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Abstract: Text summarization focuses on creating a brief and concise summary from source text while preserving the main idea and 

eliminating unnecessary details. Generating summaries through manual efforts by humans is a tedious, tiresome, and expensive process. 

Hence, this study’s objective is to build an automated abstractive text summarizer that can minimize manual efforts and generate concise 

summaries swiftly. The aim is to develop a text summarizer model using deep learning to form a single-line abstractive summary 

resembling a headline. It also explores the impact of adjusting the model's hyperparameters on the generated summary to achieve better 

results. A subset of instances from the Gigaword dataset is utilized to develop the model. The proposed summarizer is a sequence-to-

sequence model with an LSTM-driven encoder-decoder architecture. It incorporates a Bahdanau attention mechanism and utilizes the 

Adam optimizer. Based on experimental analysis and the results obtained after adjusting hyperparameters and selecting the optimal 

values as final, the proposed architecture attained scores as 24.27, 8.57, and 23.13, for ROUGE-1, ROUGE-2, and ROUGE-L 

respectively. 

Keywords: Abstractive text summarization, Attention mechanism, Deep learning, Encoder-Decoder architecture, LSTM, Sequence-to-

Sequence model, Single sentence summarization, Text preprocessing techniques. 

1. Introduction 

In the present scenario, there is abundant textual data, be it 

online documents, articles, news, or reviews [1]. These are 

often characterized by lengthy text strings, highlighting the 

need for effective summarization. Summarization involves 

generating a concise version of textual information, 

typically encapsulating the essential details from the source 

document. Text summarization is categorized into 

extractive summarization and abstractive summarization. 

In extractive summarization, summaries are formed solely 

by selecting and assembling content directly from the 

source text. This approach is considered simpler as it 

guarantees grammatical accuracy by copying information 

directly from the source text [2]. However, extractive 

summaries may contain unnecessary details. In contrast, 

abstractive summaries are paraphrased versions [3], they 

maintain the core notion or context behind the original 

text. They are generally more readable, Understandable, 

and coherent compared to extractive summaries.  

The usage of deep learning concepts in abstractive text 

summarization began in 2015 [4], by introducing a model 

whose basis was the encoder-decoder architecture. To 

produce a single sentence abstractive summary, this work 

employed a sequence-to-sequence model (Seq2Seq) 

incorporating a stack of three bidirectional Long Short-

Term Memory layers (Bi-LSTM) in an encoder for 

processing input text. Additionally, it utilized a single-

layered unidirectional Long Short-Term Memory (LSTM) 

within the decoder with the Bahdanau attention mechanism 

[5] on the target text. Gigaword dataset [6] formed the 

foundation for building the model. Features within the 

input data (news) are grasped by the encoder. Then it 

produces a context vector that has a definite or constant 

length. This vector is further transmitted to the decoder and 

utilized to form a summary in accordance with the article.  

The evaluation technique is crucial in assessing the 

performance of a summarization model. Intrinsic 

evaluation involves assessment techniques concentrating 

on metrics like F-score, precision, and recall [7]. BLEU 

and ROUGE are intrinsic metrics broadly used to assess 

machine generated-summary [8]. Mostly, ROUGE is 

employed to evaluate machine-generated text summaries 

[9], [10], [11], [12]. Thus, in this study, assessment of the 

model's effectiveness is conducted with the help of the 

ROUGE score, relying on both the target summaries 

produced by the model and reference summaries formed 

by humans. 

2. Literature Review 

Extractive [13] and abstractive summarization [14] are 

methods for summarizing text. In extractive text 

summarization, essential sentences and paragraphs or other 

elements from the source document are chosen and 

combined to create a more concise version [14]. 

Abstractive Text Summarization is typically a challenging 
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and time-intensive process, frequently yielding suboptimal 

results due to the limitations of computers in 

comprehending human language accurately [15]. 

Researches conducted on abstractive text summarization 

are based on various factors such as types of neural 

networks employed in models (RNN, LSTM, GRU), the 

type of input documents i.e. whether the document is 

multiple or single, the type of output (single line or 

multiple lines), objectives (query-based, domain-specific, 

or generic), and performance metrics [1], [15].  

