
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 23–32 |  23 

Improvised Swarm Based Discrete Data Mining Approach for High 

Utility Item Sets 

Raja Rao Budaraju1, Sastry Kodanda Rama Jammalamadaka2* 

 

Submitted: 03/02/2024    Revised: 11/03/2024     Accepted: 17/03/2024  

Abstract: Data mining techniques uncover valuable patterns hidden inside extensive databases to assist decision support systems in 

different practical applications. Association rule mining analyzes the transaction database to recognize patterns and provides insights into 

client behavior. Frequent itemset mining (FIM) detects a group of items that are commonly purchased together. A significant limitation 

of FIM is its disregard for the item's significance. The significance of an item is crucial in a practical application. Hence, it is imperative 

to identify the critical set of items that yields substantial profits, referred to as the HUIM (High-Utility Itemset Mining) problem. Various 

techniques may be employed to identify high utility itemsets from a transaction database. The HUIM approaches that employ the Utility 

list are relatively new and exhibit superior performance in terms of memory consumption and execution time. Primary constraint of these 

algorithms is the execution of expensive utility list join operations. This work presents a highly efficient optimization approach based on 

swarm intelligence for addressing the HUIM problem. Furthermore, the suggested method's execution time is assessed. Additionally, it is 

compared to relevant and advanced current approaches. Extensive tests were carried out on accessible benchmark datasets demonstrate 

that the suggested swarm-based methodology outperforms state-of-the-art approaches. 

Keywords: High Utility Itemset, discrete, Improved discrete cuckoo search 

1. Introduction 

Data analysis systems are seeing significant growth due to 

their ability to uncover valuable insights that are concealed 

inside data. Frequent Itemset Mining (FIM) is a crucial 

activity in data analysis or data mining [1]. The process 

pulls often recurring events, patterns, or objects (either 

individual or grouped) from the data [2]. High Utility 

Itemset Mining (HUIM) [3] is a developing area of study 

that aims to address a clear drawback of FIM [1], which is 

the assumption that all patterns in a database are equally 

significant. The objective of HUIM is to identify patterns 

that have a significant utility in relation to their value to 

the user [4]. The creation of the utility function can stem 

from diverse criteria, yet its central aim remains 

quantifying the profit derived from retail product sales [5]. 

HUIM is often viewed as an extension of the FIM task, 

wherein each element within the input data receives a 

value denoting its significance or relevance to the 

particular problem at hand. An important feature of HUIM 

is its capacity to accommodate multiple instances of an 

item within a single transaction, whereas FIM solely 

displays the presence or absence of each item in each 

transaction. 

The initial HUIM techniques [6] were released in the early 

2000s with the goal of generating significant and practical 

findings. Subsequently, the problem has been widely 

explored in other application domains, including market 

basket analysis [5] and sentiment analysis [6], among 

others. At present, HUIM is a very active field of study 

that encompasses several effective algorithms [7, 8] for 

listing all itemsets that produce a benefit greater than a 

threshold established by the user. Several methods [8] 

utilize a way of generating and testing candidates in a 

level-wise manner, while others [9, 10] rely on pattern 

growth. Nevertheless, these specific HUIM algorithms 

may have significant delays when operating on extensive 

search areas. To be more explicit, the performance of 

accurate techniques tends to decrease as the amount of 

input data rises, particularly in terms of the number of 

transactions and the total number of distinct objects [6]. 

Consequently, performance becomes unsatisfactory for 

those who cannot tolerate such lengthy waiting times to 

acquire results. The objective for utilizing bio-inspired 

optimization methodologies, such as genetic algorithms 

[11] and particle swarm optimization [12], is to address the 

performance bottleneck in precise HUIM methods. In this 

research work, a swarm based optimization algorithm 

namely Improved Discrete Cuckoo Search algorithm 

(ICDS) is discretized to solve HUIM. The key 

contributions of the proposed work are as follows: 

• The conventional Cuckoo Search algorithm has been 

adapted to address HUI problems that involve the 

representation of solution space in binary form. 
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•  The proposed model is evaluated with runtime, 

convergence towards optimal solution and identified 

HUI. 

