

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 842

Sequence-to-Sequence Abstractive Text Summarization Model for

Headline Generation with Attention

Shreya Regundwar1*, Radhika Bhagwat2*, Sakshi Bhosale3, Rajlaxmi Chougale4, Sakshi Abbu5

Submitted: 28/01/2024 Revised: 06/03/2024 Accepted: 14/03/2024

Abstract: Text summarization focuses on creating a brief and concise summary from source text while preserving the main idea and

eliminating unnecessary details. Generating summaries through manual efforts by humans is a tedious, tiresome, and expensive process.

Hence, this study’s objective is to build an automated abstractive text summarizer that can minimize manual efforts and generate concise

summaries swiftly. The aim is to develop a text summarizer model using deep learning to form a single-line abstractive summary

resembling a headline. It also explores the impact of adjusting the model's hyperparameters on the generated summary to achieve better

results. A subset of instances from the Gigaword dataset is utilized to develop the model. The proposed summarizer is a sequence-to-

sequence model with an LSTM-driven encoder-decoder architecture. It incorporates a Bahdanau attention mechanism and utilizes the

Adam optimizer. Based on experimental analysis and the results obtained after adjusting hyperparameters and selecting the optimal

values as final, the proposed architecture attained scores as 24.27, 8.57, and 23.13, for ROUGE-1, ROUGE-2, and ROUGE-L

respectively.

Keywords: Abstractive text summarization, Attention mechanism, Deep learning, Encoder-Decoder architecture, LSTM, Sequence-to-

Sequence model, Single sentence summarization, Text preprocessing techniques.

1. Introduction

In the present scenario, there is abundant textual data, be it

online documents, articles, news, or reviews [1]. These are

often characterized by lengthy text strings, highlighting the

need for effective summarization. Summarization involves

generating a concise version of textual information,

typically encapsulating the essential details from the source

document. Text summarization is categorized into

extractive summarization and abstractive summarization.

In extractive summarization, summaries are formed solely

by selecting and assembling content directly from the

source text. This approach is considered simpler as it

guarantees grammatical accuracy by copying information

directly from the source text [2]. However, extractive

summaries may contain unnecessary details. In contrast,

abstractive summaries are paraphrased versions [3], they

maintain the core notion or context behind the original

text. They are generally more readable, Understandable,

and coherent compared to extractive summaries.

The usage of deep learning concepts in abstractive text

summarization began in 2015 [4], by introducing a model

whose basis was the encoder-decoder architecture. To

produce a single sentence abstractive summary, this work

employed a sequence-to-sequence model (Seq2Seq)

incorporating a stack of three bidirectional Long Short-

Term Memory layers (Bi-LSTM) in an encoder for

processing input text. Additionally, it utilized a single-

layered unidirectional Long Short-Term Memory (LSTM)

within the decoder with the Bahdanau attention mechanism

[5] on the target text. Gigaword dataset [6] formed the

foundation for building the model. Features within the

input data (news) are grasped by the encoder. Then it

produces a context vector that has a definite or constant

length. This vector is further transmitted to the decoder and

utilized to form a summary in accordance with the article.

The evaluation technique is crucial in assessing the

performance of a summarization model. Intrinsic

evaluation involves assessment techniques concentrating

on metrics like F-score, precision, and recall [7]. BLEU

and ROUGE are intrinsic metrics broadly used to assess

machine generated-summary [8]. Mostly, ROUGE is

employed to evaluate machine-generated text summaries

[9], [10], [11], [12]. Thus, in this study, assessment of the

model's effectiveness is conducted with the help of the

ROUGE score, relying on both the target summaries

produced by the model and reference summaries formed

by humans.

2. Literature Review

Extractive [13] and abstractive summarization [14] are

methods for summarizing text. In extractive text

summarization, essential sentences and paragraphs or other

elements from the source document are chosen and

combined to create a more concise version [14].