We find that abstractive text summarization have been 

significantly impacted due to introduction of neural 

Seq2Seq model. Unlike traditional methods, these models 

provide a more flexible and expressive way of 

summarizing text [12], [16]. Tian Shil et al. [17] have 

provided a detailed explanation of the Seq2Seq model. An 

encoder-decoder model with recurrent neural networks 

(RNNs) is built by Nallapati et al. [12]. LSTM is used to 

effectively address the gradient-related issues that are 

encountered by RNN [18]. Sangita et al. [19] and 

Panagiotis Kouris et al. [20] have utilized Bi-LSTM within 

the encoder, further within the decoder unidirectional 

LSTM is utilized. Wazery et al. [21] observed optimal 

performance when three layers of Bi-LSTM are utilized 

within the encoder. The encoder-decoder architecture 

having RNN with attention, is introduced in the work by 

Bahdanau et al. [5] and has solidified itself as a standard in 

abstractive summarization.  

For abstractive text summarization, the Gigaword dataset 

[12], [21], [22], Amazon Fine Food Reviews [23], [11], 

DUC2003, DUC2004 [21], and the CNN/Daily Mail 

dataset [2], [24] are among the most frequently utilized 

datasets. The Gigaword dataset and Amazon fine food 

reviews dataset are utilized when working on single-

sentence summaries. CNN/Daily Mail dataset is taken into 

account when working on multiple line summaries.  

Table 1. Datasets for abstractive summarization 

Dataset 

name 

Line 

coun

t 

Text 

lengt

h 

Summar

y length 

Train Test 

Gigawor

d 

singl

e line 

31 15 3.8M 1.9K 

CNN/ 

daily 

mail 

multi 

line 

760 55 287K 11K 

Amazon 

fine food 

reviews 

singl

e line 

30 8 1M 10K 

Table 1 presents a summary of the prevalent datasets used 

for abstractive text summarization. The table includes 

information such as the dataset name, line count or number 

of sentences in summaries, text length (max count of 

words in text), summary length (max count of words in 

summary), and count of data entries in both the training 

and testing datasets. 

The assessment of the text summarization system is done 

with the help of set of metrics known as ROUGE, by 

comparing model-generated summaries with manually 

generated summaries [2], [12], [19], [21], [24].  

This research study introduces a model designed to 

perform abstractive summarization of text, focusing on 

headline generation or single-sentence summaries within 

the news domain. This approach involved the utilization of 

Bi-LSTM within the encoder coupled with unidirectional 

LSTM within the decoder. The Gigaword dataset [6], 

obtained from Hugging Face, formed the foundation for 

building, training, and testing the model. Various 

hyperparameter adjustments were made to explore the 

impact of these hyperparameters on the generated 

summaries, to achieve improved results. 

3. Method 

This section describes the methodology employed in 

creating an abstractive text summarizer designed for 

producing English headlines from English news content. 

 

Fig. 1.  Architecture of abstractive text summarization 

system  
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The architectural representation in Figure 1 outlines the 

workflow used to develop our abstractive text 

summarization system. The initial stages involve dataset 

and text preprocessing, preparing the input data for an 

abstractive text summarization system. This system is 

constructed by employing Gigaword dataset for both 

training and testing, as well as validation purposes. Trained 

model’s parameters are passed to the inference model. The 

testing dataset is utilized to evaluate summaries produced 

by the model. 

3.1. Dataset 

In this study, experiments are conducted using the 

Gigaword dataset [6]. The dataset contains the following 

splits: training, validation, and testing. Each part has short 

text and headlines. The training set comprises 

approximately 3,803,957 instances, the validation dataset 

consists of 189,651 data points, and the test dataset has 

1951 instances. To build and conduct experiments with the 

model, this study utilized 2,00,000 instances to train the 

model, 20,000 for validating, and 1,000 for testing 

purposes. 

3.2. Dataset preprocessing 

During the data preprocessing phase, duplicate rows were 

eliminated. Additionally, instances were removed if the 

news text length exceeded that of their corresponding 

headlines, or if either the news text or headline was 

missing. 

3.3. Text preprocessing 

Text preprocessing [11], [23] involves tasks such as 

cleaning data, eliminating ambiguities, and organizing 

textual data to prepare it as input for models. Text data is 

inherently complex, unstructured and comprises sequences 

of words, punctuation, symbols, numbers, contractions, 

markup, and formatting elements. Furthermore, certain 

components such as punctuation and stop words ('the’, 

'such', 'any', 'very', 'am', 'is', etc.) which hold minimal 

relevance, especially Within the field of abstractive text 

summarization. The following section details various 

operations employed in the preprocessing of text data: 

3.3.1. Remove formatting 

The first step is to eliminate any HTML tags, markup, and 

formatting elements present in the text. 

