
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 767–775  |  767 

A Low-Latency, Area-Efficient Convolution Network for FPGA 

Acceleration 

1Gutti Naga Swetha, 2Dr. Anuradha M. Sandi 

Submitted: 29/01/2024    Revised: 07/03/2024     Accepted: 15/03/2024 

Abstract: The goal of the technology known as Field Programmable Gate Arrays (FPGA) is to improve the safety, performance, and 

efficiency of cryptographic operations in contexts with limited resources.  The use of deep learning has been more important in recent 

years, particularly with regard to the achievement of low latency and space efficiency in FPGA-based implementations. This study paper 

gives According to the suggested model, which is called EffiConvNet (Efficient Convolution Network), ternary neural networks, logic 

expansion, and block convolution are all integrated. Block Convolution is a technique that tries to optimise the data dependence among the 

spatial tiles. This helps to ease the load on chip memory and facilitates efficient processing. In order to do this, logic expansion is used, 

which replaces the XNOR gates with neural networks. This allows for more effective utilisation of resources. In order to achieve the desired 

degree of efficiency at the training stage, further ternary neural networks are used. The experimental results of our technique on real-world 

tasks reveal that it is successful. Furthermore, these coupled architectures together (EffiConvNet) illustrate the efficacy of our approach. 

While assuring optimal resource utilisation and better inference performance, the combination strategy that has been described offers a 

potential option for addressing the obstacles that are connected with the deployment of large-scale neural networks on FPGAs. 
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1. Introduction 

In today's linked world, secure communication is essential. 

Cryptography protects data transfer by ensuring secrecy, 

integrity, authentication, and non-repudiation. Symmetric 

key cryptography has long been used, but key management 

and key sharing security concerns plague it.In response, 

Elliptic Curve Cryptography (ECC) is a potential public-

key cryptosystem alternative. ECC uses the algebraic 

structure of elliptic curves over finite fields for several 

benefits. These include smaller key sizes, faster 

calculations, and comparable security to RSA. Such 

qualities make ECC ideal for resource-constrained contexts 

like wireless mobile communication and personal 

communication systems.However, implementing ECC 

securely and efficiently is complex. Optimised algorithms 

and structures for ECC arithmetic operations like point 

multiplication and division are needed. ECC deployment 

on hardware platforms like Field Programmable Gate 

Arrays (FPGAs) has issues related to space utilisation, 

processing latency, and energy efficiency [1]-[3]. Field 

Programmable Gate Arrays (FPGAs) are commonly 

accessible programmable devices that enable hardware 

customisation with low development costs. These devices 

feature customisable logic blocks (CLBs) with 

programmable logic cells and a flexible connector network. 

Programmable input/output cells surround the core. FPGAs 

also have DSP blocks for arithmetic applications like 

multiply-and-accumulate. Block RAMs, look-up tables, 

flip-flops, clock control units, high-speed I/O interfaces, 

and more are included. This study addresses the complex 

issues of safe and effective cryptographic implementations 

in wireless mobile and personal communication systems. 

Field Programmable Gate Arrays (FPGAs) are used to 

optimise Elliptic Curve Cryptography (ECC) algorithms 

and hardware designs. Here are the ways in which deep 

learning contributes to these objectives: 

• Model Compression: Deep learning techniques, 

such as pruning, quantization, and network 

architecture design, enable the compression of neural 

network models. By reducing the model size, fewer 

resources are required to implement the network on 

an FPGA, resulting in improved area efficiency. 

Smaller models also lead to reduced memory 

requirements and lower data transfer, which 

contributes to lower latency. 

• Optimization for Parallelism: Deep learning models 

can be optimized to leverage parallelism, which is 

essential for efficient FPGA implementations. 

Techniques like model parallelism and layer 

parallelism divide the network into smaller 

subcomponents that can be processed in parallel on 

FPGA resources. By distributing the computations 

across multiple processing elements, the overall 

latency is reduced, and FPGA resources are utilized 

more efficiently. 
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• Hardware-Aware Model Design: Deep learning 

models can be designed with hardware constraints in 

mind, allowing for better utilization of FPGA 

resources and reducing area overhead. Techniques 

such as custom layer design, precision optimization, 

and dataflow optimizations enable the mapping of 

specific operations to FPGA primitives and take 

advantage of the hardware's parallelism and 

computation capabilities. 