• The proposed model is being compared against 

contemporary existing methodologies in order to 

demonstrate its significance.  

The following is the organizational scheme of the paper's 

following sections: Section 2 focuses on the previous 

research conducted on HUIM, specifically examining both 

exhaustive and evolutionary algorithms. Section 3 provides 

an explanation of the HUIM characteristics, and its 

representation in terms of mathematical notations. Section 

4 outlines the suggested paradigm, namely discrete swarm 

optimization method. Section 5 outlines the empirical 

assessment of the suggested model. Section 6 provides the 

final conclusions of the work, and future perspectives.   

2. Related Works 

After the introduction of HUIM by Yao and Hamilton, 

numerous refinements have been introduced to enhance its 

mining efficiency. In their work, Liu et al. [13] devised the 

Two-Phase technique, which introduces the Transaction 

Weight Utility (TWU) as an innovative upper limit 

adhering to the downward closure property. This facilitates 

the elimination of unproductive candidates from the search 

space and ensures the comprehensive extraction of HUI.  

However, the method described above requires extensive 

database examinations for all HUIs, and although TWU 

serves as a dependable upper limit, it lacks precision, 

resulting in prolonged processing times. Le et al. [14] 

introduced the DTWU-Mining approaches, which employ 

the diffset technique to diminish the number of candidates 

and database searches. This ensures that search time and 

memory usage are minimized through the utilization of this 

technology. The UPGrowth algorithm, developed by Tseng 

et al., [15], is derived from the FP-Growth method. In 

2023, Qu et al., [16] introduced the Hamm method to 

improve the HUIM process in tree mining. They also 

proposed a new structure called TV that allows for the 

sequential mining of item sets with high utilization, 

eliminating the requirement for candidate creation.  

Liu et al. [17] presented the HUIMiner approach, which 

applies a more stringent upper limit known as the residual 

utility and uses the Utility-List data format, as compared to 

TWU. The process of generating several candidates is now 

obsolete due to the implementation of the Utility-List 

structure. Because of this structure, the algorithm may do a 

single database search and merge the Utility-List of 

itemsets to form larger itemsets. Authors FournierViger et 

al. [18] introduced the FHM algorithm as an improvement 

to the HUI-Miner algorithm. The FHM algorithm achieves 

better performance by reducing the number of itemsets 

generated by two items. This reduction is accomplished via 

Estimated Utility Co-occurrence Pruning (EUCP). Author 

Krishnamoorthy [19] proposed the HUP-Miner technology 

as an enhancement to the FHM algorithm. This technique 

suggests more effective pruning strategies to further limit 

the search area. The ULB-Miner technique, introduced by 

Q.-H. H. Duong et al. [20], utilizes a utility-list buffer 

structure to decrease execution time and memory usage. In 

2017, Krishnamoorthy introduced the HMiner algorithm, 

which incorporates multiple pruning techniques (TWU-

prune, EUCS-prune, Uprune, LA-prune, and C-prune) 

along with a proposed approach for consolidating identical 

transactions. This strategy reduces runtime by 

consolidating "closed" transactions into a single repository. 

Additionally, the UBP-Miner method, developed by Wu et 

al. [21], aims to enhance the List-based approach by 

reducing the frequency of transaction scans. Benchmark 

assessments show that the UBP-Miner algorithm 

outperforms both the HUIMiner and ULB-Miner 

algorithms.  

Moreover, alongside utility-list and tree-based techniques, 

the algorithms also manage transactions that exhibit partial 

similarity. EFIM stands out as one of the pioneering 

algorithms to adopt this approach, introduced by Zida et al. 

[22]. This algorithm employs a method to amalgamate 

similar transactions and rearrange objects within them, 

thereby facilitating their projection and merging to reduce 

memory usage. Additionally, the technique employs two 

precise and stringent upper bounds: the sub-tree and the 

local utility.  

