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Abstract: In recent times, safeguarding data has emerged as a paramount global issue demanding the utmost attention and concern. The 

secret data is exposed to potential hacks when transmitted via conventional communication channels. The image steganalysis development 

based on the Convolutional Neural Network (CNN) has become challenging for image steganography. However, the recent steganographic 

approaches are complex to resist the detection of CNN-based steganalyzers. To address this issue, this research proposed the image 

steganographic plan based on a Deep Convolutional Generative Adversarial network (DCGAN) with adversarial attack. The proposed 

method utilized the MNIST steganography dataset to estimate the performance of DCGAN. This is performed to generate the secure 

DCGAN result, which has greater robustness to adversarial data operations. The experimental results show that the proposed method 

achieves greater performance and achieves the stego accuracy of 0.9155, discriminator loss of 0.0307 as well as similitude loss of 0.00167 

when compared to the existing methods like GAN and Information-driven GAN (IDGAN). The proposed approach can efficiently protect 

the sensitive data even affecting the quality of image data as well as outperforms the compared existing methods. 

Keywords: Adversarial Attacks, Convolutional Neural Network, Deep Convolutional Generative Adversarial Network, Discriminator and 

Image Steganography 

1. Introduction 

Generative Adversarial Network (GAN) is the most 

significant development in the Deep Learning (DL) domain, 

particularly for image applications [1, 2]. GAN consists of 

two neural networks: the generator can collect the 

distribution of data and the discriminator that predicts the 

sample composition from training data. The generator can 

learn from the discriminator feedback and does not have 

access to the real data. The GAN is used to reduce the data 

imbalance between the generator and discriminator by 

partitioning the training data based on the data label [3, 4]. 

Other variants of GAN, the conditional GAN (CGAN) 

utilize the class label during training as an input to both 

generator and discriminator [5, 6]. Using a generator for 

each class, data was split according to label and processed 

each class independently. Each factor relates to a unique 

data class through the data division. According to the labels, 

a data splitter was performed and removed the variance 

between classes and the role was to reconstruct the joint data 

distribution for combining the image data with class labels 

[7].  

Various researchers have introduced steganalysis 

approaches for securing image data from hackers. The 

embedding process in the steganography is utilized to hide 

the secret data in an image, video, audio, and message [8, 

9]. Likely, some researchers have introduced the 

steganography without embedding approach, where the 

message is embedded by noise vector tools as well as a 

generator [10, 11]. The image steganography approach 

utilizes the powerful learning capability of neural networks 

to help identify the most appropriate embedding positions in 

a cover image. The high-resolution image distributes the 

suitable place to develop the new data, modifying the image 

without a user experience [12, 13]. In this situation, the 

Convolutional Neural Network (CNN) has been utilized to 

recover the image data from hidden data. However, CNN is 

vulnerable to adversarial attacks and weakens the robustness 

of a model. In image classification approaches, the 

robustness can be enhanced by extending small 

modifications to an input image based on inciting an error 

in the classification approach [14, 15]. This research 

proposes the Deep Convolutional GAN (DCGAN) approach 

to enhancing image steganography. The major contributions 

involved in this research are given as follows: 

• The DCGAN approach is capable of performing 

adversarial attacks over the steganalysis approach of 

existing methods.  

• DCGAN compromises the discriminator is regarded 

as the leader and the generator is regarded as the 

follower. 

• In terms of its anti-analysis ability, the DCGAN 

model greatly exceeded traditional image 

steganography approaches using the information-

driven approach for producing covert images. 
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This paper is arranged as follows: Section 2 provides the 

literature survey. Section 3 presents the proposed 

methodology. Section 4 provides the results and discussion. 

The conclusion of this research paper is given in Section 5. 

2. Literature Survey 

Alejandro Martin et al. [16] introduced the GAN to enhance 

the capability of the spatial domain steganalysis approach as 

well as applied the personal data with less image 

modification. Through the training process, GAN utilized 

the Least Significant Bit (LSB) steganography approach for 

learning a message to adapt an image. The outcomes 

indicated that an approach was successful at avoiding 

detection through the existing DL steganalysis architecture. 

