

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 23

Improvised Swarm Based Discrete Data Mining Approach for High

Utility Item Sets

Raja Rao Budaraju1, Sastry Kodanda Rama Jammalamadaka2*

Submitted: 03/02/2024 Revised: 11/03/2024 Accepted: 17/03/2024

Abstract: Data mining techniques uncover valuable patterns hidden inside extensive databases to assist decision support systems in

different practical applications. Association rule mining analyzes the transaction database to recognize patterns and provides insights into

client behavior. Frequent itemset mining (FIM) detects a group of items that are commonly purchased together. A significant limitation

of FIM is its disregard for the item's significance. The significance of an item is crucial in a practical application. Hence, it is imperative

to identify the critical set of items that yields substantial profits, referred to as the HUIM (High-Utility Itemset Mining) problem. Various

techniques may be employed to identify high utility itemsets from a transaction database. The HUIM approaches that employ the Utility

list are relatively new and exhibit superior performance in terms of memory consumption and execution time. Primary constraint of these

algorithms is the execution of expensive utility list join operations. This work presents a highly efficient optimization approach based on

swarm intelligence for addressing the HUIM problem. Furthermore, the suggested method's execution time is assessed. Additionally, it is

compared to relevant and advanced current approaches. Extensive tests were carried out on accessible benchmark datasets demonstrate

that the suggested swarm-based methodology outperforms state-of-the-art approaches.

Keywords: High Utility Itemset, discrete, Improved discrete cuckoo search

1. Introduction

Data analysis systems are seeing significant growth due to

their ability to uncover valuable insights that are concealed

inside data. Frequent Itemset Mining (FIM) is a crucial

activity in data analysis or data mining [1]. The process

pulls often recurring events, patterns, or objects (either

individual or grouped) from the data [2]. High Utility

Itemset Mining (HUIM) [3] is a developing area of study

that aims to address a clear drawback of FIM [1], which is

the assumption that all patterns in a database are equally

significant. The objective of HUIM is to identify patterns

that have a significant utility in relation to their value to

the user [4]. The creation of the utility function can stem

from diverse criteria, yet its central aim remains

quantifying the profit derived from retail product sales [5].

HUIM is often viewed as an extension of the FIM task,

wherein each element within the input data receives a

value denoting its significance or relevance to the

particular problem at hand. An important feature of HUIM

is its capacity to accommodate multiple instances of an

item within a single transaction, whereas FIM solely

displays the presence or absence of each item in each

transaction.

The initial HUIM techniques [6] were released in the early

2000s with the goal of generating significant and practical

findings. Subsequently, the problem has been widely

explored in other application domains, including market

basket analysis [5] and sentiment analysis [6], among

others. At present, HUIM is a very active field of study

that encompasses several effective algorithms [7, 8] for

listing all itemsets that produce a benefit greater than a

threshold established by the user. Several methods [8]

utilize a way of generating and testing candidates in a

level-wise manner, while others [9, 10] rely on pattern

growth. Nevertheless, these specific HUIM algorithms

may have significant delays when operating on extensive

search areas. To be more explicit, the performance of

accurate techniques tends to decrease as the amount of

input data rises, particularly in terms of the number of

transactions and the total number of distinct objects [6].

Consequently, performance becomes unsatisfactory for

those who cannot tolerate such lengthy waiting times to

acquire results. The objective for utilizing bio-inspired

optimization methodologies, such as genetic algorithms

[11] and particle swarm optimization [12], is to address the

performance bottleneck in precise HUIM methods. In this

research work, a swarm based optimization algorithm

namely Improved Discrete Cuckoo Search algorithm

(ICDS) is discretized to solve HUIM. The key

contributions of the proposed work are as follows:

• The conventional Cuckoo Search algorithm has been

adapted to address HUI problems that involve the

representation of solution space in binary form.

1Department of Computer Science and Engineering, Koneru Lakshmaiah
Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh,

India.

Email: rajaraob@yahoo.com
2Department of Electronics and Computer Science, Koneru Lakshmaiah

Education Foundation, Vaddeswaram, Guntur 522302, Andhra Pradesh,

India.
Email: drsastry@kluniversity.in

*(Corresponding Author)

mailto:rajaraob@yahoo.com
mailto:drsastry@kluniversity.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 24

• The proposed model is evaluated with runtime,

convergence towards optimal solution and identified

HUI.

• The proposed model is being compared against

contemporary existing methodologies in order to

demonstrate its significance.

The following is the organizational scheme of the paper's

following sections: Section 2 focuses on the previous

research conducted on HUIM, specifically examining both

exhaustive and evolutionary algorithms. Section 3 provides

an explanation of the HUIM characteristics, and its

representation in terms of mathematical notations. Section

4 outlines the suggested paradigm, namely discrete swarm

optimization method. Section 5 outlines the empirical

assessment of the suggested model. Section 6 provides the

final conclusions of the work, and future perspectives.

2. Related Works

After the introduction of HUIM by Yao and Hamilton,

numerous refinements have been introduced to enhance its

mining efficiency. In their work, Liu et al. [13] devised the

Two-Phase technique, which introduces the Transaction

Weight Utility (TWU) as an innovative upper limit

adhering to the downward closure property. This facilitates

the elimination of unproductive candidates from the search

space and ensures the comprehensive extraction of HUI.