Yet, EFIM encounters an obstacle concerning the high 

costs incurred during database scanning. To address this 

issue, Nguyen et al. [23] introduced the iMEFIM method, 

which utilizes the P-Set framework to accurately record the 

positions of necessary transactions. This algorithm 

incorporates a mechanism to handle databases where each 

transaction has varying levels of significance.  

In addition to the traditional algorithms for HUIM, there 

are various related problems that are commonly 

encountered in real-world scenarios. These include Utility-

Oriented Pattern Mining [24], Closed-HUIs [25], 

Maximal-HUIs [26], uncertainty HUIs [27], Cross-Level 

HUIs [28], and weighted high-utility pattern mining [29]. 

Conversely, deep learning models and soft computing have 

advanced significantly by resolving numerous issues 

across various domains [30–38]. 

3. Problem Definition 

Let us consider a quantitative transaction dataset, denoted 

as 𝔻, which is comprised of a collection of transactions. 

Specifically, 𝔻 may be represented as a set of transactions, 

where each transaction is labeled with a unique identifier i. 

As an example, Table 1 illustrates a transactional dataset 𝔻 

that consists of seven transactions, each identified by a 
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unique identifier. These transactions might reflect the 

purchasing patterns of clients or the specific behaviors of 

users. Let 𝐼 = {𝐼1, 𝐼2, … , 𝐼𝑚} exist in a limited number of 

distinct elements. Transaction 𝑇𝑟𝑖 consists of 𝑚 

quantifiable items. Each item 𝑖𝑗  ∈  𝐼 has a value that is 

external, 𝑈𝐸(𝑖𝑗), which represents a product's weight or 

earnings from sales as indicated in Table 2. Additionally, 

each item 𝑖𝑗  ∈  𝐼 has an internal utility value, 𝑈𝐼(𝑖𝑗), which 

represents the amount of sales it makes or the number of 

times it is sold in each transaction 𝑈𝐸(𝑖𝑗). An itemset 𝑋 

can be conceptualized as a collection of 𝑘 unique items and 

is commonly denoted as a k-itemset. A transaction denoted 

as 𝑇𝑟𝑖 can be classified as a supporting transaction for 𝑋 iff 

𝑋 is a subset of 𝑇𝑟𝑖. 

Table 1. Transaction Database 

Transaction ID Quantity 

𝑇𝑟1 (P, 1), (Q, 3), (T, 2) 

𝑇𝑟2 (R, 4), (S, 5) 

𝑇𝑟3 (T, 2), (U, 3) 

𝑇𝑟4 (P, 5), (Q, 4), (R, 2), (S, 2), (T, 4) 

𝑇𝑟5 (Q, 5), (R, 4), (T, 6), (U, 1) 

𝑇𝑟6 (Q, 1), (R, 3), (T, 6) 

𝑇𝑟7 (P, 2), (T, 3), (U, 4) 

 

In order to gain a deeper understanding of the 

aforementioned introductory concepts, we will now 

examine the sample dataset 𝔻 as presented in Table 1 

There are a set of seven transactions denoted as 

𝑇𝑟1, 𝑇𝑟2, 𝑇𝑟3, 𝑇𝑟4, 𝑇𝑟5, 𝑇𝑟6 and 𝑇𝑟7. Moreover, the set 𝔻 

comprises six distinct elements denoted by the symbols 

𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑈. Table 2 presents the collection of positive 

unit earnings that are linked to the sale of these products. 

In essence, every transaction signifies the act of selling 

particular commodities. An illustration may be provided by 

transaction 𝑇𝑟1 in database 𝔻, which indicates that items 

𝑃, 𝑄 𝑎𝑛𝑑 𝑇 were acquired in this particular transaction, 

with amounts of 1, 3, and 2, respectively. 