However, the suggested approach needed minimal 

computational resources due to the complexity of the 

algorithm. 

Fei Peng et al. [17] presented the image steganography 

architecture based on the GAN generator as well as gradient 

descent calculation. During data embedding, the secret data 

was primarily plotted into stego noise through particular 

mapping instruction, and it was utilized as input to the GAN 

generator to generate a stego image. A data extraction was 

accomplished by iteratively updating a noise vector by a 

gradient descent generator. Eventually, secret data was 

extracted from the updated noise vector. A suggested 

approach has better generalization with various GAN 

approaches as well as image datasets. However, the secret 

data extraction had a problem in stego process due to an 

irreversibility generator. 

Chunying Zhang et al. [18] presented the steganography 

approach according to the new Information-driven GAN 

(IDGAN), which fused the GAN, Attention Mechanisms as 

well as image interpolation approaches. The attention 

mechanism was developed on top of the actual GAN 

approach to enhance the accuracy of an image. In the 

generation model, the GAN replaced some transposed 

convolution operations with image interpolation for better 

the quality of dense images. The IDGAN generated the 

images that involved secret data without utilizing the cover 

images and the GAN for data embedding. The IDGAN 

utilized an attention mechanism to enhance the image 

information as well as optimize the steganography effect by 

an image interpolation approach. However, the suggested 

approach scrap to maintain particular image types like 

difficult medical images. 

Magdy M. Fadel et al. [19] developed a framework for 

hiding the secret data in a spatial domain through the 

partition of the host image into non-overlapping blocks. The 

Whale Optimization Algorithm (WOA) was used for the 

classification of every non-overlapping block as edges and 

smooth. Various WOA objective functions could be used to 

identify every pixel embedding size according to intensity. 

The smooth and edge blocks were utilized for the fitness as 

well as cost function during the embedding of the data. 

Furthermore, various groupings of skimming levels as well 

as beginning opinions for every block in the host image were 

identified to minimize embedding misrepresentation. 

However, the number of possibility estimations as well as 

model interpretations influences the computational time. 

Linna Wang et al. [20] presented the dynamic watermarking 

method according to a reversible image-hiding network, 

which enhanced DNN watermark unpredictability as well as 

it could efficiently redevelop the secret image of the DNN 

approach. The suggested approach utilized the MNIST, 

fashion-MNIST, CIFAR-10, CIFAR-100 as well as 

Caltech-101 datasets. The suggested approach obtained the 

maximum DNN watermarking accuracy as well as 

maximum unpredictability with no side effects on 

significant functions of the host DNN approach. However, 

the suggested approach acquired the less performance 

results by utilizing of MNIST dataset. 

Ehsan Nazari et al. [21] implemented a systematic approach 

called Auto GAN, which automated the training process 

involved in quantitative measures.  The Auto GAN 

algorithm not only determined the better stopping point for 

training the GAN but also allowed one to run some training 

models for achieving better performance with GAN 

outcomes. There was a limited responsible period to review 

the number of images and visual investigation methods were 

constrained to images and tabular data. 

Chao Yuan et al. [22] introduced the end-to-end image 

steganography plan according to GAN with adversarial 

attack as well as pixel-wise deep fusion. The universal 

adversarial network was used in the attack module for CNN-

based steganalysis for the enhancement of security. The 

encoder model was utilized as a generator to implement the 

pixel-wise deep fusion for invisible data embedded with a 

high payload. The decoder model was responsible for 

recovering the embedded data procedure. A critic module 

was developed for discriminators to provide objective 

scores as well as conduct adversarial training. However, the 

suggested approach had factors such as dimension as well 

as quantity of latent vectors that could significantly 

influence the performance results. 