However, the method described above requires extensive

database examinations for all HUIs, and although TWU

serves as a dependable upper limit, it lacks precision,

resulting in prolonged processing times. Le et al. [14]

introduced the DTWU-Mining approaches, which employ

the diffset technique to diminish the number of candidates

and database searches. This ensures that search time and

memory usage are minimized through the utilization of this

technology. The UPGrowth algorithm, developed by Tseng

et al., [15], is derived from the FP-Growth method. In

2023, Qu et al., [16] introduced the Hamm method to

improve the HUIM process in tree mining. They also

proposed a new structure called TV that allows for the

sequential mining of item sets with high utilization,

eliminating the requirement for candidate creation.

Liu et al. [17] presented the HUIMiner approach, which

applies a more stringent upper limit known as the residual

utility and uses the Utility-List data format, as compared to

TWU. The process of generating several candidates is now

obsolete due to the implementation of the Utility-List

structure. Because of this structure, the algorithm may do a

single database search and merge the Utility-List of

itemsets to form larger itemsets. Authors FournierViger et

al. [18] introduced the FHM algorithm as an improvement

to the HUI-Miner algorithm. The FHM algorithm achieves

better performance by reducing the number of itemsets

generated by two items. This reduction is accomplished via

Estimated Utility Co-occurrence Pruning (EUCP). Author

Krishnamoorthy [19] proposed the HUP-Miner technology

as an enhancement to the FHM algorithm. This technique

suggests more effective pruning strategies to further limit

the search area. The ULB-Miner technique, introduced by

Q.-H. H. Duong et al. [20], utilizes a utility-list buffer

structure to decrease execution time and memory usage. In

2017, Krishnamoorthy introduced the HMiner algorithm,

which incorporates multiple pruning techniques (TWU-

prune, EUCS-prune, Uprune, LA-prune, and C-prune)

along with a proposed approach for consolidating identical

transactions. This strategy reduces runtime by

consolidating "closed" transactions into a single repository.

Additionally, the UBP-Miner method, developed by Wu et

al. [21], aims to enhance the List-based approach by

reducing the frequency of transaction scans. Benchmark

assessments show that the UBP-Miner algorithm

outperforms both the HUIMiner and ULB-Miner

algorithms.

Moreover, alongside utility-list and tree-based techniques,

the algorithms also manage transactions that exhibit partial

similarity. EFIM stands out as one of the pioneering

algorithms to adopt this approach, introduced by Zida et al.

[22]. This algorithm employs a method to amalgamate

similar transactions and rearrange objects within them,

thereby facilitating their projection and merging to reduce

memory usage. Additionally, the technique employs two

precise and stringent upper bounds: the sub-tree and the

local utility.

Yet, EFIM encounters an obstacle concerning the high

costs incurred during database scanning. To address this

issue, Nguyen et al. [23] introduced the iMEFIM method,

which utilizes the P-Set framework to accurately record the

positions of necessary transactions. This algorithm

incorporates a mechanism to handle databases where each

transaction has varying levels of significance.

In addition to the traditional algorithms for HUIM, there

are various related problems that are commonly

encountered in real-world scenarios. These include Utility-

Oriented Pattern Mining [24], Closed-HUIs [25],

Maximal-HUIs [26], uncertainty HUIs [27], Cross-Level

HUIs [28], and weighted high-utility pattern mining [29].

Conversely, deep learning models and soft computing have

advanced significantly by resolving numerous issues

across various domains [30–38].

3. Problem Definition

Let us consider a quantitative transaction dataset, denoted

as 𝔻, which is comprised of a collection of transactions.

Specifically, 𝔻 may be represented as a set of transactions,

where each transaction is labeled with a unique identifier i.

As an example, Table 1 illustrates a transactional dataset 𝔻

that consists of seven transactions, each identified by a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 25

unique identifier. These transactions might reflect the

purchasing patterns of clients or the specific behaviors of

users. Let 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑚} exist in a limited number of

distinct elements. Transaction 𝑇𝑟𝑖 consists of 𝑚

quantifiable items. Each item 𝑖𝑗 ∈ 𝐼 has a value that is

external, 𝑈𝐸(𝑖𝑗), which represents a product's weight or

earnings from sales as indicated in Table 2. Additionally,

each item 𝑖𝑗 ∈ 𝐼 has an internal utility value, 𝑈𝐼(𝑖𝑗), which

represents the amount of sales it makes or the number of

times it is sold in each transaction 𝑈𝐸(𝑖𝑗). An itemset 𝑋

can be conceptualized as a collection of 𝑘 unique items and

is commonly denoted as a k-itemset. A transaction denoted

as 𝑇𝑟𝑖 can be classified as a supporting transaction for 𝑋 iff

𝑋 is a subset of 𝑇𝑟𝑖.

Table 1. Transaction Database

Transaction ID Quantity

𝑇𝑟1 (P, 1), (Q, 3), (T, 2)

𝑇𝑟2 (R, 4), (S, 5)

𝑇𝑟3 (T, 2), (U, 3)

𝑇𝑟4 (P, 5), (Q, 4), (R, 2), (S, 2), (T, 4)

𝑇𝑟5 (Q, 5), (R, 4), (T, 6), (U, 1)

𝑇𝑟6 (Q, 1), (R, 3), (T, 6)

𝑇𝑟7 (P, 2), (T, 3), (U, 4)

In order to gain a deeper understanding of the

aforementioned introductory concepts, we will now

examine the sample dataset 𝔻 as presented in Table 1

There are a set of seven transactions denoted as

𝑇𝑟1, 𝑇𝑟2, 𝑇𝑟3, 𝑇𝑟4, 𝑇𝑟5, 𝑇𝑟6 and 𝑇𝑟7. Moreover, the set 𝔻

comprises six distinct elements denoted by the symbols

𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑈. Table 2 presents the collection of positive

unit earnings that are linked to the sale of these products.