• Quantization and Fixed-Point Arithmetic: Deep 

learning models can be quantized to lower precision, 

such as using fixed-point arithmetic instead of 

floating-point operations. This reduces resource 

requirements, as fixed-point arithmetic consumes 

fewer FPGA resources compared to floating-point 

arithmetic. Quantization also reduces memory 

bandwidth requirements, leading to lower latency by 

minimizing data transfer. 

• Model Pruning and Sparsity: Deep learning 

techniques like model pruning and sparsity 

regularization help reduce the number of parameters 

and activations in the network. Sparse representations 

enable more efficient storage and computation, 

resulting in improved area efficiency and lower 

latency. 

• Hardware-Accelerated Inference: FPGA platforms 

offer the flexibility to design customized hardware 

accelerators for deep learning inference. By 

implementing key operations of the neural network 

directly in hardware, the latency is significantly 

reduced compared to software-based 

implementations. Deep learning frameworks provide 

tools to deploy models on FPGAs and generate 

optimized hardware designs. 

By leveraging deep learning techniques and optimizing 

models for FPGA implementations, it is possible to achieve 

area efficiency and low latency. Deep learning models, 

especially Convolutional Neural Networks (CNNs), have 

demonstrated unparalleled performance in various tasks 

but necessitate substantial computational resources. When 

mapped onto FPGA platforms, which inherently possess 

resource limitations, the tension between optimizing for 

area and latency becomes particularly pronounced. Current 

studies often emphasize either minimizing resource 

utilization or reducing latency, yet rarely combine both 

ambitions into a cohesive architecture. Consequently, the 

potential for comprehensive solutions that address both 

area efficiency and low latency remains largely untapped. 

Despite the progress in FPGA-based DL acceleration, there 

remains an evident research gap in the concurrent 

optimization of area efficiency and low latency. Existing 

studies often prioritize one objective over the other, leading 

to suboptimal solutions. This gap stems from the lack of a 

comprehensive approach that holistically addresses both 

challenges in FPGA-accelerated DL systems. 

1.1 Motivation and contribution 

In the evolving realm of artificial intelligence, deep 

learning has cemented its place at the forefront, particularly 

in applications necessitating robust image processing 

capabilities. FPGA (Field-Programmable Gate Array) 

platforms, renowned for their adaptability, present a unique 

opportunity for the deployment of deep learning models. 

The research contribution is as follows: 

• our research contributions encompass novel 

techniques for improving FPGA-based DNN 

acceleration. By introducing block convolution, logic 

expansion, and integrating TNNs,  

• we offer a holistic approach that advances the field's 

understanding of efficient neural network deployment 

on FPGA platforms.  

• Our work contributes to addressing memory 

limitations, enhancing resource utilization, and 

optimizing training processes for improved area 

efficiency and low-latency DNN inference. 

This research is organized as follows: first section starts 

with background of FPGA and integration of deep learning 

to optimize its performance. Furthermore, motivation and 

contribution is discussed. Second section discusses brief 

review of existing relevan work, third section presents the 

mathematical modelling of proposed model. Proposed 

model is evaluated in fourth section along with 

comparative analysis with existing model.  

1.2 Objectives 

In the field of deep learning, the implementation of large-

scale neural networks on FPGAs faces challenges in 

achieving area efficiency and managing latency 

constraints. The proposed EffiConvNet model seeks to 

address these challenges by integrating innovative concepts 

such as ternary neural networks, logic expansion, and block 

convolution. The overarching problem is the need for a 

cohesive approach that harmoniously combines the 

optimization of cryptographic operations and deep learning 

within FPGA platforms, aiming to strike a balance between 

security, efficiency, and computational performance. 

1. Develop arithmetic operations in ECC Core. 

• Point Multiplication Architecture. 

• Point division architecture. 

2. Implementing the architecture efficiently on FPGA in 

terms of area. 