Abstractive Text Summarization is typically a challenging

1,2,3,4,5 Department of Information Technology, Cummins College of
Engineering for Women, Pune, Maharashtra, India
1ORCID ID: 0009-0005-5674-1320
2ORCID ID: 0000-0001-5127-7980
3ORCID ID: 0009-0001-4532-1321
4ORCID ID: 0009-0000-6639-6237
5ORCID ID: 0009-0004-5204-9196
* Corresponding Author Email:
shreya.regundwar@cumminscollege.in
radhika.bhagwat@cumminscollege.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 843

and time-intensive process, frequently yielding suboptimal

results due to the limitations of computers in

comprehending human language accurately [15].

Researches conducted on abstractive text summarization

are based on various factors such as types of neural

networks employed in models (RNN, LSTM, GRU), the

type of input documents i.e. whether the document is

multiple or single, the type of output (single line or

multiple lines), objectives (query-based, domain-specific,

or generic), and performance metrics [1], [15].

We find that abstractive text summarization have been

significantly impacted due to introduction of neural

Seq2Seq model. Unlike traditional methods, these models

provide a more flexible and expressive way of

summarizing text [12], [16]. Tian Shil et al. [17] have

provided a detailed explanation of the Seq2Seq model. An

encoder-decoder model with recurrent neural networks

(RNNs) is built by Nallapati et al. [12]. LSTM is used to

effectively address the gradient-related issues that are

encountered by RNN [18]. Sangita et al. [19] and

Panagiotis Kouris et al. [20] have utilized Bi-LSTM within

the encoder, further within the decoder unidirectional

LSTM is utilized. Wazery et al. [21] observed optimal

performance when three layers of Bi-LSTM are utilized

within the encoder. The encoder-decoder architecture

having RNN with attention, is introduced in the work by

Bahdanau et al. [5] and has solidified itself as a standard in

abstractive summarization.

For abstractive text summarization, the Gigaword dataset

[12], [21], [22], Amazon Fine Food Reviews [23], [11],

DUC2003, DUC2004 [21], and the CNN/Daily Mail

dataset [2], [24] are among the most frequently utilized

datasets. The Gigaword dataset and Amazon fine food

reviews dataset are utilized when working on single-

sentence summaries. CNN/Daily Mail dataset is taken into

account when working on multiple line summaries.

Table 1. Datasets for abstractive summarization

Dataset

name

Line

coun

t

Text

lengt

h

Summar

y length

Train Test

Gigawor

d

singl

e line

31 15 3.8M 1.9K

CNN/

daily

mail

multi

line

760 55 287K 11K

Amazon

fine food

reviews

singl

e line

30 8 1M 10K

Table 1 presents a summary of the prevalent datasets used

for abstractive text summarization. The table includes

information such as the dataset name, line count or number

of sentences in summaries, text length (max count of

words in text), summary length (max count of words in

summary), and count of data entries in both the training

and testing datasets.

The assessment of the text summarization system is done

with the help of set of metrics known as ROUGE, by

comparing model-generated summaries with manually

generated summaries [2], [12], [19], [21], [24].

This research study introduces a model designed to

perform abstractive summarization of text, focusing on

headline generation or single-sentence summaries within

the news domain. This approach involved the utilization of

Bi-LSTM within the encoder coupled with unidirectional

LSTM within the decoder. The Gigaword dataset [6],

obtained from Hugging Face, formed the foundation for

building, training, and testing the model. Various

hyperparameter adjustments were made to explore the

impact of these hyperparameters on the generated

summaries, to achieve improved results.

3. Method

This section describes the methodology employed in

creating an abstractive text summarizer designed for

producing English headlines from English news content.

Fig. 1. Architecture of abstractive text summarization

system

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 844

The architectural representation in Figure 1 outlines the

workflow used to develop our abstractive text

summarization system. The initial stages involve dataset

and text preprocessing, preparing the input data for an

abstractive text summarization system. This system is

constructed by employing Gigaword dataset for both

training and testing, as well as validation purposes. Trained

model’s parameters are passed to the inference model. The

testing dataset is utilized to evaluate summaries produced

by the model.