In essence, every transaction signifies the act of selling

particular commodities. An illustration may be provided by

transaction 𝑇𝑟1 in database 𝔻, which indicates that items

𝑃, 𝑄 𝑎𝑛𝑑 𝑇 were acquired in this particular transaction,

with amounts of 1, 3, and 2, respectively.

Table 2. Items with Unit Profit

Item P Q R S T U

Profit/Unit 6 4 2 5 3 9

The utility of item 𝑥 ∈ 𝑇𝑟𝑖 is computed as,

𝑈(𝑃, 𝑇𝑟1) = 𝑈𝐼(𝐴, 𝑇𝑟1) × 𝑈𝐸(𝐴) = 1 × 6 = 6

For an itemset 𝑋 ⊆ 𝑇𝑟𝑖 , 𝑈(𝑋) in 𝑇𝑟𝑖 can be defined as,

𝑈({𝑃, 𝑄}, 𝑇𝑟1) = 𝑈(𝑃, 𝑇𝑟1) × 𝑈(𝑄, 𝑇𝑟1) = 12 + 6 = 18

The total utility of an itemset 𝑋 inside the dataset 𝔻 is

formally defined as

𝑈({𝑃, 𝑄}, 𝔻) = ({𝑃, 𝑄}, 𝑇𝑟1) + ({𝑃, 𝑄}, 𝑇𝑟4) = 18 + 46

= 64

The transaction utility of any transaction 𝑇𝑟𝑖 in the set 𝔻

may be computed as

𝑈𝑇(𝑇𝑟3) = 𝑈(𝑇, 𝑇𝑟3) + 𝑈(𝑈, 𝑇𝑟3) = 6 + 27 = 33

HUI is used to describe an itemset that has a utility value

that is either equal to or much higher than a minimum

utility threshold (minUtil) that the user has chosen. The

process of extracting HUI from transactional datasets has

as its primary goal the identification of all HUIs that

satisfy the minimal utility threshold that has been

determined. With a minimum utility criterion of 70, the

high-utility item sets that were derived from the dataset 𝔻

that was provided are created and presented in the

following manner:

Table 3. Itemset with Utility Value

Itemset F A, B A, E B, E E, F A, B, E B, C, E A, B, C, D, E

Utility 72 72 87 102 105 90 106 72

4. Proposed Model

The Cuckoo Search Algorithm [23] is derived from the

brood parasite behavior of the cuckoo bird. Cuckoo birds

deposit their eggs in the nests of other birds in order to rear

their offspring. This behavior is derived from the cuckoo

and has been formulated as an evolutionary method for

optimization purposes. Computer Science employs two

distinct methodologies for exploring optimal solutions in a

vast search space: an approach to random walks that makes

use of Levy flights (LFRW) and a method known as biased

random walk (BSRW). It has been determined that the

following is the formulation of the Levy Flight

distribution, which the cuckoo use in order to do a random

walk:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 26

𝐿𝑒𝑣𝑦(𝛽)~
𝜙×𝜇

|𝑣|
1

𝛽⁄
 (2)

where random variables 𝜇 and 𝑣 are both within the range

of (0,1), whereas 𝛽 represents the stability index. The

formulation of 𝜙 can be expressed as

𝜙 = [
Γ(1+𝛽)×𝑠𝑖𝑛(

𝜋×𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

𝛽−1
2

]

1
𝛽⁄

 (3)

where Γ denotes the gamma function.

The levy flight distribution is utilized by the cuckoo search

algorithm to provide random solutions, which aids in

enhancing the exploration process. This has been devised

as

𝐿𝐹𝑅𝑊𝑖 = 𝐼𝑖 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) (4)

The symbol 𝛼 > 0 denotes the magnitude of the step size.

The step size 𝛼) can be adjusted to optimize the

exploration of the search space.

In order to optimize the utilization of solutions, CS has

been adjusted with a search mechanism that is based on the

best solution achieved thus far. This is depicted as

𝐿𝐹𝑅𝑊𝑖 = 𝐼𝑖 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) × (𝐼𝑖 − 𝐼𝑏𝑒𝑠𝑡) (5)

The LFRW technique is applied to 𝐼𝑖 , and the best solution

between 𝐼𝑖 and 𝐿𝐹𝑅𝑊𝑖 is preserved using the greedy

method. After performing the 𝐿𝐹𝑅𝑊 procedure on every

solution in the population, the 𝐵𝑆𝑅𝑊 method will be used

to each person in order to explore the search space and get

the optimal solution. Due to the tendency of the greedy

technique to become stuck in local optima, the 𝐵𝑆𝑅𝑊

algorithm is developed to explore the search space. The

new solution is developed in 𝐵𝑆𝑅𝑊 based on the

following formulation.