3. Architectural design focused on achieving reduced 

latency. 

4. Energy-efficient design for Field-Programmable Gate 

Arrays (FPGA). 
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2. Related Work 

Enhancing the efficiency of compressed Binarized Neural 

Network (BNN) models involves employing pruning 

methods to eliminate redundant parameters. However, 

there exists a trade-off between accuracy and pruning, as 

higher pruning rates may lead to decreased accuracy. In [7], 

the authors leverage Bayesian optimization for channel 

pruning in quantized neural networks. This approach is 

based on preserving the angles of high-dimensional binary 

vectors [8] and considering euclidean distance. In a similar 

vein, [9] introduces neuron pruning for fully connected 

layers, followed by network retraining. On the other hand, 

[10] presents a learning-based technique to prune the 

number of filters/channels in BNN.The AutoPrune 

approach proposed in [11] adopts a gradient-based search 

to optimize a group of learnable parameters, providing an 

alternative to directly pruning weights. Additionally, [12] 

employs a weight flipping frequency method to prune 

BNN, analyzing binary weight sensitivity to accuracy. 

Moreover, this framework supports layer-wise pruning, 

reducing the number of channels in each layer by a 

consistent percentage of insensitive weights. In the realm 

of BNN, [13] introduces O3BNN-R, which employs two 

irregular pruning methods for eliminating redundant edges 

during inference: threshold edge pruning and pooling edge 

pruning. [14] explores the concept of reusing calculated 

partial outputs of duplicated filters to prune redundant 

operations in BNN. The Slimming Binarized Neural 

Network (SBNN) from [15] utilizes two compression 

techniques: filter pruning and knowledge distillation.A 

different perspective comes from [16], which proposes 

floating-point (FP) feature map compression for a 

hardware accelerator. This involves hardware design and a 

compression algorithm, which can accommodate 

quantization methods like ternary neural quantization 

(TTQ) without significant accuracy degradation, reducing 

computational costs. In the hardware architecture domain, 

[17] presents FantastIC4, an innovative design that 

supports efficient on-chip execution of multiple compact 

fully-connected layer representations. The architecture 

minimizes required multipliers for inference, introducing 

robustness to 4-bit quantization and high compressibility 

through a novel entropy-constrained training method.[18] 

employs algorithm-architecture-circuit design 

optimization, inspired by data reuse and sparsity in Deep 

Belief Network (DBN) learning algorithms. This leads to a 

heterogeneous multicore architecture with localized 

learning capabilities. Addressing streaming applications, 

[19] proposes a tailored streaming hardware architecture 

for improved compute efficiency in CNNs on FPGAs. The 

accelerator unifies computational functions like 

convolutional and deconvolutional layers, optimizing 

residual and concatenative connections to support various 

CNN topologies during inference.While [20] offers 

qualitative analysis, [21] provides more detailed insights 

with quantitative data on inference accuracy, latency, 

throughput, power consumption, and efficiency. However, 

both studies suffer from the limitation of using different 

DNN models for distinct automation frameworks, making 

direct comparison challenging. 

3. Proposed Methodology 

Machine learning technologies like neural network setup 

and Tiled Convolution improve programmable logic 

devices' area efficiency and latency. These flexible 

hardware components may be modified to improve neural 

network accuracy and performance. Programmable logic 

device setup optimises memory use, including Truth tables. 

Convolutional neural networks and Tiled Convolution 

enhance device latency. Feature mappings require 

improvised latency, causing Convolutional Neural 

Network (CNN) overhead on Programmable logic devices 

with limited memory. These methods reduce memory 

restrictions and improve efficiency for wide-scale 

processing of Convolutional Neural Networks on 

Programmable Logic Devices and optimise their 

topologies. This optimises CNN's memory and 

programmable logic device implementation, making it 

quicker and more efficient on a large scale. These devices 

are thus useful for healthcare imaging, image recognition, 

and other Convolutional Neural Network applications. 

