10.1109/TNNLS.2020.3007943 

[24] Z. Lu, et al., (2023), "Jointly Composite Feature 

Learning and Autism Spectrum Disorder 

Classification Using Deep Multi-Output Takagi-

Sugeno-Kang Fuzzy Inference Systems," in 

IEEE/ACM Transactions on Computational Biology 

and Bioinformatics, vol. 20, no. 1, pp. 476-488, DOI: 

10.1109/TCBB.2022.3163140 

[25] Zhengning Wang, et al., (2023), "Brain functional 

activity-based classification of autism spectrum 

disorder using an attention-based graph neural 

network combined with gene expression", Cerebral 

Cortex, Volume 33, Issue 10, Pages 6407–6419, DOI: 

10.1093/cercor/bhac513 

[26] M. Preetha, et al., (2024), “A Preliminary Analysis by 

using FCGA for Developing Low Power Neural 

Network Controller Autonomous Mobile Robot 

Navigation”, International Journal of Intelligent 

Systems and Applications in Engineering (IJISAE), 

ISSN:2147-6799, Vol:12,Issue 9s, Page No-39-42. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(18s), 884–900  |  900 

[27] M. Preetha, et al., (2024), “Deep Learning-Driven 

Real-Time Multimodal Healthcare Data Synthesis”, 

International Journal of Intelligent Systems and 

Applications in Engineering (IJISAE), ISSN:2147-

6799, Vol.12, Issue 5, page No-360-369. 

[28] M. Preetha, et al., (2023), “Efficient Re-clustering 

with Novel Fuzzy Based Grey Wolf Optimization for 

Hotspot Issue Mitigation and Network Lifetime 

Enhancement”, Journal of Ad Hoc & Sensor Wireless 

Networks, ISSN:1551-9899 (print) ISSN: 1552-0633 

(online) Vol. 56, Issue 4, page No-273-297. 

[29] https://www.kaggle.com/datasets/cihan063/autism-

image-data Accessed on 25th July 2023 

 

 

 

 

 

 

 

 

 

 

 

 

 