3.1. Dataset

In this study, experiments are conducted using the

Gigaword dataset [6]. The dataset contains the following

splits: training, validation, and testing. Each part has short

text and headlines. The training set comprises

approximately 3,803,957 instances, the validation dataset

consists of 189,651 data points, and the test dataset has

1951 instances. To build and conduct experiments with the

model, this study utilized 2,00,000 instances to train the

model, 20,000 for validating, and 1,000 for testing

purposes.

3.2. Dataset preprocessing

During the data preprocessing phase, duplicate rows were

eliminated. Additionally, instances were removed if the

news text length exceeded that of their corresponding

headlines, or if either the news text or headline was

missing.

3.3. Text preprocessing

Text preprocessing [11], [23] involves tasks such as

cleaning data, eliminating ambiguities, and organizing

textual data to prepare it as input for models. Text data is

inherently complex, unstructured and comprises sequences

of words, punctuation, symbols, numbers, contractions,

markup, and formatting elements. Furthermore, certain

components such as punctuation and stop words ('the’,

'such', 'any', 'very', 'am', 'is', etc.) which hold minimal

relevance, especially Within the field of abstractive text

summarization. The following section details various

operations employed in the preprocessing of text data:

3.3.1. Remove formatting

The first step is to eliminate any HTML tags, markup, and

formatting elements present in the text.

3.3.2. Convert to lowercase

Text is converted to lowercase [19] to ensure uniformity in

processing.

3.3.3. Resolving dataset-specific abbreviations

The Gigaword dataset [6] includes abbreviations such as

"fm" for "foreign minister", "dlrs" for "dollars", "pct" for

"percent", "mln" for "million", and "gov" for

"government". These abbreviations are replaced with their

respective full forms during preprocessing.

3.3.4. Map contractions

In the English language, contractions represent shortened

forms of word combinations (e.g., "can't" for "can not,"

"won't" for "will not"). Contraction mapping is performed

to ensure semantic clarity and maintain consistency for

accurate analysis.

3.3.5. Eliminate stop words

Stop words with little semantic value are removed, to focus

on content-carrying words [2].

3.3.6. Eliminate parentheses content

Parentheses content from the source text consists primarily

of non-essential details, so it is removed.

3.3.7. Eliminate punctuations, special characters,

double quotes, 's

Punctuation, special characters, quotes, and possessive

forms ('s) lack substantial semantic meaning and may

introduce unwanted noise to the data; hence, they are

eliminated.

Additionally, in this paper's dataset, infrequent words had

already been replaced with "UNK," and digits were

substituted with "#". Instances of the word "unk" were

removed from the data as they were considered

nonessential. Furthermore, punctuation and special

characters, such as "#," were eliminated using regular

expressions.

3.4. Representing data

Deep learning models do not inherently comprehend words

directly. Instead of using pre-trained embeddings for word

representation, the approach here is to train embeddings

from scratch when doing the training process of the model

[2]. To accomplish this, a Keras tokenizer is employed to

convert words into integers. These integers, serving as

mappings for words, are then fed into the model.

Subsequently, an embedding layer transforms these

integers into vectors. To train the abstraction text

summarization model efficiently, we set a maximum

length for both the news text and summary and performed

padding. If the input sequence falls short of the maximum

length, we supplement it by adding 0 integers until it

attains the prescribed length. Conversely, if the input

sequence exceeds the maximum length, it is truncated.

This approach ensures uniform processing and handling of

variable-length input sequences [3]. Notably, the

embedding layer’s parameters are configured as trainable,

allowing the vectors representing words to be updated and

refined throughout the training process. This paper adopts

a word embedding dimensionality of 300 [19].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 845

3.5. Model Architecture

3.5.1. Seq2Seq model

Seq2Seq model [12], [23] transforms the input sequence

within the neural network of sequences consisting of

letters, words, and phrases. This work aims to develop a

deep learning system to produce abstractive summaries

using encoder and decoder networks. The encoder

incorporates a three-layered structure of

Bi-LSTM, however the decoder consist one layer of

unidirectional LSTM, to capture related information for

quality improvement of generated summary. Output of the

encoder and decoder are inputted into an attention layer (in

Figure 2). Using a concatenation layer [18], outputs of the

attention layer and decoder are combined and it produces

the final target sequence.