These methods optimise CNN's Programmable logic 

device implementation and memory efficiency. Tiled 

convolution breaks the input picture into tiles, reducing 

memory use and processing requirements for large-scale 

Convolutional Neural Networks. The PLD is optimised for 

Convolutional Neural Network processing. Machine 

learning is used to train Convolutional Neural Network 

data models and programmable logic device designs. This 

helps the model discover optimum setups. Split tiles 

interpret the information during tiled convolution. Truth 

tables and programmable logic device neural network setup 

improve device resource allocation. The gadget optimises 

tiny input picture tiles. After this, the Convolutional Neural 

Network is built on the Programmable Logic Device, 

which improves its performance due to memory utilisation 

and device settings.  

1.2.1 Architecture and Working of Proposed Model 

The detailed view of the proposed architecture is given in 

the figure 1 below. An input image is taken as an inference. 

This image is then split up into tiles by the Tile convolution 

that allows parallel processing and decreased memory 

utilization therefore increasing the latency of the working 

model. Every tile is processed separately for efficient use 

of memory on the Programmable Logic Device. These 

resulting tiles are then passed on to the ‘Learning 

Programmable logic device configuration of neural 

networks’,  at this stage machine learning algorithms are 

used for optimal configuration of Programmable Logic 
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Devices. At this stage, the device is both enhanced in 

latency and has improved area efficiency due to the 

techniques applied. The fragments or tiles of the image is 

then concatenated to form the output image.  

 

Fig 1 EffiConvNet working module 

The tiled convolution uses a ‘divide and merge 

computational approach’, where the information of the tiles 

is independent to the output of adjacent tile information. 

For instance, consider the input image has three features 

and convolutional layers are 3 by 3 by 3. The input image 

is split into four tiles as 4 by 4 by 3. The input feature image 

is given as (𝑋𝑖𝑛𝑝𝑢𝑡, 𝐼𝑖𝑛𝑝𝑢𝑡) whereas the dimension of the 

output image is given as: 

𝐼𝑜𝑢𝑡𝑝𝑢𝑡 = 1+((𝐼𝑖𝑛𝑝𝑢𝑡 − 𝑙 + 2𝑞)𝑡−1) 

 

𝑋𝑜𝑢𝑡𝑝𝑢𝑡 = 1+((𝑋𝑖𝑛𝑝𝑢𝑡 − 𝑙 + 2𝑞)𝑡−1) 

 

 

(1) 

The output image is of the dimension 8 by 8. Considering 

the tiled convolution proposed in this study, the input 

image is tiled to the size 5 by 5 that results in an output 

image tile of 3 by 3. This is then combined to produce an 

output feature image of size 6 by 6, keeping in mind the 

size of the input image. This is done by use the Border 

Extension technique, the method involves added additional 

pixels around the ends of the image for tiled computations. 

This assures the size of the input feature image is suitable 

to the required tile dimension for processing. This also 

prevents loss of data and information. For instance, an 

input image tile having original dimension of 5 by 5 is 

bordered to 6 by 6 pixels where the original feature image 

is 4 by 4 pixels. This produces output image tiles of 

dimension 4 by 4 that are combined to produce a resulting 

output image of size 8 by 8.  

𝑂 =
((𝑡−1)(𝐽 + 2𝑞 − 𝑙)) + 1

((
𝐽
𝑂

+ 2𝑞𝑢 − 𝑙) (𝑡−1)) + 1

 
 

 

(2) 

In the above equation (2), input feature images are denoted 

as 𝐽 for the dimension (𝑋𝑖𝑛𝑝𝑢𝑡, 𝐼𝑖𝑛𝑝𝑢𝑡). Tiled convolution 

breaks up the input image into smaller fragments. After 

which Tiled Convolution is performed on every fragment 

separately. Further the results are concatenated together. 

Considering the Convolutional Neural Network used for 

this study, the border extension is performed for CNN 

multilayers in two different ways, namely ‘Fixed 

Bordering’ that splits the input image into uniform tiles for 

computations to make simultaneous processing easier. 

Image classification as well as Object Recognition is 

performed as an experimentation on the Tiled Convolution 

technique. The Tile dimension, pattern, border extension is 

considered for accuracy on various Convolutional Neural 

Networks. Considering Network Image Classification, 

there are four networks considered namely, MobileNet, 

VGC16, Residual network-50 and Residual Network-18. 