3.3.2. Convert to lowercase 

Text is converted to lowercase [19] to ensure uniformity in 

processing. 

3.3.3. Resolving dataset-specific abbreviations 

The Gigaword dataset [6] includes abbreviations such as 

"fm" for "foreign minister", "dlrs" for "dollars", "pct" for 

"percent", "mln" for "million", and "gov" for 

"government". These abbreviations are replaced with their 

respective full forms during preprocessing.  

3.3.4. Map contractions 

In the English language, contractions represent shortened 

forms of word combinations (e.g., "can't" for "can not," 

"won't" for "will not"). Contraction mapping is performed 

to ensure semantic clarity and maintain consistency for 

accurate analysis. 

3.3.5. Eliminate stop words 

Stop words with little semantic value are removed, to focus 

on content-carrying words [2]. 

3.3.6. Eliminate parentheses content 

Parentheses content from the source text consists primarily 

of non-essential details, so it is removed. 

3.3.7. Eliminate punctuations, special characters, 

double quotes, 's 

Punctuation, special characters, quotes, and possessive 

forms ('s) lack substantial semantic meaning and may 

introduce unwanted noise to the data; hence, they are 

eliminated. 

Additionally, in this paper's dataset, infrequent words had 

already been replaced with "UNK," and digits were 

substituted with "#". Instances of the word "unk" were 

removed from the data as they were considered 

nonessential. Furthermore, punctuation and special 

characters, such as "#," were eliminated using regular 

expressions. 

3.4. Representing data 

Deep learning models do not inherently comprehend words 

directly. Instead of using pre-trained embeddings for word 

representation, the approach here is to train embeddings 

from scratch when doing the training process of the model 

[2]. To accomplish this, a Keras tokenizer is employed to 

convert words into integers. These integers, serving as 

mappings for words, are then fed into the model. 

Subsequently, an embedding layer transforms these 

integers into vectors. To train the abstraction text 

summarization model efficiently, we set a maximum 

length for both the news text and summary and performed 

padding. If the input sequence falls short of the maximum 

length, we supplement it by adding 0 integers until it 

attains the prescribed length. Conversely, if the input 

sequence exceeds the maximum length, it is truncated. 

This approach ensures uniform processing and handling of 

variable-length input sequences [3]. Notably, the 

embedding layer’s parameters are configured as trainable, 

allowing the vectors representing words to be updated and 

refined throughout the training process. This paper adopts 

a word embedding dimensionality of 300 [19]. 
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3.5. Model Architecture 

3.5.1. Seq2Seq model 

Seq2Seq model [12], [23] transforms the input sequence 

within the neural network of sequences consisting of 

letters, words, and phrases. This work aims to develop a 

deep learning system to produce abstractive summaries 

using encoder and decoder networks. The encoder 

incorporates a three-layered structure of  

Bi-LSTM, however the decoder consist one layer of 

unidirectional LSTM, to capture related information for 

quality improvement of generated summary. Output of the 

encoder and decoder are inputted into an attention layer (in 

Figure 2). Using a concatenation layer [18], outputs of the 

attention layer and decoder are combined and it produces 

the final target sequence. 

 

 

Fig. 2.  Encoder-Decoder model   

The news text tokens are sequentially inputted into the 

encoder and generate cell and hidden states. At every time 

unit (denoted by t in Figure 3), the decoder takes the 

previous word’s word embeddings as input and maintains 

its decoder state. The attention distribution works as a 

probability distribution for the input words, guiding the 

decoder on what to concentrate on to generate subsequent 

words [16].  The vocabulary has been expanded to include 

new special tokens such as "EOS" and "SOS" [19]. (EOS 

and SOS stands for end of a sequence and start of a 

sequence, respectively.) The encoder processes an input 

text, denoted as 𝑥 =  (𝑥1 , 𝑥2 ,....,𝑥𝑗  ), and converts it in the 

hidden states ℎ =  (ℎ1 , ℎ2 ,....,ℎ𝑡  ). Meanwhile, these 

hidden states are utilized by decoder to produce a summary 

𝑦 =  (𝑦1 , 𝑦2 ,....,𝑦𝑡  ). 