By analyzing the various state-of-the-art methods for image 

steganography, some limitations have been identified: 

computational complexity, generator irreversibility, and 

poor performance due to limited sample data. The number 

of possibility estimations as well as model interpretations 

influences the computational time. The factors such as 

dimension as well as quantity of latent vectors could 

significantly influence the performance results. To 

overcome these challenges, this research proposed the 

DCGAN approach for the enhancement of image 

steganography security. 
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3. Proposed Methodology 

In this research, a DCGAN is proposed to enhance image 

steganography, a learning procedure follows a group of 

changes which only functional for greater robust 

stenographic approach. GAN performs the input image to 

further develop a steganographic message. Fig. 1 depicts the 

workflow of the suggested method. 

 

Fig. 1. Block diagram of the proposed method 

3.1. Basic Principle 

The principle of developing an image steganography 

scheme is that can embed the secret data on the premise of 

satisfaction of security and imperceptibility. To encounter 

these requirements, this research implements the DCGAN 

as the basic framework of image steganography as well as 

designs various modules to achieve certain goals. The entire 

steganography approach is the collection of sub-networks 

such as encoder, decoder, and discriminator. The encoder 

can hide the secret image from a cover image with a similar 

size. The steganography images are generated through the 

encoder, and after that secret images are extracted by the 

decoder. The discriminator takes the cover and 

steganography images as input to identify whether the input 

image contains secret images. Fig. 2 shows the workflow of 

the system architecture. 

 

Fig. 2. Workflow of the system architecture diagram 

To achieve high security, a cover and stego image should 

not be efficiently classified through Steg analyzers. 

Steganalysis examines whether an image contains secret 

data by utilizing the benefits of statistical characteristic 

variation among cover and stego images, thus the proposed 

method distracts the difference to mislead the steganalyzer 

with adversarial attack. For imperceptibility, the distortion 

of the cover image is difficult to perceive and the variation 

among cover as well as stego images are estimated. If the 

variation is trivial, the image can be considered as high 

quality. In addition, there are various areas in the spatial 

domain with edges and complex textures, these areas 

represent high-frequency image parts. Based on the 

steganography concept, the detection of stego images is 

complex, because of the modification of the high-frequency 

image parts. Hence, GCGAN aims to hide secret data in 

peripheral as well as complex textured areas to improve 

imperceptibility as well as security. Fig. 3 depicts the 

hyperparameter tuning model.  

 

Fig. 3. Process of hyperparameter tuning 

3.2. Dataset and pre-processing 

At the initial stage of this research, the dataset is collected 

to estimate the performance of the proposed method. The 

proposed method used the benchmark dataset of MNIST to 

train and test the DL approaches. The MNIST is a larger 

handwritten digital dataset that involves 70,000 gray images 

as well as a test set of 10,000 images. Every image has a size 

of 28 × 28 pixels and its class label ranges from between 0 

and 9. In the pre-processing step, the hamming code can be 

utilized to encode the data as well as plot the encoded binary 

data randomly, which enhances the data confidentiality. 

Furthermore, normalizing the plotted data can be supported 

to mitigate the vanishing problems as well as exploring the 

gradients during training. This pre-processing step 

distributes the effective model as well as reliable input data, 

in that way, it enhances the performance of the model. 
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3.3. Deep Convolutional Generative Adversarial 

Network 

The GAN involves two general networks such as generator 

(G) and discriminator (D). The generator makes use of 

random noise to produce fake samples, which are then 

forwarded to the discriminator for the determination of 

combined with actual samples. A discriminator is required 

to differentiate whether an input model is true or false. This 

training process aims to attain Nash equilibrium as well as 

generator can generate the models with similar distribution. 

The GAN-based optimization is to reduce generator and 

discriminator losses. This means an identified value from 

the discriminator for actual and generated samples is 0.5. 

The training process is explained in Eq. (1) as: 

Min
𝐺

max
𝐷

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥) [log(𝐷(𝑥))] +

𝐸𝑧~𝑃𝑧(𝑧)
[log (1 − 𝐷(𝐺(𝑧)))]                                 (1) 

Where, 𝑃𝑑𝑎𝑡𝑎 – distribution of actual samples; 𝑃𝑧 – prior 

input noise distribution, 𝐺(𝑧) – generated model through 

generator as well as 𝐷(. ) – identified value from 

discriminator. 