For these networks, when the tile length is greater than 1 

the border extension is asymmetrical. The CNN layers are 

altered such that the tile length is set to 𝑡 succeeded by a 

pooling layer 𝑡 by 𝑡. These network models are trained 

while the hyperparameter used to control the process of 

learning is kept constant for all these networks. Out of these 

networks, it is observed that three networks have an 

enhanced accuracy post modification. The study involves 

models are initially trained as well as models that tuned 

using prior trained models. It is observed that the Networks 

VGC16, Residual network-50 and Residual Network-18 

obtained a higher and improved accuracy through tunning 

with prior trained models whereas MobileNet requires 

initial training from scratch. This method aims at learning 

optimal configurations of the Programmable Logic Devices 

for CNN. Machine learning techniques are algorithms are 

used for training model of CNN and corresponding 

Programmable Logic Devices. Resource location is 

optimized using Look up Tables. These tables play an 

essential role in configuration of Programmable Logic 

Devices, where the input in these tables represents binary 

values while the output consists of precomputed values for 

every combination of input values. This mechanism has 

three main phases before implementation which involves 

the Training Stage, Redundancy Reduction stage and the 

final phase of Logical enhancement. In the training stage, 

‘Learning Programmable logic device configuration of 

neural networks’ uses machine learning methods for 

training the CNN model used in this study. Optimal 

configurations of Programmable logic devices are 

predicted for the CNN model that shows best accuracy in 

the Tiled Convolution. Every layer of the model has 

features 𝛽 that are involved in the learning process 

combined with weights as well as sparsity is introduced for 

reduction of non-zero weights using 𝐿2 Regularizer, for 

which the training loss Υ is calculated using the equation 

given below: 

Υ = κ ( ∑ ∑(𝜛(𝑚,𝑑))
2

𝐷

𝑑=1

𝑀

𝑚=1

)

−1
2

 

 

(3) 

In the equation (3), the sparsification factor is denoted as 

κ, count of layer given as  𝑀 and the number of channels in 

every layer is given as 𝐷. The weighted vector for layers 

𝑚 𝑎𝑛𝑑 𝑑 is expressed as 𝜛. The next phase in the proposed 
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work includes the Redundancy Reduction stage. After the 

training of the neural network less significant or redundant 

configurations within the Programmable Logic Device is 

removed. Basically, the Look up table configurations are 

eliminated, this enhances the complete accuracy and 

performance of the device implementation. This process 

involves application of a threshold value denoted as 𝜗 for 

every weight 𝜛. A relational link is developed in regard to 

accuracy and area utilization. 

𝜛

← {
𝜛             𝑖𝑓 ‖𝜛‖ 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 𝑡ℎ𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 
0                                                                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

(4

) 

The Convolutional Neural Network is then binarized for 

the recovery of accuracy loss that is induced. This proposed 

study uses XNOR gate instead of a 𝐿 −Programmable 

Logic Device, that has an initial input of 𝑦̃1
(𝑛,𝑢)

 to retain the 

original value and dimension of the input connection, that 

withholds the Redundancy Reduced Binary Neural 

Network Structure. While 𝐿 − 𝑄 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 1, the 

corresponding inputs 𝐿 − 𝑄 − 1 of the same tile of 

convolution 𝑦̃1
(𝑛,𝑢)

 that proves the dimension of the tile 

remains the same. Their selection is limited, where each 

connected input image is linked to at least one lookup table. 

For 𝑄 𝑖𝑠 𝑔𝑟𝑒𝑎𝑡𝑒𝑟 𝑡ℎ𝑎𝑛 0, 𝑄 is the final input for look up 

table that is linked to a 𝑄 − 𝑏𝑖𝑡 𝑚𝑒𝑚𝑜𝑟𝑦, 𝑞̃(𝑛,𝑢). The look 

up tables are limited in terms of adding look up table 

connections, this is resolved by using larger value of 𝐿 and 

lower value of 𝑄, in this case there will be lesser signals for 

the look up table. For this, the value of 𝐿 − 𝑄 has to be 

decreased to avoid loss on input.  