 

Fig. 3.  Basic Seq2Seq Model 

In this model, three Bi-LSTM layers are employed 

consecutively. Each layer processes the sequence of input 

in both directions (forward and reverse), generating 

sequences of hidden states for every time interval. The 

final layer's hidden and cell states from both directions are 

combined to create a context vector representing learned 

knowledge from the entire input data. This context vector 

serves as the base information for decoder. The decoder 

uses LSTM layer to generate sequences of outputs and 

states. Considering both encoder and decoder outputs, 

attention scores are calculated, which allows the system to 

concentrate on various segments of input, while producing 

each step of the output. The output from attention is then 

combined with the decoder’s LSTM output to integrate 

essential information from the source sequence. To 

produce the final output for decoder, a time-distributed 

dense layer is applied to the concatenated output. The 

activation function used is softmax [27], indicating that the 

model undergoes training to generate probabilities for each 

element in the target vocabulary. This allows the model to 

provide a probability distribution of possible terms within 

the output sequence. 

3.5.2. LSTM 

It is a distinctive form of RNN, which stands out for its 

capability to manage sequential data effectively by 

overcoming the vanishing gradient problem. Unlike 

traditional RNNs, LSTMs excel at preserving long-range 

dependencies, making them well-matched for tasks 

involving sequences of information, such as summarization 

tasks [25]. 

In the classical architecture of an LSTM [23], three pivotal 

gates play a crucial role: input, forget, and output. These 

gates collaboratively manage the data flow inside the 

memory space. As indicated by 𝑐𝑡−1  and 𝑐𝑡 , the former 

embodies information stored in the previous memory cell, 

while the latter encapsulates the essence of the current 

memory cell. Simultaneously, ℎ𝑡−1  and ht represent the 

outcomes of the preceding and ongoing hidden states, 

where 𝑥𝑡  serves as the input vector. The biases associated 

with these gates are denoted as 𝑏𝑓 for the forget gate, 𝑏𝑖  

for the input gate, 𝑏𝑐  for the cell state, and 𝑏𝑜  for the 

output gate. The operation of bitwise multiplication is 
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symbolized by X, and the addition operation is represented 

by +. Furthermore, the hyperbolic tangent function is 

denoted by tanh, and the sigmoid function is represented 

by 𝜎. 

 

Fig. 4.  LSTM unit architecture 

(1) Forget gate 

The forget gate determines the extent to which the memory 

content (𝑐𝑡−1 ) will flow through the memory channel. It 

uses a sigmoid activation function applied to the sum of 

bias (𝑏𝑓 ) and the weighted sum of 𝑥𝑡 and ℎ𝑡−1 to produce a 

value between 0 and 1, indicating the contribution of the 

previous cell state to be retained. 

𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡−1 + 𝑏𝑓 )      (1) 

(2) Input gate 

The input gate takes charge of assessing the significance of 

the current input and making decisions of, till what extent 

this input must be preserved in the cell state for future 

reference. It calculates the potential memory content ( 𝑐𝑡 ) 

by applying tanh function to sum of the bias (𝑏𝑐 ) and the 

weighted sum of  𝑥𝑡 and 𝑐𝑡−1 . Employing a sigmoid 

activation function, it generates values ranging from 0 to 1 

representing the impact of  𝑥𝑡  and 𝑐𝑡−1  on the current 

memory content (𝑐𝑡 ). 

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖 𝑥𝑡 + 𝑊ℎ𝑖 ℎ𝑡−1 + 𝑏𝑖 )      (2) 

𝑐𝑡 =  (𝑓𝑡 𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 𝑥𝑡 + 𝑊ℎ𝑐 𝑥𝑡−1 +𝑏𝑐 )      

(3) 

(3) Output gate 

The output gate acts as a supervisor, deciding how 

information should travel to the hidden state from the cell 

state to regulate the entire information flow. The sigmoid 

function applied to the sum of bias (𝑏𝑜 ) and the weighted 

sum of  𝑥𝑡   and ℎ𝑡−1  produces output between 0 and 1, 

and the tanh function applied to current cell condition and 

output of sigmoid function produces the present hidden 

state (ℎ𝑡 ). 