Table 2. Items with Unit Profit 

Item P Q R S T U 

Profit/Unit 6 4 2 5 3 9 

 

The utility of item 𝑥 ∈  𝑇𝑟𝑖  is computed as, 

𝑈(𝑃, 𝑇𝑟1) = 𝑈𝐼(𝐴, 𝑇𝑟1) × 𝑈𝐸(𝐴) =  1 × 6 = 6 

For an itemset 𝑋 ⊆  𝑇𝑟𝑖 , 𝑈(𝑋) in 𝑇𝑟𝑖  can be defined as, 

𝑈({𝑃, 𝑄}, 𝑇𝑟1) = 𝑈(𝑃, 𝑇𝑟1) × 𝑈(𝑄, 𝑇𝑟1) =  12 + 6 = 18 

The total utility of an itemset 𝑋 inside the dataset 𝔻 is 

formally defined as 

𝑈({𝑃, 𝑄}, 𝔻) = ({𝑃, 𝑄}, 𝑇𝑟1) + ({𝑃, 𝑄}, 𝑇𝑟4) = 18 + 46

= 64  

The transaction utility of any transaction 𝑇𝑟𝑖  in the set 𝔻 

may be computed as  

𝑈𝑇(𝑇𝑟3) = 𝑈(𝑇, 𝑇𝑟3) + 𝑈(𝑈, 𝑇𝑟3) = 6 + 27 = 33  

HUI is used to describe an itemset that has a utility value 

that is either equal to or much higher than a minimum 

utility threshold (minUtil) that the user has chosen. The 

process of extracting HUI from transactional datasets has 

as its primary goal the identification of all HUIs that 

satisfy the minimal utility threshold that has been 

determined. With a minimum utility criterion of 70, the 

high-utility item sets that were derived from the dataset 𝔻 

that was provided are created and presented in the 

following manner: 

Table 3. Itemset with Utility Value 

Itemset F A, B A, E B, E E, F A, B, E B, C, E A, B, C, D, E 

Utility 72 72 87 102 105 90 106 72 

 

4. Proposed Model 

The Cuckoo Search Algorithm [23] is derived from the 

brood parasite behavior of the cuckoo bird. Cuckoo birds 

deposit their eggs in the nests of other birds in order to rear 

their offspring. This behavior is derived from the cuckoo 

and has been formulated as an evolutionary method for 

optimization purposes. Computer Science employs two  

 

 

distinct methodologies for exploring optimal solutions in a 

vast search space: an approach to random walks that makes 

use of Levy flights (LFRW) and a method known as biased 

random walk (BSRW). It has been determined that the 

following is the formulation of the Levy Flight 

distribution, which the cuckoo use in order to do a random 

walk:   
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𝐿𝑒𝑣𝑦(𝛽)~
𝜙×𝜇

|𝑣|
1

𝛽⁄
   (2) 

where random variables 𝜇 and 𝑣 are both within the range 

of (0,1), whereas 𝛽 represents the stability index. The 

formulation of 𝜙 can be expressed as   

𝜙 = [
Γ(1+𝛽)×𝑠𝑖𝑛(

𝜋×𝛽

2
)

Γ(
1+𝛽

2
)×𝛽×2

𝛽−1
2

]

1
𝛽⁄

    (3) 

where Γ denotes the gamma function. 

The levy flight distribution is utilized by the cuckoo search 

algorithm to provide random solutions, which aids in 

enhancing the exploration process. This has been devised 

as   

𝐿𝐹𝑅𝑊𝑖 = 𝐼𝑖 +  𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽)    (4) 

The symbol 𝛼 > 0 denotes the magnitude of the step size. 

The step size 𝛼) can be adjusted to optimize the 

exploration of the search space.   