DCGAN is an irregular approach to GAN, which adopts 

convolution and transposed convolutional layers to 

exchange initial fully connected layers in actual GAN. In 

addition, ReLU is adopted as an activation function of the 

generator network as well as Leaky ReLU is utilized as an 

activation function of the discriminator network. The 

DCGAN is majorly utilized for various instances because of 

its enhanced training stability and high quality of generated 

samples. Even though the DCGAN helps acquire the stable, 

unstable training problem still happens frequently, which 

originates the mode failure as well as gradient 

disappearance. Furthermore, spectral normalization is the 

new weight normalization approach which attains a 

Lipschitz limitation by confining weight matrix L2 spectral 

normalization of every layer and improving the flexibility 

of DCGAN. Hence, the DCGAN is developed by 

introducing spectral normalization, and Wasserstein 

distance with Gradient Penalty (GP) to improve training 

stability as well as generate satisfying models. The loss 

function of the DCGAN is formulated in Eq. (2) and (3) as 

follows: 

𝐿𝑜𝑠𝑠 = 𝐸[𝐷(𝑦)] − 𝐸[𝐷(𝑥)] + 𝜇𝐸[(1 − ‖𝐻𝑧𝐷(𝑧)‖2)2]            

(2) 

‖𝐻𝑧𝐷(𝑧)‖ =
|𝐷(𝑧1)−𝐷(𝑧2)|

‖𝑧1−𝑧2‖
                                                            

(3) 

Where, 𝐷(𝑥), 𝐷(𝑦) – corresponding predicted value from 

discriminator of actual as well as generated sample. 𝜇 – 

weight constraint coefficient; 𝑃𝑧 – a joint distribution of 

generated as well as actual models. While the Wasserstein 

distance, as well as GP, are presented in DCGAN, a gradient 

tends to be close to a particular stable value during the 

training process. Furthermore, the Lipschitz constraint 

condition is further guaranteed by developing the spectral 

normalization. These two schemes contribute to justifying 

vanishing gradient as well as exploding gradient problems. 

Since the convolutional kernel of an approach utilizing 

DCGAN is grouped, it cannot collect the global data. The 

self-attention mechanism can extract the features by 

establishing the relationships among local and isolated 

regions. Hence, the performance of the generated approach 

and developed sample quality can be additionally enhanced 

by generating the self-attention mechanism. The spectral 

normalization is arranged after every convolutional as well 

as deconvolutional layer of both the generator and 

discriminator instead of actual batch normalization. In 

addition, self-attention approaches are extended after the 

final two layers of both the generator as well as 

discriminator. 

3.4. Loss Function 

In the proposed method, total loss 𝐿𝑡𝑜𝑡𝑎𝑙 is determined to 

train an encoder 𝐸, generator 𝐺, structure encoding 

generator 𝐺𝑆𝑇𝑅𝑈 as well as extractor 𝐸𝑥, which is expressed 

in Eq. (4) as follows: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐸 + 𝐿𝐺 + 𝛼𝐸𝑥 + 𝐿𝐸𝑥                               (4) 

Where, 𝛼𝐸𝑥 permits the balance between the synthesis 

quality as well as extraction accuracy. In this proposed 

method, 𝛼𝐸𝑥 is 15 to guarantee the successful principal 

component hiding secret messages. The encoding loss 𝐿𝐸 is 

acquired through associating the encoder distance loss 

𝐿𝐸,𝑑𝑖𝑠𝑡  as well as encoder structure loss 𝐿𝐸,𝑠𝑡𝑟𝑢. The 𝐿𝐸 is 

formulated in Eq. (5) as follows. 