For a binary domain of {−1,1}𝑂  along with Binary Neural 

Networks, there are constraints for training of models for 

operation on real vectors 𝕊𝑂̃ for back propagation. This is 

resolved by interpolating expansion of ℎ̂𝑛: 𝕊𝐿−𝑄 ×  𝕊𝑄 →

𝕊 where ℎ̂𝑛(𝑦̃(𝑛,𝑢), 𝑞̃(𝑛,𝑢))=ℎ𝑛(𝑦̃(𝑛,𝑢), 𝑞̃(𝑛,𝑢)) and 

ℎ𝑛: {−1,1}𝐿−𝑄  ×  {−1,1}𝑄 → {−1,1} for ℎ𝑛. Consider 

ℎ𝑛  to be a constant value, for a Boolean input, then ℎ̂𝑛 also 

remains unchanged. The expansion is performed using 

Lagrange interpolation that is expressed in the equation 

below: 

ℎ̂𝑛(𝑦̂̃(𝑛,𝑢), 𝑞̂̃(𝑛,𝑢))

= ∑ (𝑑̂𝑒 ∏ ([
𝑦̂̃(𝑛,𝑢)

𝑞̂̃(𝑛,𝑢)
] − 𝑒𝑙)

𝐿

𝑙=1

)

𝑒 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {−1,1}𝐿

 

 

 

 

 

(5) 

Considering the weights used in the training phase in 

equation (3), these weights are included in the retraining of 

model. The aim is the achieve the given below equation 

after the relinked signals are eliminated after Redundancy 

Reduction. 

ℎ̂𝑛(𝑦̂̃(𝑛,𝑢), 𝑞̂̃(𝑛,𝑢))

=  ∑ 𝑦̂̃𝑗
(𝑛,𝑢)

, 𝜛̂𝑗
(𝑛,𝑢)

𝑗 𝑏𝑒𝑙𝑜𝑛𝑔𝑠 𝑡𝑜 {1,… ,𝐿−𝑄}

 

 

(6) 

After all ℎ̂𝑛 is initialized, the second and last stage of 

retraining is performed after which the training constraints 

are binarized. High- accuracy training followed by 

Redundancy Reduction proves rapid convergence and also 

the initial stage of Took up table learning that decreased 

chances of overfitting. The enhancement of latency as well 

as area efficiency is achieved in this proposed study by 

enabling adequate memory resource use as well as faster 

performance with higher efficiency of the Programmable 

Logic Devices for Convolutional Neural Networks. The 

Concatenation of separate tiles result in the final output.   

4. Performance Evaluation. 

This section of the research presents the evaluation of 

model evaluation, which includes the evaluation and 

comparison with the existing model to prove the model 

efficiency. Moreover, in order to evaluate the model 

proposed model utilizes three dataset namely MNIST [23], 

CIFAR-10 [24] and ModelNet40 [25] dataset.  

1.3 Evaluation on MNIST Dataset 

The table1 presents a comparison of different 

methodologies for image classification, each associated 

with specific platforms, operating frequencies, LUT (Look-

Up Table) counts, accuracy rates, and power efficiencies. 

Among these methods, several noteworthy observations 

can be made. "Re-Bnet" achieves a commendable accuracy 

of 98.29% using 25600 LUTs at a frequency of 200 MHz 

on the Spartan XC platform. Similarly, "FP-BNN" 

demonstrates a high accuracy of 98.24% on the Stratix-V 

platform, although its corresponding LUT count is 

unspecified. "BNN-PYNQ" attains an accuracy of 98.4% 

with 26809 LUTs at a frequency of 300 MHz on the 

Ultra96 platform, accompanied by a power efficiency of 

267342. "Finn-R" stands at an accuracy of 97.69% using 

38205 LUTs and 300 MHz frequency on the Ultra96 

platform. "Finn," on the other hand, achieves an accuracy 

of 98.4% with 82988 LUTs at 200 MHz on the ZC706 

platform. The "Proposed" methodology boasts the highest 

accuracy of 99.2% with a relatively modest LUT count of 

29156, operating at 300 MHz on the Ultra96 platform. 