𝐵𝐹𝑅𝑊𝑖 = 𝐼𝑖 + 𝑟𝑎𝑛𝑑 × (𝐼𝑞 − 𝐼𝑝) (6)

Let 𝑞 and 𝑝 be distinct random individuals, where | 𝑝 ≠ 𝑞.

Unlike the 𝐿𝐹𝑅𝑊 approach, which employs a greedy

strategy to incorporate 𝐿𝐹𝑅𝑊-generated solutions into the

main population, 𝐵𝐹𝑅𝑊 utilizes the probability fraction

method 𝜌𝑎. 𝜌𝑎 is a constant factor that is defined to be

between 0 and 1. The answer in the main population can be

substituted using the probability fraction approach 𝜌𝑎.

 𝐼𝑖 = {
𝐵𝐹𝑅𝑊𝑖,𝑗 𝑟𝑎𝑛𝑑 > 𝜌𝑎

𝐼𝑖,𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (7)

let "𝑖" represent the current individual and "𝑗" correspond

to the dimension of each individual.

4.1. Improved Discrete Cuckoo Search Algorithm

Empirical results in traditional computer science

algorithms demonstrate the presence of a defensive set of

exploration that indicates a biased nature of the

exploration. In order to extract road regions from high

resolution satellite pictures, it is necessary to strike a

balance between exploration and exploitation. This balance

will help determine the best threshold values for each

segmentation class. In computation, the process of

exploration is managed in the BFRW section, leading to a

larger emphasis on exploration rather than exploitation.

This is crucial for effectively extracting roads from

satellite photos. Therefore, to increase the likelihood of

success in computer science, we integrate an enhanced

form of search within the provided solution space,

focusing on exploiting the potential of the LFRW method

rather than only searching around the current best solution.

Our proposed search approach involves searching for the

answer based on both the overall best solution and the best

solution found during each iteration. It can be expressed

as

𝐿𝐹𝑅𝑊𝑖 =

{
𝐼𝑖 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) × (𝐼𝑖 − 𝐼𝑏𝑒𝑠𝑡) 𝑟𝑎𝑛𝑑 > 𝑟𝑎𝑛𝑑

𝐼𝑖 + 𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) × (𝐼𝑖 − 𝐼𝐺,𝑏𝑒𝑠𝑡) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

In this context, 𝑟𝑎𝑛𝑑 is a random variable that falls within

the range of 0 to 1, and 𝐺 is the generation number. The

pseudo code for the Improved Discrete Cuckoo Search

Algorithm has been included in Algorithm 2 as a result of

this inclusion.

Algorithm: Discrete Cuckoo Search for HUIM

Initialize G to 1

Create Population at 𝐺, denoted as 𝑃𝑜𝑝𝐺 , containing

individuals: 𝐼1,𝐺 through 𝐼𝑁,𝐺

Evaluate the fitness of 𝑃𝑜𝑝𝐺 : 𝑓(𝑃𝑜𝑝𝐺)

Obtain the best solution found so far: 𝐼𝑏𝑒𝑠𝑡

Obtain the best solution in iteration 𝐺: 𝐼𝐺,𝑏𝑒𝑠𝑡

While the stopping condition is not met:

 For each individual 𝐼 in 𝑃𝑜𝑝𝐺 :

 Generate 𝐿𝐹𝑅𝑊𝑖 using Equation (8)

 Evaluate the fitness of 𝐿𝐹𝑅𝑊𝑖: 𝑓(𝐿𝐹𝑅𝑊𝑖)

 Choose the best solution between 𝐿𝐹𝑅𝑊𝑖 and 𝐼𝑖

 For each individual, 𝐼 in 𝑃𝑜𝑝𝐺 :

 Generate 𝐵𝐹𝑅𝑊𝑖 using Equation (7)

 Evaluate the fitness of 𝐵𝐹𝑅𝑊𝑖: 𝑓(𝐵𝐹𝑅𝑊𝑖)

 Choose the best solution between 𝐵𝐹𝑅𝑊𝑖 and 𝐼𝑖

 Update the best solution in iteration 𝐺: 𝐼𝐺,𝑏𝑒𝑠𝑡 to be the

minimum fitness in 𝑃𝑜𝑝𝐺

 If 𝐼𝐺,𝑏𝑒𝑠𝑡 has better fitness than 𝐼𝑏𝑒𝑠𝑡:

 Update 𝐼𝑏𝑒𝑠𝑡 to be 𝐼𝐺,𝑏𝑒𝑠𝑡

 Increment 𝐺 𝑏𝑦 1

Output: 𝐼𝐺,𝑏𝑒𝑠𝑡

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 27

5. Experimental Evaluation

5.1 Experimental Setup

The suggested algorithm is executed in MATLAB 2020

version on a computational device with an Intel Core i7

CPU running at 4.2 GHz, 16 GB of primary memory, and

the Windows 11 operating system. The parameter

configurations of the proposed algorithm are provided in

Table 4.

Table 4. Parameter Settings

Parameters Values

Size of the population 100

Total number of runs 10

Iterations / Run 500

5.2 Evaluation Model

The proposed algorithm is compared with seven existing

models, notably HUIM-HC, HUIM-SA, and HUIM-AF.

The suggested approach was evaluated using four real-life

datasets: Chess, Mushroom, Accidents, and Connect

datasets. The datasets are obtained from the SPMF data

mining library [33]. The results are evaluated under the

performance criteria’s, including runtime, the number of

identified HUIs, and convergence.