Fig. 2. Encoder-Decoder model

The news text tokens are sequentially inputted into the

encoder and generate cell and hidden states. At every time

unit (denoted by t in Figure 3), the decoder takes the

previous word’s word embeddings as input and maintains

its decoder state. The attention distribution works as a

probability distribution for the input words, guiding the

decoder on what to concentrate on to generate subsequent

words [16]. The vocabulary has been expanded to include

new special tokens such as "EOS" and "SOS" [19]. (EOS

and SOS stands for end of a sequence and start of a

sequence, respectively.) The encoder processes an input

text, denoted as 𝑥 = (𝑥1 , 𝑥2 ,....,𝑥𝑗), and converts it in the

hidden states ℎ = (ℎ1 , ℎ2 ,....,ℎ𝑡). Meanwhile, these

hidden states are utilized by decoder to produce a summary

𝑦 = (𝑦1 , 𝑦2 ,....,𝑦𝑡).

Fig. 3. Basic Seq2Seq Model

In this model, three Bi-LSTM layers are employed

consecutively. Each layer processes the sequence of input

in both directions (forward and reverse), generating

sequences of hidden states for every time interval. The

final layer's hidden and cell states from both directions are

combined to create a context vector representing learned

knowledge from the entire input data. This context vector

serves as the base information for decoder. The decoder

uses LSTM layer to generate sequences of outputs and

states. Considering both encoder and decoder outputs,

attention scores are calculated, which allows the system to

concentrate on various segments of input, while producing

each step of the output. The output from attention is then

combined with the decoder’s LSTM output to integrate

essential information from the source sequence. To

produce the final output for decoder, a time-distributed

dense layer is applied to the concatenated output. The

activation function used is softmax [27], indicating that the

model undergoes training to generate probabilities for each

element in the target vocabulary. This allows the model to

provide a probability distribution of possible terms within

the output sequence.

3.5.2. LSTM

It is a distinctive form of RNN, which stands out for its

capability to manage sequential data effectively by

overcoming the vanishing gradient problem. Unlike

traditional RNNs, LSTMs excel at preserving long-range

dependencies, making them well-matched for tasks

involving sequences of information, such as summarization

tasks [25].

In the classical architecture of an LSTM [23], three pivotal

gates play a crucial role: input, forget, and output. These

gates collaboratively manage the data flow inside the

memory space. As indicated by 𝑐𝑡−1 and 𝑐𝑡 , the former

embodies information stored in the previous memory cell,

while the latter encapsulates the essence of the current

memory cell. Simultaneously, ℎ𝑡−1 and ht represent the

outcomes of the preceding and ongoing hidden states,

where 𝑥𝑡 serves as the input vector. The biases associated

with these gates are denoted as 𝑏𝑓 for the forget gate, 𝑏𝑖

for the input gate, 𝑏𝑐 for the cell state, and 𝑏𝑜 for the

output gate. The operation of bitwise multiplication is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 846

symbolized by X, and the addition operation is represented

by +. Furthermore, the hyperbolic tangent function is

denoted by tanh, and the sigmoid function is represented

by 𝜎.

Fig. 4. LSTM unit architecture

(1) Forget gate

The forget gate determines the extent to which the memory

content (𝑐𝑡−1) will flow through the memory channel. It

uses a sigmoid activation function applied to the sum of

bias (𝑏𝑓) and the weighted sum of 𝑥𝑡 and ℎ𝑡−1 to produce a

value between 0 and 1, indicating the contribution of the

previous cell state to be retained.

𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 𝑥𝑡 + 𝑊ℎ𝑓 ℎ𝑡−1 + 𝑏𝑓) (1)

(2) Input gate

The input gate takes charge of assessing the significance of

the current input and making decisions of, till what extent

this input must be preserved in the cell state for future

reference. It calculates the potential memory content (𝑐𝑡)

by applying tanh function to sum of the bias (𝑏𝑐) and the

weighted sum of 𝑥𝑡 and 𝑐𝑡−1 . Employing a sigmoid

activation function, it generates values ranging from 0 to 1

representing the impact of 𝑥𝑡 and 𝑐𝑡−1 on the current

memory content (𝑐𝑡).

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖 𝑥𝑡 + 𝑊ℎ𝑖 ℎ𝑡−1 + 𝑏𝑖) (2)

𝑐𝑡 = (𝑓𝑡 𝑐𝑡−1 + 𝑖𝑡 𝑡𝑎𝑛ℎ(𝑊𝑥𝑐 𝑥𝑡 + 𝑊ℎ𝑐 𝑥𝑡−1 +𝑏𝑐)

(3)

(3) Output gate

The output gate acts as a supervisor, deciding how

information should travel to the hidden state from the cell

state to regulate the entire information flow. The sigmoid

function applied to the sum of bias (𝑏𝑜) and the weighted

sum of 𝑥𝑡 and ℎ𝑡−1 produces output between 0 and 1,

and the tanh function applied to current cell condition and

output of sigmoid function produces the present hidden

state (ℎ𝑡).

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 𝑥𝑡 +𝑊ℎ𝑜 ℎ𝑡−1 + 𝑏𝑜) (4)

ℎ 𝑡 = 𝑜𝑡tanh(𝑐𝑡) (5)

3.5.3. Bi-LSTM

Bi-LSTM permits data to flow in both directions, capturing

both past and future information. Unlike regular LSTM,

which processes data in a single direction, also it enhances

the model's ability to retain a full understanding of the

input [25]. The bidirectional encoder captures

comprehensive Information that considers what happened

before and what might happen in the future. So Bi-LSTM

is utilized in encoder, coupled with a unidirectional LSTM

in the decoder. This strategic choice, elaborated in the

preceding information, aims to optimize the model for

abstractive text summarization. Context vector generated

by bidirectional encoder is then utilized by the

unidirectional decoder to generate coherent and

contextually informed summary. This combination strikes

a balance between capturing global context and

maintaining sequential coherence, enhancing the

summarization process.

3.6. Attention

The benefits of using this mechanism in the Seq2Seq

model are:

1. Useful to handle variable length inputs and

outputs.

2. It focuses on important part input i.e. key

information of input sequence is maintained.

3. Helps in reducing redundancy in the generated

output.

The proposed system incorporates the Bahdanau Attention

Mechanism [5].

In this model, when an input sequence is passed through

the encoder, at the last cell of encoder a context vector is

formed that is acquired from the whole input sequence

which is forwarded to the decoder at the start as one of the

inputs. In the Encoder and Decoder framework, encoder

processes input 𝑥 = (𝑥1 , 𝑥2 ,....,𝑥𝑇𝑥) and forms a

sequence of vectors into a context vector 𝑐 =

𝑞 ({ℎ1 , ℎ2 ,....,ℎ 𝑇𝑥 }). Where ℎ𝑡 = 𝑓 (𝑥1 , ℎ𝑡−1), ℎ𝑡 ∈

𝑅𝑛 is a hidden state at time 𝑡, current time step's hidden

state is denoted as ℎ, while hidden states is used to

formulate the context vector 𝑐. Functions f and q represent

certain non-linear operations in this context. 𝑇𝑥 is the

length of the input source [5].

The decoder starts all its work with the help of the context

vector. Even though LSTM can handle long sequences but

when the input sequences are too long it may happen that

during the formation of context vector, some of the words

or sequences are lost, due to this the meaning of the input

sequence can change and hence the generated target

sequence is also irrelevant to the input i.e. incorrect output

is generated to address above issue attention mechanism is

used.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 847

An attention layer is added in the encoder-decoder

network. It helps the decoder to see the importance of each

input sequence along with the context vector; this helps in

preserving each sequence and avoid loss of information.