Impressively, this methodology maintains a power 

efficiency of 882190. 

Table 1 MNIST dataset comparison 

Methodol

ogies 

Platfo

rm 

Freque

ncy 

LU

T 

Accur

acy 

Power 

Efficie

ncy 

Re-Bnet 

[26] 

Spart

an 

XC 

200 256

00 

98.29 - 
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FP-BNN 

[27] 

Strati

x-V 

150 - 98.24 - 

BNN-

PYNQ 

[28] 

Ultra

96 

300 268

09 

98.4 26734

2 

FINN-R 

[29] 

Ultra

96 

300 382

05 

97.69 - 

FINN[30] ZC70

6 

200 829

88 

98.4 - 

EffiConv

Net 

Ultra

96 

300 291

56 

99.2 88219

0 

 

 

Fig 2 Accuracy comparison 

The provided table compares several image processing 

methodologies based on key metrics like operating 

frequency, Look-Up Table (LUT) count, accuracy, 

processing speed (Kfps), and area efficiency."FINN-

PYNQ" operates at 300 MHz with 25431 LUTs, achieving 

an 80.1% accuracy and processing speed of 1.9 Kfps. 

"ReBNet" achieves 80.59% accuracy at 200 MHz, utilizing 

53200 LUTs and processing at 6 Kfps. "FBNA" has 

88.61% accuracy with 26900 LUTs (frequency 

unspecified) and processes at 0.5 Kfps. "FINN-R" achieves 

80.1% accuracy with 41733 LUTs at 300 MHz, processing 

at 19.5 Kfps. "Finn" obtains 80.1% accuracy at 125 MHz 

with 365963 LUTs, processing at 125 Kfps. The 

"Proposed" method reaches a 94.2% accuracy at 210 MHz 

using 290012 LUTs, processing at 205 Kfps.These findings 

highlight trade-offs between accuracy, processing speed, 

and LUT utilization. The "Proposed" approach strikes a 

balance, excelling in accuracy and processing speed while 

efficiently using resources. Method selection depends on 

specific application requirements. 

1.4 Evaluation on CIFAR dataset 

The table2 presents a concise analysis of various image 

processing methodologies based on key performance 

indicators. "FINN-PYNQ" achieves an 80.1% accuracy 

using 25431 LUTs at 300 MHz, processing at 1.9 Kfps with 

an area efficiency of 0.074. "ReBNet" operates at 200 MHz 

with 53200 LUTs, yielding 80.59% accuracy and 

processing at 6 Kfps, showing an area efficiency of 0.11. 

"FBNA" achieves an 88.61% accuracy with 26900 LUTs 

(frequency unspecified), operating at 0.5 Kfps and having 

an area efficiency of 0.02."FINN-R" and "FINN" both 

operate at 300 MHz, using 41733 and 365963 LUTs 

respectively, achieving 80.1% accuracy. "FINN-R" 

processes at 19.5 Kfps with an area efficiency of 0.467, 

while "FINN" achieves 125 Kfps with an area efficiency of 

0.34 at 125 MHz. The "Proposed" method operates at 210 

MHz with 290012 LUTs, attaining a high 94.2% accuracy 

and processing at an impressive 205 Kfps, accompanied by 

an area efficiency of 0.727. 

Table 2 CIFAR dataset 

Methodolo

gies 

Freque

ncy 

LUT

s 

Accur

acy 

Kf

ps 

Area 

Efficie

ncy 

FINN-

PYNQ [28] 

300 2543

1 

80.1 1.9 0.074 

ReBNet 

[26] 

200 5320

0 

80.59 6 0.11 

FBNA [31] - 2690

0 

88.61 0.5 0.02 

FINN-R 

[29] 

300 4173

3 

80.1 19.