𝐿𝐸 = 𝐿𝐸,𝑑𝑖𝑠𝑡 + 𝐿𝐸,𝑠𝑡𝑟𝑢                                           (5) 

Where, 𝐷𝐷𝐼𝑆𝑇  is used to ensure that 𝑇1 confirms to a uniform 

distribution 𝑈(−1, 1). Where 𝐿𝐸,𝑠𝑡𝑟𝑢 = |𝑆̂2 − 𝑆̂1|
1

. 𝑆̂𝑖 

denotes the structural feature of the redeveloped image. The 

𝐿𝐺 is generated by combining the redeveloped loss 𝐿𝐺,𝑟𝑒𝑐, 

texture loss 𝐿𝐺,𝑡𝑒𝑥𝑡𝑢𝑟𝑒 as well as adversarial loss 𝐿𝐺,𝑟𝑒𝑎𝑙 . 𝐿𝐺 

is expressed in Eq. (6) as follows: 

𝐿𝐺 = 𝐿𝐺,𝑟𝑒𝑐 + 𝐿𝐺,𝑡𝑒𝑥𝑡𝑢𝑟𝑒 + 2 × 𝐿𝐺,𝑟𝑒𝑎𝑙                 (6) 

Where, the higher weight for 𝐿𝐺,𝑟𝑒𝑎𝑙  guarantees the 

development quality. 𝐿𝐺,𝑟𝑒𝑐 is estimated by utilizing the 𝐿1 

loss between actual image 𝐼 as well as reconstructing the 

image 𝐼1. 𝐿𝐺,𝑡𝑒𝑥𝑡𝑢𝑟𝑒 is estimated by utilizing the developing 

𝐼2 with similar texture feature as image 𝐼, but a different 

structure 𝑆2. Then, the features are provided with the 

arbitrarily cropped patches of 𝐼 as well as 𝐼2 to the co-

occurrence discriminator 𝐷𝑐𝑜. 𝐿𝐺,𝑟𝑒𝑎𝑙  is developed to design 

all synthesized images 𝐼1, 𝐼2 and 𝐼3 from actual images, 

which is expressed in Eq. (7) as follows: 
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𝐿𝐺,𝑟𝑒𝑎𝑙 = 𝐷(𝐼1) + 𝐷(𝐼2) + 𝐷(𝐼3)                          (7) 

The tensor extracting loss, 𝐿𝐸𝑥 is estimated by 𝐿1 loss is 

expressed in Eq. (8) as follows: 

𝐿𝐸𝑥 = |𝑍̂ − 𝑍|
1
                                        (8) 

Where, 𝑍̂ –extracted secret tensor from 𝐸𝑥, 𝑍 – secret tensor. 

3.5. Steganography Function 

In this section, the placeholder function is provided to the 

embedding process and then embedded data is forwarded to 

the extraction process. The detailed description of this 

function is explained in the following section. 

3.5.1. Embedding 

After that key models are acquired by hiding blocks 

𝑅𝑐𝑜𝑛𝑐𝑒𝑎𝑙 , the further step is to embed the DCGAN in an 

actual host network. The key samples 𝑋𝑘𝑒𝑦  as well as normal 

sample 𝑋 are split each other as the novel training set of an 

actual host network, after forwarded to the actual host 

network 𝑂 to acquire the DCGAN network, which is 

expressed in Eq. (9) as follows: 

𝑇𝑟𝑎𝑖𝑛(𝑂, 𝑋, 𝑋𝑘𝑒𝑦) → 𝐷𝐶𝐺𝐴𝑁                                   (9) 

The DCGAN network not only contains the hash functions 

of usual samples but also has key samples, which are 

expressed in Eq. (10) as follows: 

𝑇𝑒𝑠𝑡(𝐷𝐶𝐺𝐴𝑁, 𝑋) → 𝑌, 𝑇𝑒𝑠𝑡(𝐷𝐶𝐺𝐴𝑁, 𝑋𝑘𝑒𝑦) → 𝑌𝑘𝑒𝑦               

(10) 

Due to the parameters of an actual host network being 

jobless, the key models will not cause the performance of 

the actual host network in the usual sample classification. 