𝑜𝑡  = 𝜎 (𝑊𝑥𝑜 𝑥𝑡 +𝑊ℎ𝑜 ℎ𝑡−1 + 𝑏𝑜 )      (4) 

ℎ 𝑡  = 𝑜𝑡tanh(𝑐𝑡 )  (5) 

3.5.3. Bi-LSTM 

Bi-LSTM permits data to flow in both directions, capturing 

both past and future information. Unlike regular LSTM, 

which processes data in a single direction, also it enhances 

the model's ability to retain a full understanding of the 

input [25]. The bidirectional encoder captures 

comprehensive Information that considers what happened 

before and what might happen in the future. So Bi-LSTM 

is utilized in encoder, coupled with a unidirectional LSTM 

in the decoder. This strategic choice, elaborated in the 

preceding information, aims to optimize the model for 

abstractive text summarization. Context vector generated 

by bidirectional encoder is then utilized by the 

unidirectional decoder to generate coherent and 

contextually informed summary. This combination strikes 

a balance between capturing global context and 

maintaining sequential coherence, enhancing the 

summarization process. 

3.6. Attention 

The benefits of using this mechanism in the Seq2Seq 

model are: 

1. Useful to handle variable length inputs and 

outputs. 

2. It focuses on important part input i.e. key 

information of input sequence is maintained. 

3. Helps in reducing redundancy in the generated 

output. 

The proposed system incorporates the Bahdanau Attention 

Mechanism [5]. 

In this model, when an input sequence is passed through 

the encoder, at the last cell of encoder a context vector is 

formed that is acquired from the whole input sequence 

which is forwarded to the decoder at the start as one of the 

inputs. In the Encoder and Decoder framework, encoder 

processes input 𝑥 =  (𝑥1 , 𝑥2 ,....,𝑥𝑇𝑥   ) and forms a 

sequence of vectors into a context  vector 𝑐 =

𝑞 ({ℎ1 , ℎ2 ,....,ℎ 𝑇𝑥  }). Where ℎ𝑡 = 𝑓 (𝑥1 , ℎ𝑡−1 ),  ℎ𝑡  ∈ 

𝑅𝑛   is a hidden state at time 𝑡, current time step's hidden 

state is denoted as ℎ, while hidden states is used to 

formulate the context vector 𝑐. Functions f and q represent 

certain non-linear operations in this context. 𝑇𝑥  is the 

length of the input source [5]. 

The decoder starts all its work with the help of the context 

vector. Even though LSTM can handle long sequences but 

when the input sequences are too long it may happen that 

during the formation of context vector, some of the words 

or sequences are lost, due to this the meaning of the input 

sequence can change and hence the generated target 

sequence is also irrelevant to the input i.e. incorrect output 

is generated to address above issue attention mechanism is 

used. 
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An attention layer is added in the encoder-decoder 

network. It helps the decoder to see the importance of each 

input sequence along with the context vector; this helps in 

preserving each sequence and avoid loss of information. 

Attention adds a bunch of new paths to the decoder from 

the encoder one per input so that each step of the decoder 

can access input value. It tries to get multiple encoded 

vectors from the source input [26]. Attention works as 

follows: 

1. Calculates attention scores (𝑒𝑖𝑗 ) for each position 

𝑗 in the input sequence which depends on the 

current state of decoder  𝑠𝑖   and hidden states 

from the encoder ℎ𝑗 . 

               𝑒𝑖𝑗 = 𝑎(𝑠𝑖 ,ℎ𝑗 )                 (6)    

here 𝑎 is a scoring function that evaluates the 

compatibility among the encoder hidden state and  

decoder state 

2. Softmax function[27] is employed  on  the 

attention scores to get  normalized attention 

weights 𝑎𝑖𝑗 . 

                            𝑎𝑖𝑗  = 
𝑒𝑥𝑝(𝑒𝑖𝑗 )

∑ exp (
𝑇𝑥 
𝑘=1 𝑒𝑖𝑘)

             (7) 

             where 𝑇𝑥   is input sequence length.   

3. The attention weights got from the softmax 

operation are further utilized to find the weighted 

sum of the input words. Weighted sum, often 

named as context vector (𝑐𝑖), is then integrated 

with the current state of the decoder. 

 𝑐𝑖  = ∑ 𝑎𝑖𝑗 .
𝑇𝑥 
𝑗=1 ℎ𝑗             (8) 

 

4. In this way the decoder cell gets access to each 

input information, no important information is 

lost and hence a better target is produced. 