5.3 Runtime

Table 4 indicates the duration of execution for several HUI

algorithms on the chess dataset, with respect to different

minimal utility threshold values. When comparing the

outcomes of the suggested model with the existing

algorithms, HUIM-ICDS demonstrates a notable

enhancement in terms of runtime.

Table 4. Execution Time on the Dataset-Chess

Min.

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

27.5 85.58 37.75 50.25 33.59

27.0 84.14 35.94 44.07 29.08

26.5 86.77 35.15 49.03 27.05

26.0 84.52 36.49 46.41 31.45

25.5 83.10 38.71 52.58 29.76

On analyzing the average execution time on the chess

dataset, HUIM-ICDS performs better than other

approaches like HUIM-HC by 67.3%, HUIM-SA by

24.7%, and HUIM-AF by 42.8%. Figure 1 displays a graph

that compares the runtime of the algorithms.

Fig. 1. Runtime on dataset - Chess

Table 5 depicts the duration of execution for several HUI

algorithms on the Mushroom dataset, with respect to

different minimal utility threshold values. When

comparing the outcomes of the suggested model with the

current algorithms, HUIM-ICDS demonstrates a

noteworthy enhancement in terms of implementation.

Table 5. Execution time on the dataset-Mushroom

Minimum

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

14.0 39.32 16.24 13.97 14.56

13.5 35.48 14.67 14.92 11.57

13.0 39.66 16.20 14.67 13.76

12.5 40.16 15.26 13.01 13.07

12.0 40.50 16.78 15.74 14.25

On analyzing the average execution time on the Mushroom

dataset, HUIM-ICDS performs better than other

approaches like HUIM-HC by 70.6%, HUIM-SA by

27.6%, and HUIM-AF by 20.7%. Figure 2 displays a

graph that compares the runtime of the algorithms.

Fig. 2. Runtime on dataset - Mushroom

Table 6 displays the duration of execution on the accident

dataset by various HUI algorithms with respect to different

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 28

lowest utility threshold values. When comparing the

outcomes of the suggested model with the current

algorithms, HUIM-ICDS demonstrates a noteworthy

enhancement in terms of implementation.

Table 6. Execution time on the dataset-Accident

Min.

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

13 732.76 304.65 327.54 243.43

12.8 800.02 333.06 281.79 266.18

12.6 770.39 241.67 226.24 203.89

12.4 766.54 270.06 331.66 229.77

12.2 771.43 202.32 287.84 156.13

On analyzing the average execution time on the accident

dataset, HUIM-ICDS performs better than other

approaches like HUIM-HC by 71.9%, HUIM-SA by

20.3%, and HUIM-AF by 26.04%. Figure 3 displays a

graph that compares the runtime of the algorithms.

Fig. 3. Runtime on dataset - Accident

Table 7 depicts the duration of execution for several HUI

algorithms on the connect dataset, with respect to different

minimal utility threshold values. When comparing the

outcomes of the suggested model with the existing

algorithms, HUIM-ICDS demonstrates a notable

enhancement in terms of implementation.

Table 7. Execution time on the dataset-Connect

Minimum

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

32.0 2781.16 803.76 1420.13 620.79

31.8 2441.67 828.14 1357.53 645.21

31.6 2477.80 1118.54 1402.52 838.48

31.4 2056.89 897.08 1338.70 717.70

31.2 2314.26 949.71 1333.12 779.00

On analyzing the average execution time on the accident

dataset, HUIM-ICDS performs better than other

approaches like HUIM-HC by 69.8%, HUIM-SA by

20.8%, and HUIM-AF by 46.9%. Figure 4 displays a graph

that compares the runtime of the algorithms.

Fig. 4. Runtime on dataset – Connect

5.4 Discovered HUI’s

Table 8 depicts the proportions of identified High Utility

Items (HUIs) in the chess dataset using several HUI

algorithms, with respect to varying minimum utility

threshold values. When comparing the outcomes of the

suggested model with the current techniques, HUIM-ICDS

demonstrates a notable enhancement in terms of the

Discovered HUI's.

Table 8. Number of HUI’s on Dataset - Chess

Minimum

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

27.5 100 96.66 95.42 100

27.0 100 99.20 96.98 100

26.5 100 99.95 99.07 100

26.0 100 100 100 100

25.5 100 100 100 100

Average 100 99.16 98.29 100

On examining the average percentage of detected HUI's on

the chess dataset, HUIM-ICDS performs better than the

current approaches, including HUIM-SA by 0.83%,

HUIM-AF by 1.70% and competes equally with HUIM-

HC.

Table 9 displays the proportion of identified High Utility

Itemsets (HUIs) in the mushroom dataset using various

HUI techniques, with respect to varying minimum utility

threshold values. When comparing the outcomes of the

suggested model with the existing methods, HUIM-ICDS

demonstrates a notable enhancement in terms of the

discovered HUI's.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 29

Table 9. Number of HUI’s on Dataset - Mushroom

Minimum

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

14.0 100 99.03 75.45 100

13.5 100 97.77 88.01 100

13.0 100 99.22 98.75 100

12.5 100 100 100 100

12.0 100 100 100 100

Average 100 99.20 92.44 100

On examining the average percentage of detected HUI's on

the mushroom dataset, HUIM-ICDS performs better than

the current approaches, including HUIM-SA by 0.7%,

HUIM-AF by 7.55% and competes equally with HUIM-

HC.