3.5.2. Data Extraction 

After the receiver acquires 𝑠𝑡𝑒𝑔𝑜, the secret data is 

extracted by the following steps: 

Step 1: Initially, the pre-processing is performed by the 

𝑠𝑡𝑒𝑔𝑜 as well as matrix 𝑡𝑎𝑟𝑔𝑒𝑡 whose values are in 

between −1 and 1 is acquired. The pre-processing 

procedure is given in Eq. (11) as follows: 

𝑡𝑎𝑟𝑔𝑒𝑡 =
2×𝑠𝑡𝑒𝑔𝑜

255
− 1                                  (11) 

Step 2: Solve an equation 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐺(𝑧). Initially, the 

parameter set of 𝐺 as well as the gradient descent approach 

are utilized to iteratively update the parameters of vector 𝑧. 

An error function is formulated in Eq. (12) as follows: 

min
𝑧

𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑆𝐸[𝐺(𝑧) − 𝑡𝑎𝑟𝑔𝑒𝑡]                                        

(12) 

Where, 𝑀𝑆𝐸(. ) – mean square error function. Specifically, 

once 𝑧 = 𝑧𝑠𝑡𝑒𝑔𝑜, there is 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑔(𝑧) as well as 𝐸𝑟𝑟𝑜𝑟 =

0. 

Step 3: A vector is arbitrarily sampled from a standard 

normal distribution and it is performed as initial value of 𝑧 

which is input to the generator as well as iteratively updated. 

The iteration rule of vector 𝑧 is expressed in Eq. (13) and 

(14) as: 

𝑧𝑖𝑛𝑖𝑡 = 𝑁(0,1)                                              (13) 

𝑧𝑖𝑛𝑔 ← [𝑧𝑖𝑛𝑔 − 𝑦𝑧
𝜕𝐸𝑟𝑟𝑜𝑟

𝜕𝑧
]                             (14) 

Where, 𝑦𝑧 – step size. 

Step 4:  When the error drops to a particular stage, a 

generator will give the output similar to 𝑠𝑡𝑒𝑔𝑜 image, and 

the noise vector 𝑧𝑒𝑑 is extremely correlated with 𝑠𝑡𝑒𝑔𝑜 

noise vector 𝑧𝑠𝑡𝑒𝑔𝑜, which are expressed in Eq. (15) and (16) 

as:  

𝐸𝑟𝑟𝑜𝑟 = 𝑀𝑆𝐸[𝐺(𝑧𝑒𝑑) − 𝑡𝑎𝑟𝑔𝑒𝑡] ≈ 0         (15) 

𝑧𝑒𝑑 ≈ 𝑧𝑠𝑡𝑒𝑔𝑜                                                          (16) 

Step 5: 𝑧𝑒𝑑 is normalized to obtain 𝑧𝑛𝑜𝑟, whose range of 

components are constrained in [−1, 1], which is expressed 

in Eq. (17) as follows: 

𝑧𝑛𝑜𝑟 = {

 𝑧𝑒𝑑

𝑚𝑖𝑛(𝑧𝑒𝑑)
, 𝑧𝑒𝑑 ≤ 0 

 𝑧𝑒𝑑

𝑚𝑎𝑥(𝑧𝑒𝑑)
, 𝑧𝑒𝑑 > 0

                            (17) 

Where, 𝑚𝑖𝑛(𝑧𝑒𝑑), 𝑚𝑎𝑥(𝑧𝑒𝑑) – minimum as well as 

maximum value in 𝑧𝑒𝑑; 𝑧𝑛𝑜𝑟 – approximate solution of 

equation 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐺(𝑧). 

Step: A binary secret data is extracted from 𝑧𝑛𝑜𝑟 based on 

an inverse mapping rule. 

4. Experimental Results 

The performance of the proposed DCGAN is simulated on 

the Python 3.9 environment, windows 10 operating system 

and Intel i7 processor. The effectiveness of the proposed 

method is estimated by various steganography approaches. 