3.7. Evaluation 

For assessing the performance of the model presented in 

this paper, ROUGE [7], [11] is utilized. It is a set of 

metrics primarily used to assess summaries generated by 

machines. It is an intrinsic measure that focuses on 

precision, recall, and F-score. To compute ROUGE scores, 

a summary predicted by a machine is compared against 

human formed summary [22]. The main components of 

ROUGE include: (i) ROUGE-N, assessing the overlap of 

N-grams (e.g., ROUGE-1 for overlap of unigrams, 

ROUGE-2 for overlap of bigrams, etc.), (ii) ROUGE-L, 

focused on the longest common subset, and (iii) ROUGE-

S, utilizing a co-occurrence statistic based on skip-bigrams. 

In this study, the evaluation of summaries and the 

assessment of the model are conducted using ROUGE-1, 

ROUGE-2, and ROUGE-L. ROUGE-N represents an n-

gram recall. N-gram is contiguous sequence of n items  

within a text. [14]. Formula for ROUGE-N: 

𝑅𝑂𝑈𝐺𝐸 − 𝑁

=
𝑁𝑜.  𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑛 − 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑃 & 𝑂

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜.  𝑜𝑓 𝑛 − 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑂
  

where 𝑃 =  𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑢𝑚𝑚𝑎𝑟𝑦 

          𝑂 =  𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑢𝑚𝑚𝑎𝑟𝑦 

4. Results and Discussion 

4.1. Latent dimension analysis 

The latent dimension is the hidden unit’s count or neurons 

within the LSTM layer, influencing the dimensionality of 

the internal representations or memory cells that the LSTM 

layer can learn during training.  

 

Fig. 5.  Latent Dimension Analysis  

Upon analysing ROUGE values across various latent 

dimensions, it was determined that setting the latent 

dimension to 350 produces the most favourable results, 

which is concluded from figure 5. 

4.2. Early stopping 

This study involved training the model with training and 

validation data for 60 epochs (maximum limit) with early 

stopping. Early stopping was implemented by monitoring 

validation loss, ensuring the neural network stopped 

training at the right time to prevent overfitting. Batch size 

is set as 32. sparse categorical cross-entropy loss function 

is utilized to compute training and validation loss and to 

address potential memory issues [21]. 

4.3. Input coverage impact on ROUGE metrics 

Table 2. Comparison of ROUGE values using average 

length of summary and input news text and maximum 

length of text and summary. 

Length 

Coverage 

ROUGE-1 ROUGE-2 ROUGE-L 

Max 24.04 8.43 22.57 

Avg 16.28 4.46 15.09 

 

Table 2 illustrates that the ROUGE metric for maximum 

length surpasses that for average length. It is also observed 

that the model generates better summaries for maximum 
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length. For the "max" type, a fixed length of 30 words for 

text and 15 words for summaries is employed. On the other 

hand, for the "avg" type, a fixed length of 19 words for text 

and 10 words for summaries is set. The model's 

effectiveness is examined while considering both 

maximum length and average length of text and summaries 

in the dataset. When taking into account the maximum 

length, 99% of instances are taken without truncating. 

However, when considering the average length, the 

coverage drops to 58%. In other words, only 58% of 

instances are taken without truncating, while the remaining 

42% require truncation. Our findings suggest that the 

model exhibits more effective performance when evaluated 

based on the maximum length, which covers the maximum 

input data, as opposed to the average length. 

4.4. Comparison of optimizers 

Table 3. Comparison of ROUGE values using Adam 

optimizer and Rmsprop. 

Optimizer es ROUGE-1 ROUGE-2 ROUGE-L 

Adam 4 24.04 8.43 22.57 

Rmsprop 9 24.28 7.86 22.80 

In this study, both Rmsprop [19] and Adam optimizers 

[23] were employed, and Table 3 outlines ROUGE values 

and ‘es’ represents the number of epoch required for 

training model with early stopping for both optimizers. 

Notably, Adam halted training at the 4th epoch, while 

Rmsprop continued until the 9th epoch. Despite a marginal 

difference in rogue scores between the two optimizers, 

with only a single-point variation, it is noteworthy that the 

training duration for the model was twice as long with 

RMSprop compared to Adam. 

4.5. Learning rate analysis 

 

 

Fig. 6.  Learning Rate Analysis  

Figure 6 illustrates the relationship between the learning 

rate and ROUGE-l values. The learning rate holds 

significant importance as one of the key hyperparameters 

that dictate the step size for adjusting a model's weights 

during training, impacting both convergence speed and 

stability. Notably, at the default learning rate value is 0.001 

for the Adam optimizer, we observe high ROUGE values. 