Table 10 displays the proportion of identified HUIs in the

accident dataset using several HUI algorithms, with respect

to varying minimal utility threshold values. When

comparing the outcomes of the suggested model with the

existing methods, HUIM-ICDS demonstrates a notable

enhancement in terms of the Discovered HUI's.

Table 10. Number of HUI’s on Dataset - Accident

Minimum

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

13 100 96.74 94.30 100

12.8 100 99.21 95.00 100

12.6 100 99.26 98.95 100

12.4 100 100.00 98.67 100

12.2 100 100 100 100

Average 100 99.04 97.39 100

On examining the average percentage of detected HUI's on

the accident dataset, HUIM-ICDS performs better than the

current approaches, including HUIM-SA by 0.9%, HUIM-

AF by 2.61% and competes equally with HUIM-HC.

Table 11 displays the proportion of identified HUIs in the

connect dataset using several HUI algorithms, with respect

to varying minimal utility threshold values. When

comparing the outcomes of the suggested model with the

existing algorithms, HUIM-ICDS demonstrates a

noteworthy enhancement in terms of the Discovered HUI's.

Table 11. Number of HUI’s on Dataset - Connect

Minimum

utility

threshold

HUIM-

HC

HUIM-

SA

HUIM-

AF

HUIM-

IDCS

32 100 98.85 98.77 100

31.8 100 99.29 98.55 100

31.6 100 100 100 100

31.4 100 100 100 100

31.2 100 100 100 100

Average 100 99.63 99.46 100

On examining the average percentage of detected HUI's on

the connect dataset, HUIM-ICDS performs better than the

current approaches, including HUIM-SA by 0.3%, HUIM-

AF by 0.5% and competes equally with HUIM-HC.

5.5 Convergence

Figure 5, 6, 7, and 8 displays the convergence graph

illustrating the progress towards the optimal solution at

each iteration. The graphs are plotted with an iteration

interval of 50 for the chess, mushroom, accident, and

connect datasets, respectively.

Fig. 5. Convergence while Discovering HUI

on dataset - Chess

Fig. 6. Convergence while Discovering HUI

on dataset - Mushroom

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 30

Fig. 7. Convergence while Discovering HUI on

dataset - Accident

Fig. 8. Convergence while Discovering HUI on

dataset - Connect

The convergence graph displays the cumulative count of

HUIs identified at each interval of iteration time. Based on

the data, it is evident that the suggested model surpasses all

existing methods in terms of performance. Our suggested

model outperforms HUIM-HC in terms of results,

requiring less iterations. By analyzing the graphs, it can be

noted that this model performs on par with other models at

higher levels of achievement.

6. Conclusion

This study presents an enhanced Discrete Cuckoo Search

technique designed in order to solve HUI issues that need

huge datasets. Levy flights and oppositional learning are

both included into the model that has been provided. The

objective of this strategy is to streamline the process of

selecting whether or not to include a certain item in the

HUI by reducing the temporal complexity, which is

characterized by an exponential component. The model we

suggest significantly decreases the overall time

complexity. The suggested model is evaluated against

techniques such as HUIM-HC, HUIM-SA, and HUIM-AF

utilizing performance criteria including runtime, number of

identified high utility itemsets (HUIs), and convergence.

Taking into consideration the results in comparison to

other approaches that are already in existence, the

experimental assessment reveals the significance of the

proposed model.

References

[1] J.M. Luna, P. Fournier-Viger, S. Ventura, Frequent

itemset mining: A 25 years review, Wiley

Interdisciplinary Reviews: Data Mining and

Knowledge Discovery 9 (6) (2019).

[2] C.C. Aggarwal, J. Han, Frequent Pattern Mining.

Springer Publishing Company, 2014. ISBN: 978-3-

319-07821-2.

[3] P. Fournier-Viger, J.C.-W. Lin, R. Nkambou, B. Vo,

V.S. Tseng, High-Utility Pattern Mining: Theory,

Algorithms and Applications, 1st edition., Springer

Publishing Company, 2019.

[4] W. Gan, J.C. Lin, J. Zhang, P. Fournier-Viger, H.

Chao, P.S. Yu, Fast utility mining on sequence data,

IEEE Transaction on Cybernetics 51 (2) (2021) 487–

500.

[5] P. Fournier-Viger, C. Wu, S. Zida, V.S. Tseng, FHM:

faster high-utility itemset mining using estimated

utility co-occurrence pruning, in: Proceedings of the

21st International Symposium on Foundations of

Intelligent Systems, ISMIS 2014, Roskilde, Denmark,

June 25–27, 2014. Proceedings, volume 8502,

Springer, 2014, pp. 83–92.

[6] P. Fournier-Viger, J.C.-W. Lin, R. Nkambou, B. Vo,

V.S. Tseng, High-Utility Pattern Mining: Theory,

Algorithms and Applications, 1st edition., Springer

Publishing Company, 2019.

[7] W. Gan, J.C. Lin, P. Fournier-Viger, H. Chao, P.S.

Yu, HUOPM: high-utility occupancy pattern mining,

IEEE Transactions on Cybernetics 50 (3) (2020)

1195–1208.