In order to optimize the utilization of solutions, CS has 

been adjusted with a search mechanism that is based on the 

best solution achieved thus far. This is depicted as    

𝐿𝐹𝑅𝑊𝑖 = 𝐼𝑖 +  𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) × (𝐼𝑖 − 𝐼𝑏𝑒𝑠𝑡)  (5) 

The LFRW technique is applied to 𝐼𝑖 , and the best solution 

between 𝐼𝑖  and 𝐿𝐹𝑅𝑊𝑖 is preserved using the greedy 

method. After performing the 𝐿𝐹𝑅𝑊 procedure on every 

solution in the population, the 𝐵𝑆𝑅𝑊 method will be used 

to each person in order to explore the search space and get 

the optimal solution. Due to the tendency of the greedy 

technique to become stuck in local optima, the 𝐵𝑆𝑅𝑊 

algorithm is developed to explore the search space.   The 

new solution is developed in 𝐵𝑆𝑅𝑊 based on the 

following formulation. 

𝐵𝐹𝑅𝑊𝑖 = 𝐼𝑖 + 𝑟𝑎𝑛𝑑 × (𝐼𝑞 − 𝐼𝑝)    (6) 

Let 𝑞 and 𝑝 be distinct random individuals, where | 𝑝 ≠ 𝑞. 

Unlike the 𝐿𝐹𝑅𝑊 approach, which employs a greedy 

strategy to incorporate 𝐿𝐹𝑅𝑊-generated solutions into the 

main population, 𝐵𝐹𝑅𝑊 utilizes the probability fraction 

method 𝜌𝑎. 𝜌𝑎 is a constant factor that is defined to be 

between 0 and 1. The answer in the main population can be 

substituted using the probability fraction approach 𝜌𝑎.   

 𝐼𝑖 = {
𝐵𝐹𝑅𝑊𝑖,𝑗         𝑟𝑎𝑛𝑑 > 𝜌𝑎

𝐼𝑖,𝑗            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (7) 

let "𝑖" represent the current individual and "𝑗" correspond 

to the dimension of each individual.  

4.1. Improved Discrete Cuckoo Search Algorithm 

Empirical results in traditional computer science 

algorithms demonstrate the presence of a defensive set of 

exploration that indicates a biased nature of the 

exploration. In order to extract road regions from high 

resolution satellite pictures, it is necessary to strike a 

balance between exploration and exploitation. This balance 

will help determine the best threshold values for each 

segmentation class. In computation, the process of 

exploration is managed in the BFRW section, leading to a 

larger emphasis on exploration rather than exploitation. 

This is crucial for effectively extracting roads from 

satellite photos. Therefore, to increase the likelihood of 

success in computer science, we integrate an enhanced 

form of search within the provided solution space, 

focusing on exploiting the potential of the LFRW method 

rather than only searching around the current best solution. 

Our proposed search approach involves searching for the 

answer based on both the overall best solution and the best 

solution found during each iteration.   It can be expressed 

as    

𝐿𝐹𝑅𝑊𝑖 =

{
𝐼𝑖 +  𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) × (𝐼𝑖 − 𝐼𝑏𝑒𝑠𝑡)        𝑟𝑎𝑛𝑑 > 𝑟𝑎𝑛𝑑

𝐼𝑖 +  𝛼 ⊕ 𝐿𝑒𝑣𝑦(𝛽) × (𝐼𝑖 − 𝐼𝐺,𝑏𝑒𝑠𝑡)          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

  (8) 

In this context, 𝑟𝑎𝑛𝑑 is a random variable that falls within 

the range of 0 to 1, and 𝐺 is the generation number. The 

pseudo code for the Improved Discrete Cuckoo Search 

Algorithm has been included in Algorithm 2 as a result of 

this inclusion. 