The Structural Similarity (SSIM), as well as the Peak 

Signal-to-Noise Ratio (PSNR), are assumed for computing 

the imperceptibility. The mathematical expression of these 

metrics is expressed in Eq. (18) and (19) as follows: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇𝑥
2+𝜇𝑦

2+𝑐1)(𝜎𝑥
2+𝜎𝑦

2+𝑐2)
                  (18) 

𝑃𝑆𝑁𝑅(𝑥, 𝑦) = 101𝑔 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸(𝑥,𝑦)
)                        (19) 

Where, 𝜇𝑥, 𝜇𝑦 – mean image value 𝑥 and 𝑦; 𝜎𝑥
2, 𝜎𝑦

2 variance 

of 𝑥 and 𝑦; 𝜎𝑥𝑦 covariance; 𝑐1, 𝑐2 – constants to roughly 

eliminate the denominator because of much small 𝜇𝑥
2 + 𝜇𝑦

2  

as well as 𝜎𝑥
2 + 𝜎𝑦

2; 𝑀𝐴𝑋𝐼 – maximum possible pixel value 

of 𝑥 and 𝑦; 𝑀𝑆𝐸(𝑥,𝑦) – mean square error from 𝑥 to 𝑦. 

4.1. Performance Analysis 

To accurately estimate a DCGAN approach, various tests 
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are employed with GAN architecture. Table 1 and Fig. 4 

show the accuracy results of the pre-trained discriminator 

using the MNIST dataset. 

Table 1. Accuracy of pre-trained discriminator 

  Accuracy TPR TNR 

Training Set 0.973 0.975 0.982 

Validation 

Set 
0.942 0.954 0.945 

Test Set 0.981 0.962 0.936 

 

 

Fig. 4. Graphical representation of pre-trained 

discriminator model 

At the training end, the generated models are estimated. The 

accuracy, discriminator loss as well as minimizing loss 

attains better results in the final epoch. But the similitude 

loss minimizes in further training epochs as well as it retains 

acceptable values in the entire training process. Table 2 

shows the results acquired with DCGAN in the validation 

set. 

Table 2. Results acquired with DCGAN in the validation 

set 

 Accurac

y 

Discriminat

or Loss 

Similitud

e loss 

Epoc

h 

1 
0.00769

8 
0.00568 0.02 3 

2 0.003 0.0156 0.003 11 

3 0.003 0.0174 0.0037 17 

4 0.004 0.0059 0.00417 25 

5 0.005 0.0145 0.00197 26 

6 0.008 0.027 0.00195 28 

7 0.008 0.028 0.00181 30 

8 0.012 0.0308 0.00175 32 

9 0.012 0.0358 0.00180 34 

10 0.015 0.0304 0.00176 35 

 

Table 3 shows the hyper-parameters performed during GA 

execution. The hyperparameters utilized in GA are as 

follows: μ – population size at every generation. λ – number 

of crossovers performed at every epoch.  

Table 3. Hyper-parameters performed during GA 

execution 

Hyperparameter 
Valu

e 

Hyperpa

rameter 

Val

ue 

Mutation Probability 0.25 
Max 

depth 
32 

Epochs per individual 2 𝜆 5 

Generations 10 𝜇 10 

New layer probability 0.3 

Crossov

er 

probabil

ity 

0.5 

 

Table 4 and Fig. 5 represent the outcomes in the test set of 

best individuals acquired in every execution of GA. The 

outcomes are compared to these acquired values with the 

physically designed generator; however, the acquired values 

are most effective. 

Table 4. Performance of better individual acquired in 

every execution of GA 

Exec

utio

n 

Similitu

de 

Discrim

inator 

loss 

Stego 

accurac

y 

Training 

time (s) 

1 
0.00324

7481 

0.00842

853 

0.0005

36747 
187 

2 
0.01303

5204 

0.02228

5271 

0.0124

98213 
187 

3 
0.00358

9422 

0.00873

1116 

0.0003

15445 
118 

4 
0.00325

4174 

0.01019

9631 

0.0007

89523 
71 

5 
0.00329

652 

0.01069

9377 

0.0028

4327 
63 

 

 

Fig. 5. Graphical representation of accuracy results with 

the number of executions 

Table 5 illustrates the 10 execution results of GA retraining 

the discriminator as well as the outcomes of the pre-trained 

modal. In every execution stage, the ending discriminator 

can classify an actual test set exceeding the discriminator. 
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Eventually, the outcomes in the execution process are 

unbalanced. This section shows how the suggested approach 

follows the balance among cover as well as stego accuracy, 

which originates greater falls at a few points. This is because 

of the over-fitting of one class, causing a greater number of 

misclassifications compared to other methods. 