[8] Y. Liu, W. Liao, A.N. Choudhary, A two-phase

algorithm for fast discovery of high utility itemsets,

in: Proceedings of the 9th Pacific-Asia Conference on

Advances in Knowledge Discovery and Data Mining,

PAKDD 2005, Hanoi, Vietnam, May 18–20, 2005,

Proceedings, volume 3518, Springer, 2005, pp. 689–

695.

[9] C.F. Ahmed, S.K. Tanbeer, B. Jeong, Y. Lee,

Efficient tree structures for high utility pattern mining

in incremental databases, IEEE Transaction on Data

and Knowledge Engineering 21 (12) (2009) 1708–

1721.

[10] V.S. Tseng, B. Shie, C. Wu, P.S. Yu, Efficient

algorithms for mining high utility itemsets from

transactional databases, IEEE Transaction on Data

and Knowledge Engineering 25 (8) (2013) 1772–

1786.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 31

[11] S. Kannimuthu, K. Premalatha, Discovery of high

utility itemsets using genetic algorithm with ranked

mutation, Applied Artificial Intelligence 28 (4)

(2014) 337–359.

[12] J.C. Lin, L. Yang, P. Fournier-Viger, T. Hong, M.

Voznák, A binary PSO approach to mine high-utility

itemsets, Soft Computing 21 (17) (2017) 5103 5121.

[13] Y. Liu W.K. Liao A. Choudhary A Two-Phase

Algorithm for Fast Discovery of High Utility Itemsets

2005 Springer-Verlag 689 695

10.1007/11430919_79.

[14] Le, B., Nguyen, H., & Vo, B. (2011). An efficient

strategy for mining high utility itemsets. International

Journal of Intelligent Information and Database

Systems, 5(2), 164–176

[15] Tseng, V. S., Wu, C. W., Shie, B. E., & Yu, P. S.

(2010). UP-Growth: An efficient algorithm for high

utility itemset mining. Proceedings of the ACM

SIGKDD International Conference on Knowledge

Discovery and Data Mining, 253–262.

https://doi.org/10.1145/1835804.1835839.

[16] Qu, J.-F., Fournier-Viger, P., Liu, M., Hang, B., &

Hu, C. (2023). Mining high utility itemsets using

prefix trees and utility vectors. IEEE Transactions on

Knowledge and Data Engineering, 1–14.

https://doi.org/10.1109/TKDE.2023.3256126

[17] Liu, M., & Qu, J. (2012). Mining high utility itemsets

without candidate generation. Proceedings of the 21st

ACM International Conference on Information and

Knowledge Management - CIKM ’12, 55.

https://doi.org/10.1145/2396761.2396773.

[18] Fournier-Viger, P., Wu, C.-W., Zida, S., & Tseng, V.

S. (2014). FHM: Faster High-Utility itemset mining

using estimated utility co-occurrence pruning. In In

Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics): Vol. 8502 LNAI

(pp. 83–92). https://doi.org/10.1007/978-3-319-

08326-1_9

[19] Krishnamoorthy, S. (2015). Pruning strategies for

mining high utility itemsets. Expert Systems with

Applications, 42(5), 2371–2381.

https://doi.org/10.1016/j.eswa.2014.11.001

[20] Duong, Q.-H.-H., Fournier-Viger, P., Ramampiaro,

H., Nørvåg, K., & Dam, T.-L.-L. (2018). Efficient

high utility itemset mining using buffered utility-lists.

Applied Intelligence, 48(7), 1859–1877.

https://doi.org/10.1007/s10489-017-1057-2

[21] Wu, P., Niu, X., Fournier-Viger, P., Huang, C., &

Wang, B. (2022). UBP-Miner: An efficient bit based

high utility itemset mining algorithm. Knowledge-

Based Systems, 248, Article 108865.

https://doi.org/10.1016/j.knosys.2022.108865

[22] Zida, S., Fournier-Viger, P., Lin, J.-C.-W., Wu, C.-

W., & Tseng, V. S. (2017). EFIM: A fast and

memory efficient algorithm for high-utility itemset

mining. Knowledge and Information Systems, 51(2),

595–625. https://doi.org/10.1007/s10115-016-0986-0

[23] Nguyen, L. T. T., Nguyen, P., Nguyen, T. D. D., Vo,

B., Fournier-Viger, P., & Tseng, V. S. (2019). Mining

high-utility itemsets in dynamic profit databases.

Knowledge-Based Systems, 175, 130–144.

https://doi.org/10.1016/j.knosys.2019.03.022

[24] Lan, W., Lin, J.-C.-W., Fournier-Viger, P., Chao, H.-

C., Tseng, V. S., & Yu, P. S. (2021). A survey of

Utility-Oriented pattern mining. IEEE Transactions

on Knowledge and Data Engineering, 33(4), 1306–

1327. https://doi.org/10.1109/TKDE.2019.2942594

[25] Vo, B., Nguyen, L. T. T., Bui, N., Nguyen, T. D. D.,

Huynh, V.-N., & Hong, T.-P. (2020). An efficient

method for mining closed potential High-Utility

itemsets. IEEE Access, 8, 31813–31822.

https://doi.org/10.1109/ACCESS.2020.2974104

[26] Duong, H., Hoang, T., Tran, T., Truong, T., Le, B., &

Fournier-Viger, P. (2022). Efficient algorithms for

mining closed and maximal high utility itemsets.