Algorithm: Discrete Cuckoo Search for HUIM 

Initialize G to 1 

Create Population at 𝐺, denoted as 𝑃𝑜𝑝𝐺 , containing 

individuals: 𝐼1,𝐺 through 𝐼𝑁,𝐺 

Evaluate the fitness of 𝑃𝑜𝑝𝐺 : 𝑓(𝑃𝑜𝑝𝐺) 

Obtain the best solution found so far: 𝐼𝑏𝑒𝑠𝑡 

Obtain the best solution in iteration 𝐺: 𝐼𝐺,𝑏𝑒𝑠𝑡  

 

While the stopping condition is not met: 

    For each individual 𝐼 in 𝑃𝑜𝑝𝐺 : 

        Generate 𝐿𝐹𝑅𝑊𝑖 using Equation (8) 

        Evaluate the fitness of 𝐿𝐹𝑅𝑊𝑖: 𝑓(𝐿𝐹𝑅𝑊𝑖) 

        Choose the best solution between 𝐿𝐹𝑅𝑊𝑖 and 𝐼𝑖  

     

    For each individual, 𝐼 in 𝑃𝑜𝑝𝐺 : 

        Generate 𝐵𝐹𝑅𝑊𝑖 using Equation (7) 

        Evaluate the fitness of 𝐵𝐹𝑅𝑊𝑖: 𝑓(𝐵𝐹𝑅𝑊𝑖) 

        Choose the best solution between 𝐵𝐹𝑅𝑊𝑖 and 𝐼𝑖  

 

    Update the best solution in iteration 𝐺: 𝐼𝐺,𝑏𝑒𝑠𝑡 to be the 

minimum fitness in 𝑃𝑜𝑝𝐺  

    If 𝐼𝐺,𝑏𝑒𝑠𝑡  has better fitness than 𝐼𝑏𝑒𝑠𝑡: 

        Update 𝐼𝑏𝑒𝑠𝑡 to be 𝐼𝐺,𝑏𝑒𝑠𝑡 

 

    Increment 𝐺 𝑏𝑦 1 

Output: 𝐼𝐺,𝑏𝑒𝑠𝑡  
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5. Experimental Evaluation 

5.1 Experimental Setup 

The suggested algorithm is executed in MATLAB 2020 

version on a computational device with an Intel Core i7 

CPU running at 4.2 GHz, 16 GB of primary memory, and 

the Windows 11 operating system. The parameter 

configurations of the proposed algorithm are provided in 

Table 4. 

Table 4. Parameter Settings 

Parameters Values 

Size of the population 100 

Total number of runs 10 

Iterations / Run 500 

 

5.2 Evaluation Model 

The proposed algorithm is compared with seven existing 

models, notably HUIM-HC, HUIM-SA, and HUIM-AF. 

The suggested approach was evaluated using four real-life 

datasets: Chess, Mushroom, Accidents, and Connect 

datasets. The datasets are obtained from the SPMF data 

mining library [33]. The results are evaluated under the 

performance criteria’s, including runtime, the number of 

identified HUIs, and convergence. 

5.3 Runtime 

Table 4 indicates the duration of execution for several HUI 

algorithms on the chess dataset, with respect to different 

minimal utility threshold values. When comparing the 

outcomes of the suggested model with the existing 

algorithms, HUIM-ICDS demonstrates a notable 

enhancement in terms of runtime.  

Table 4. Execution Time on the Dataset-Chess 

Min. 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

27.5 85.58 37.75 50.25 33.59 

27.0 84.14 35.94 44.07 29.08 

26.5 86.77 35.15 49.03 27.05 

26.0 84.52 36.49 46.41 31.45 

25.5 83.10 38.71 52.58 29.76 

 

On analyzing the average execution time on the chess 

dataset, HUIM-ICDS performs better than other 

approaches like HUIM-HC by 67.3%, HUIM-SA by 

24.7%, and HUIM-AF by 42.8%. Figure 1 displays a graph 

that compares the runtime of the algorithms.   

 

Fig. 1. Runtime on dataset - Chess 

Table 5 depicts the duration of execution for several HUI 

algorithms on the Mushroom dataset, with respect to 

different minimal utility threshold values. When 

comparing the outcomes of the suggested model with the 

current algorithms, HUIM-ICDS demonstrates a 

noteworthy enhancement in terms of implementation.   