5 

0.467 

FINN [30] 125 3659

63 

80.1 12

5 

0.340 

EFFICON

VNET 

210 2900

12 

94.2 20

5 

0.727 

 

 

Fig 3 area efficiency comparison 

1.5 Latency based Evaluation  

The provided table offers a concise yet valuable 

comparison of different methodologies based on their 

accuracy and latency performance. "Pointnet++ [33]" 

achieves a commendable accuracy of 91.9%, albeit with a 

relatively higher latency of 117.59 units. On the other hand, 

"O-pointnet [34]" achieves a slightly lower accuracy of 

88.5%, with the corresponding latency not specified, 
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implying a potential trade-off between accuracy and 

latency. Notably, "EFFICONVNET" stands out by 

achieving an impressive accuracy of 93.9% while 

maintaining a significantly lower latency of 19.67 units. 

Table 3 Accuracy and latency 

Methodologies Accuracy Latency 

Pointnet++[32] 91.9 117.59 

O-pointnet [33] 88.5  

EFFICONVNET 93.9 19.67 

O-pointnet [33] is deployed on a ZynqXC -7z045 device, 

although specific resource utilization details are not 

provided. Pointnet-FPGA [35] is implemented on a 

ZCU104 device and demonstrates variations in width and 

resource utilization. With a width of 16, it uses 30933 

LUTs, 60412 Flip-Flops (FFs), 123 Block RAM (BRAM), 

and 1026 Digital Signal Processing (DSP) units. This 

methodology achieves a processing rate of 130 GOPS. 

When the width is reduced to 8, resource utilization is 

adjusted, with 19530 LUTs, 36010 FFs, 114 BRAM, and 

1026 DSPs, enabling an increased processing rate of 182.1 

GOPS. Similarly, point cloud [36] is executed on a 

ZCU104 device with a width of 16-8 (specific width not 

specified), utilizing 17614 LUTs, 12142 FFs, 365.5 

BRAM, and 256 DSPs.On the other hand, EFFICONVNET 

stands out in terms of resource utilization, being 

implemented on a KCU150 device with a width of 8. It 

employs 57366 LUTs, 54082 FFs, 84.5 BRAM, and 2400 

DSPs. Impressively, it achieves a significantly higher 

processing rate of 277.9 GOPS. 

Methodo

logies 

O-

point

net  

[33] 

Point

net-

FPG

A 

[34] 

Point

net-

FPG

A 

[34] 

point 

clou

d  

[35] 

EFFICON

VNET 

Device Zynq

XC -

7z04

5 

ZCU

104 

ZCU

104 

ZCU

104 

KCU150 

width 16  16 8 16-8 8 

LUT - 3093

3 

1953

0 

1761

4 

57366 

FF - 6041

2 

3601

0 

1214

2 

54082 

BRAM - 123 114 365.

5 

84.5 

DSP - 1026 1026 256 2400 

GOPS 1.28 130 182.1 17.7

3 

277.9 

 

 

Fig 4 GOPS comparison 

5. Conclusion 

In the realm of deep learning acceleration on FPGA 

platforms, the pursuit of area efficiency and low latency has 

emerged as a crucial but often disjointed endeavor. 

EffiConvNet stands as an innovative paradigm that marries 

novel concepts such as Block Convolution, logic 

expansion, and ternary neural networks. Through this 

integration, the model offers an effective solution to the 

intricate challenges of efficiency in deep learning systems. 

The methodologies were evaluated using the MNIST, 

CIFAR-10, and ModelNet40 datasets.For the MNIST 

dataset, the "EFFICONVNET" methodology demonstrated 

the highest accuracy of 99.2% while maintaining an area 

efficiency of 882190. This approach struck a balance 

between accuracy and resource utilization on the Ultra96 

platform. Similarly, on the CIFAR dataset, the 

"EFFICONVNET" approach achieved a remarkable 94.2% 

accuracy with an area efficiency of 0.727 at 210 MHz, 

highlighting its superior performance in both accuracy and 

efficiency. Furthermore, the latency-based evaluation 

showcased that "EFFICONVNET" achieved an impressive 

accuracy of 93.9% while maintaining a significantly lower 

latency of 19.67 units, indicating its effectiveness in 

balancing accuracy and responsiveness. 
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