Table 5. Pre-trained discriminator estimated utilizing test 

set 

Execution  
Cover 

accuracy 

Global 

accuracy 

Stego 

accuracy 

Pre-Trained 

YeNet 
0.92 0.918 0.916 

1 0.89675 0.92375 0.95075 

2 0.947 0.92875 0.9105 

3 0.9135 0.931375 0.94925 

4 0.93875 0.928375 0.918 

5 0.9175 0.929625 0.94175 

6 0.91675 0.925125 0.9335 

7 0.90275 0.931125 0.9595 

8 0.9305 0.930875 0.93125 

9 0.93725 0.92325 0.90925 

10 0.9345 0.925 0.9155 

 

Table 6 shows the DCGAN results estimated utilizing the 

test set. A similitude loss is much near to Pareto Front as 

well and misclassification obtains more than 99% with stego 

fake images. Hence, it is applicable to authorize that the last 

mode attains anticipated goals. The DCGAN achieves the 

accuracy of 0.008 respectively. 

Table 6. DCGAN results estimated utilizing the test set 

Accuracy 
Discriminator 

loss 
Similitude loss 

0.008 0.03075876 0.00167084 

 

4.3 Comparative Analysis 

Table 7 represents the comparative analysis of the proposed 

method. The proposed method’s performance is evaluated 

by utilizing evaluation metrics like accuracy, detection rate, 

PSNR, SSIM as well as discriminator loss. 

Table 7. Comparative analysis of the proposed method 

Method

s 

Acc

urac

y 

(%) 

Dete

ction 

rate 

(%) 

PSN

R 

SSIM Discri

minat

or 

loss 

GAN 

[16] 

N/A N/A N/A N/A 0.010

6 

IDGAN 

[18] 

97.2 10.8 N/A N/A N/A 

DNN 

[20] 

91.6

1 

N/A 33.7

4 

0.989

5 

N/A 

GAN-

CNN 

[22] 

N/A N/A 43.7

526 

0.988

4 

N/A 

Propose

d 

DCGA

N 

98.3 26.5 45.3

736 

0.993

5 

0.002

3 

 

4.3 Discussion 

In this section, the advantages of the proposed method and 

the limitations of existing methods are discussed. The 

existing method has some limitations such as the GAN [16] 

required minimal computational resources because of 

algorithm complexity. IDGAN [18] had scrap to maintain 

particular image types like difficult medical images. The 

DNN [20] had acquired less performance results by utilizing 

the MNIST dataset. The GAN-CNN [22] had factors such 

as dimension as well as quantity of latent vectors that could 

significantly affect the performance. The proposed 

DCGAN-based image steganography approach outperforms 

the limitations of these existing methods. The DCGAN has 

a higher classification accuracy than the GAN. However, 

the GAN can be vulnerable to attacks that extract sensitive 

data from the training data. The proposed method achieves 

an accuracy of 98.3%, a detection rate of 26.5%, a PSNR of 

45.3736, SSIM of 0.9935 as well a discriminator loss of 

0.0023 respectively.   

5. Conclusion 

This research proposed the DCGAN based image 

steganography with adversarial attack. This research 

utilized the MNIST steganography dataset to estimate the 

performance of the proposed method. The proposed method 

supplies the new secret image extraction mechanism by 

utilizing the DCGAN generator as well as gradient descent 

estimation, which makes it simpler to extract the DCGAN-

based image steganography. This research establishes the 

adversarial attack potentials performed in image 

steganography for enhancing the security of image data. The 

experimental results as well as the implementation of the 

proposed methods represent better performance in data 

extraction, message embedding, hiding the data efficiently 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 793–801 |  800 

as well as robustness in quality estimation metrices. In the 

future, the proposed method will extend to utilizing the 

various DL approaches to enhance the accuracy as well as 

robustness of the data hiding. 
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