Table 5. Execution time on the dataset-Mushroom  

Minimum 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

14.0 39.32 16.24 13.97 14.56 

13.5 35.48 14.67 14.92 11.57 

13.0 39.66 16.20 14.67 13.76 

12.5 40.16 15.26 13.01 13.07 

12.0 40.50 16.78 15.74 14.25 

 

On analyzing the average execution time on the Mushroom 

dataset, HUIM-ICDS performs better than other 

approaches like HUIM-HC by 70.6%, HUIM-SA by 

27.6%, and HUIM-AF by 20.7%.   Figure 2 displays a 

graph that compares the runtime of the algorithms.   

 

Fig. 2. Runtime on dataset - Mushroom 

Table 6 displays the duration of execution on the accident 

dataset by various HUI algorithms with respect to different 
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lowest utility threshold values. When comparing the 

outcomes of the suggested model with the current 

algorithms, HUIM-ICDS demonstrates a noteworthy 

enhancement in terms of implementation.   

Table 6. Execution time on the dataset-Accident 

Min. 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

13 732.76 304.65 327.54 243.43 

12.8 800.02 333.06 281.79 266.18 

12.6 770.39 241.67 226.24 203.89 

12.4 766.54 270.06 331.66 229.77 

12.2 771.43 202.32 287.84 156.13 

 

On analyzing the average execution time on the accident 

dataset, HUIM-ICDS performs better than other 

approaches like HUIM-HC by 71.9%, HUIM-SA by 

20.3%, and HUIM-AF by 26.04%.   Figure 3 displays a 

graph that compares the runtime of the algorithms.   

 

Fig. 3. Runtime on dataset - Accident 

Table 7 depicts the duration of execution for several HUI 

algorithms on the connect dataset, with respect to different 

minimal utility threshold values. When comparing the 

outcomes of the suggested model with the existing 

algorithms, HUIM-ICDS demonstrates a notable 

enhancement in terms of implementation.   

Table 7. Execution time on the dataset-Connect  

Minimum 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

32.0 2781.16 803.76 1420.13 620.79 

31.8 2441.67 828.14 1357.53 645.21 

31.6 2477.80 1118.54 1402.52 838.48 

31.4 2056.89 897.08 1338.70 717.70 

31.2 2314.26 949.71 1333.12 779.00 

 

On analyzing the average execution time on the accident 

dataset, HUIM-ICDS performs better than other 

approaches like HUIM-HC by 69.8%, HUIM-SA by 

20.8%, and HUIM-AF by 46.9%. Figure 4 displays a graph 

that compares the runtime of the algorithms.   

 

Fig. 4. Runtime on dataset – Connect 

5.4 Discovered HUI’s  

Table 8 depicts the proportions of identified High Utility 

Items (HUIs) in the chess dataset using several HUI 

algorithms, with respect to varying minimum utility 

threshold values. When comparing the outcomes of the 

suggested model with the current techniques, HUIM-ICDS 

demonstrates a notable enhancement in terms of the 

Discovered HUI's.   

Table 8. Number of HUI’s on Dataset - Chess 

Minimum 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

27.5 100 96.66 95.42 100 

27.0 100 99.20 96.98 100 

26.5 100 99.95 99.07 100 

26.0 100 100 100 100 

25.5 100 100 100 100 

Average 100 99.16 98.29 100 

 

On examining the average percentage of detected HUI's on 

the chess dataset, HUIM-ICDS performs better than the 

current approaches, including HUIM-SA by 0.83%, 

HUIM-AF by 1.70% and competes equally with HUIM-

HC.  

Table 9 displays the proportion of identified High Utility 

Itemsets (HUIs) in the mushroom dataset using various 

HUI techniques, with respect to varying minimum utility 

threshold values. When comparing the outcomes of the 

suggested model with the existing methods, HUIM-ICDS 

demonstrates a notable enhancement in terms of the 

discovered HUI's.   
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Table 9. Number of HUI’s on Dataset - Mushroom 

Minimum 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

14.0 100 99.03 75.45 100 

13.5 100 97.77 88.01 100 

13.0 100 99.22 98.75 100 

12.5 100 100 100 100 

12.0 100 100 100 100 

Average 100 99.20 92.44 100 

 

On examining the average percentage of detected HUI's on 

the mushroom dataset, HUIM-ICDS performs better than 

the current approaches, including HUIM-SA by 0.7%, 

HUIM-AF by 7.55% and competes equally with HUIM-

HC.  