Knowledge-Based Systems, 257, Article 109921.

https://doi.org/10.1016/j.knosys.2022.109921

[27] Ahmed, U., Lin, J.-C.-W., Srivastava, G., Yasin, R.,

& Djenouri, Y. (2021). An evolutionary model to

mine high expected utility patterns from uncertain

databases. IEEE Transactions on Emerging Topics in

Computational Intelligence, 5(1), 19–28.

https://doi.org/10.1109/TETCI.2020.3000224

[28] Tung, N. T., Nguyen, L. T. T., Nguyen, T. D. D.,

Fourier-Viger, P., Nguyen, N.-T., & Vo, B. (2022a).

Efficient mining of cross-level high-utility itemsets in

taxonomy quantitative databases. Information

Sciences, 587, 41–62.

https://doi.org/10.1016/j.ins.2021.12.017

[29] Srivastava, G., Lin, J.-C.-W., Pirouz, M., Li, Y., &

Yun, U. (2021). A Pre-Large WeightedFusion system

of sensed High-Utility patterns. IEEE Sensors

Journal, 21(14), 15626–15634.

https://doi.org/10.1109/JSEN.2020.2991045

[30] Attuluri, S., Ramesh, M. Multi-objective discrete

harmony search algorithm for privacy preservation in

cloud data centers. Int. j. inf. tecnol. (2023).

https://doi.org/10.1007/s41870-023-01462-w

[31] Hazzazi, Mohammad Mazyad, Sasidhar Attuluri,

https://doi.org/10.1145/1835804.1835839
https://doi.org/10.1109/TKDE.2023.3256126
https://doi.org/10.1145/2396761.2396773
https://doi.org/10.1007/978-3-319-08326-1_9
https://doi.org/10.1007/978-3-319-08326-1_9
https://doi.org/10.1016/j.eswa.2014.11.001
https://doi.org/10.1007/s10489-017-1057-2
https://doi.org/10.1016/j.knosys.2022.108865
https://doi.org/10.1007/s10115-016-0986-0
https://doi.org/10.1016/j.knosys.2019.03.022
https://doi.org/10.1109/TKDE.2019.2942594
https://doi.org/10.1109/ACCESS.2020.2974104
https://doi.org/10.1016/j.knosys.2022.109921
https://doi.org/10.1109/TETCI.2020.3000224
https://doi.org/10.1016/j.ins.2021.12.017
https://doi.org/10.1109/JSEN.2020.2991045
https://doi.org/10.1007/s41870-023-01462-w

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 | 32

Zaid Bassfar, and Kireet Joshi. 2023. "A Novel

Cipher-Based Data Encryption with Galois Field

Theory" Sensors 23, no. 6: 3287.

https://doi.org/10.3390/s23063287

[32] R. R. Budaraju and O. S. Nagesh, "Multi-Level

Image Thresholding Using Improvised Cuckoo

Search Optimization Algorithm," 2023 3rd

International Conference on Intelligent Technologies

(CONIT), Hubli, India, 2023, pp. 1-7, doi:

10.1109/CONIT59222.2023.10205744.

[33] Hazzazi, Mohammad Mazyad, Raja Rao Budaraju,

Zaid Bassfar, Ashwag Albakri, and Sanjay Mishra.

2023. "A Finite State Machine-Based Improved

Cryptographic Technique" Mathematics 11, no. 10:

2225. https://doi.org/10.3390/math11102225

[34] Thirugnansambandam, K., Bhattacharyya, D., Frnda,

J., Anguraj, D. K., & Nedoma, J. (2021). Augmented

Node Placement Model in t-WSN Through Multi

objective Approach. Comput. Mater. Contin. CMC

Tech Sci. Press, 69, 3629-3644.

[35] Thirugnanasambandam, K., Raghav, R. S., Anguraj,

D. K., Saravanan, D., & Janakiraman, S. (2021).

Multi-objective Binary Reinforced Cuckoo Search

Algorithm for Solving Connected Coverage target

based WSN with Critical Targets. Wireless Personal

Communications, 121(3), 2301-2325.

[36] Thirugnanasambandam, K.; Ramalingam, R.; Mohan,

D.; Rashid, M.; Juneja, K.; Alshamrani, S.S. Patron–

Prophet Artificial Bee Colony Approach for Solving

Numerical Continuous Optimization Problems.

Axioms 2022, 11, 523.

https://doi.org/10.3390/axioms11100523

[37] Thirugnanasambandam, K., Rajeswari, M.,

Bhattacharyya, D. et al. Directed Artificial Bee

Colony algorithm with revamped search strategy to

solve global numerical optimization problems. Autom

Softw Eng 29, 13 (2022).

https://doi.org/10.1007/s10515-021-00306-w

[38] Raghav, R. S., Thirugnanasambandam, K.,

Varadarajan, V., Vairavasundaram, S., & Ravi, L.

(2022). Artificial Bee Colony Reinforced Extended

Kalman Filter Localization Algorithm in Internet of

Things with Big Data Blending Technique for

Finding the Accurate Position of Reference Nodes.

Big Data, 10(3), 186-203.

https://doi.org/10.3390/s23063287
https://doi.org/10.3390/math11102225
https://doi.org/10.3390/axioms11100523
https://doi.org/10.1007/s10515-021-00306-w