Specifically, Rogue-1 is 24.27, ROUGE-2 is 8.57, and 

ROUGE-l is 23.13. Based on these results, the decision 

was made to stick with the default learning rate, as it 

consistently yields the maximum ROUGE value. 

4.6. Unidirectional and bidirectional LSTM encoders 

Table 4. ROUGE values for unidirectional and 

bidirectional LSTM encoder model 

Encoder type  ROUGE-

1 

ROUGE-

2 

ROUGE-L 

Bi-LSTM  24.04 8.43 22.57 

LSTM 25.64 8.77  24.05 

From table 4, We notice that the Rouge1 and RougeL 

scores of the unidirectional LSTM encoder model are 

slightly higher compared to the Bi-LSTM model. 

However, the Rouge2 score is greater for the model with a 

Bi-LSTM encoder. Summaries generated by model using 

Bi-LSTM are more readable than unidirectional LSTM 

encoder model. 

4.7. Summary generated by our model 

The samples below (Figure 4, Figure 5, Figure 6) display 

the outputs obtained by our model. In these figures, 

"original text" refers to the text from the dataset, "original 

summary" corresponds to the summary present in the 

dataset, "cleaned text" and "cleaned summary" represent 

the text and summary obtained through the data cleaning 

process in the text preprocessing step, and "predicted 

summary" refers to summary produced by proposed model.  

 

Fig. 7.  Comparison of Original and Predicted Summaries: 

Sample 1 [6]  

In Figure 7, it is evident that the predicted summary 

matches the cleaned original summary.  
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Fig. 8.  Comparison of Original and Predicted Summaries: 

Sample 2 [6]  

In Figure 8, the predicted summary is better than original 

summary. Also certain words in the predicted summary are 

not in original text. 

 

Fig. 9.  Comparison of Original and Predicted Summaries: 

Sample 3 [6]  

In Figure 9, the predicted summary is not the same as the 

original, however it is relevant considering the original 

text. 

4.8. Discussion 

Our model demonstrates varying levels of performance in 

summary prediction. It accurately predicts the summary as 

the original in some cases, surpasses the original summary 

in others, and in a few instances, generates irrelevant 

summaries. The model tends to produce more accurate and 

relevant summaries when the input news closely aligns 

with the patterns observed in the training dataset such as 

domain of news like news related to currency fluctuations. 

However, in certain cases, it may produce irrelevant 

output.  

The hardware requirements for this study are as follows:  

1. The minimum RAM requirement for training and testing 

the model is 12 GB, a recommended amount of 32 GB or 

more. 

2. Google Colab's T4 GPU processor is utilized for optimal 

performance. While the CPU can also be used, however it 

necessitates more than twice the time compared to the T4 

GPU when utilized as the runtime. 

5. Conclusion  

In this study, an approach for single-line abstractive 

summarization, specifically for headline generation, is 

proposed. The proposed system uses an encoder-decoder 

architecture which incorporates attention mechanism, 

designed for English news. The usage of Bi-LSTM in the 

encoder produces a more readable summary than 

unidirectional LSTM. Our findings indicate that 

incorporating the attention mechanism, along with Bi-

LSTM encoding and LSTM decoding, results in improved 

summarization outcomes. Based on our experimental 

analysis, a model is configured with an embedding 

dimension of 300, and a latent dimension of 350, and 

employed an Adam optimizer having 0.001 learning rate. 

Additionally, early stopping was implemented to mitigate 

overfitting. The peak length of both the summary and text 

covered approximately 99% of the input. Our model 

achieved its optimal performance with ROUGE-1, 

ROUGE-2, and ROUGE-L scores of 24.27, 8.57, and 

23.13, respectively. The model displays diverse 

performance in summary generation, ranging from 

accurately predicting the original to surpassing it or 

occasionally producing unrelated summaries.  

Certain limitations were recognized in this experiment. An 

essential constraint involves the necessity to predefine the 

text and summary lengths to a fixed number before feeding 

the data within the neural network. Model’s training and 

testing phases demand a considerable time frame and 

hardware resources that exceed the conventional capacities 

of personal computers or laptops.  

In the future, our objective is to assess the model's 

effectiveness across a range of datasets and further 

enhance its capabilities by training it on larger datasets and 

additional datasets for news summarization. In addition, 

future work will explore the potential of extending the 

model to domains beyond news text and headlines, with a 

particular focus on handling multi-sentence 

summarization. Also try extending the model to different 

languages. 
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