Table 10 displays the proportion of identified HUIs in the 

accident dataset using several HUI algorithms, with respect 

to varying minimal utility threshold values. When 

comparing the outcomes of the suggested model with the 

existing methods, HUIM-ICDS demonstrates a notable 

enhancement in terms of the Discovered HUI's.   

Table 10. Number of HUI’s on Dataset - Accident 

Minimum 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

13 100 96.74 94.30 100 

12.8 100 99.21 95.00 100 

12.6 100 99.26 98.95 100 

12.4 100 100.00 98.67 100 

12.2 100 100 100 100 

Average 100 99.04 97.39 100 

 

On examining the average percentage of detected HUI's on 

the accident dataset, HUIM-ICDS performs better than the 

current approaches, including HUIM-SA by 0.9%, HUIM-

AF by 2.61% and competes equally with HUIM-HC.  

Table 11 displays the proportion of identified HUIs in the 

connect dataset using several HUI algorithms, with respect 

to varying minimal utility threshold values. When 

comparing the outcomes of the suggested model with the 

existing algorithms, HUIM-ICDS demonstrates a 

noteworthy enhancement in terms of the Discovered HUI's.   

Table 11. Number of HUI’s on Dataset - Connect 

Minimum 

utility 

threshold 

HUIM-

HC 

HUIM-

SA 

HUIM-

AF 

HUIM-

IDCS 

32 100 98.85 98.77 100 

31.8 100 99.29 98.55 100 

31.6 100 100 100 100 

31.4 100 100 100 100 

31.2 100 100 100 100 

Average 100 99.63 99.46 100 

 

On examining the average percentage of detected HUI's on 

the connect dataset, HUIM-ICDS performs better than the 

current approaches, including HUIM-SA by 0.3%, HUIM-

AF by 0.5% and competes equally with HUIM-HC.  

5.5 Convergence 

Figure 5, 6, 7, and 8 displays the convergence graph 

illustrating the progress towards the optimal solution at 

each iteration. The graphs are plotted with an iteration 

interval of 50 for the chess, mushroom, accident, and 

connect datasets, respectively.   

 

  

Fig. 5. Convergence while Discovering HUI 

on dataset - Chess 

Fig. 6. Convergence while Discovering HUI 

on dataset - Mushroom 
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Fig. 7. Convergence while Discovering HUI on 

dataset - Accident 

Fig. 8. Convergence while Discovering HUI on 

dataset - Connect 

 

The convergence graph displays the cumulative count of 

HUIs identified at each interval of iteration time. Based on 

the data, it is evident that the suggested model surpasses all 

existing methods in terms of performance. Our suggested 

model outperforms HUIM-HC in terms of results, 

requiring less iterations. By analyzing the graphs, it can be 

noted that this model performs on par with other models at 

higher levels of achievement.   

6. Conclusion 

This study presents an enhanced Discrete Cuckoo Search 

technique designed in order to solve HUI issues that need 

huge datasets. Levy flights and oppositional learning are 

both included into the model that has been provided. The 

objective of this strategy is to streamline the process of 

selecting whether or not to include a certain item in the 

HUI by reducing the temporal complexity, which is 

characterized by an exponential component. The model we 

suggest significantly decreases the overall time 

complexity. The suggested model is evaluated against 

techniques such as HUIM-HC, HUIM-SA, and HUIM-AF 

utilizing performance criteria including runtime, number of 

identified high utility itemsets (HUIs), and convergence. 

Taking into consideration the results in comparison to 

other approaches that are already in existence, the 

experimental assessment reveals the significance of the 

proposed model.   
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