Attention adds a bunch of new paths to the decoder from

the encoder one per input so that each step of the decoder

can access input value. It tries to get multiple encoded

vectors from the source input [26]. Attention works as

follows:

1. Calculates attention scores (𝑒𝑖𝑗) for each position

𝑗 in the input sequence which depends on the

current state of decoder 𝑠𝑖 and hidden states

from the encoder ℎ𝑗 .

 𝑒𝑖𝑗 = 𝑎(𝑠𝑖 ,ℎ𝑗) (6)

here 𝑎 is a scoring function that evaluates the

compatibility among the encoder hidden state and

decoder state

2. Softmax function[27] is employed on the

attention scores to get normalized attention

weights 𝑎𝑖𝑗 .

 𝑎𝑖𝑗 =
𝑒𝑥𝑝(𝑒𝑖𝑗)

∑ exp (
𝑇𝑥
𝑘=1 𝑒𝑖𝑘)

 (7)

 where 𝑇𝑥 is input sequence length.

3. The attention weights got from the softmax

operation are further utilized to find the weighted

sum of the input words. Weighted sum, often

named as context vector (𝑐𝑖), is then integrated

with the current state of the decoder.

 𝑐𝑖 = ∑ 𝑎𝑖𝑗 .
𝑇𝑥
𝑗=1 ℎ𝑗 (8)

4. In this way the decoder cell gets access to each

input information, no important information is

lost and hence a better target is produced.

3.7. Evaluation

For assessing the performance of the model presented in

this paper, ROUGE [7], [11] is utilized. It is a set of

metrics primarily used to assess summaries generated by

machines. It is an intrinsic measure that focuses on

precision, recall, and F-score. To compute ROUGE scores,

a summary predicted by a machine is compared against

human formed summary [22]. The main components of

ROUGE include: (i) ROUGE-N, assessing the overlap of

N-grams (e.g., ROUGE-1 for overlap of unigrams,

ROUGE-2 for overlap of bigrams, etc.), (ii) ROUGE-L,

focused on the longest common subset, and (iii) ROUGE-

S, utilizing a co-occurrence statistic based on skip-bigrams.

In this study, the evaluation of summaries and the

assessment of the model are conducted using ROUGE-1,

ROUGE-2, and ROUGE-L. ROUGE-N represents an n-

gram recall. N-gram is contiguous sequence of n items

within a text. [14]. Formula for ROUGE-N:

𝑅𝑂𝑈𝐺𝐸 − 𝑁

=
𝑁𝑜. 𝑜𝑓 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑛 − 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑃 & 𝑂

𝑇𝑜𝑡𝑎𝑙 𝑁𝑜. 𝑜𝑓 𝑛 − 𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑂

where 𝑃 = 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑆𝑢𝑚𝑚𝑎𝑟𝑦

 𝑂 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑆𝑢𝑚𝑚𝑎𝑟𝑦

4. Results and Discussion

4.1. Latent dimension analysis

The latent dimension is the hidden unit’s count or neurons

within the LSTM layer, influencing the dimensionality of

the internal representations or memory cells that the LSTM

layer can learn during training.

Fig. 5. Latent Dimension Analysis

Upon analysing ROUGE values across various latent

dimensions, it was determined that setting the latent

dimension to 350 produces the most favourable results,

which is concluded from figure 5.

4.2. Early stopping

This study involved training the model with training and

validation data for 60 epochs (maximum limit) with early

stopping. Early stopping was implemented by monitoring

validation loss, ensuring the neural network stopped

training at the right time to prevent overfitting. Batch size

is set as 32. sparse categorical cross-entropy loss function

is utilized to compute training and validation loss and to

address potential memory issues [21].

4.3. Input coverage impact on ROUGE metrics

Table 2. Comparison of ROUGE values using average

length of summary and input news text and maximum

length of text and summary.

Length

Coverage

ROUGE-1 ROUGE-2 ROUGE-L

Max 24.04 8.43 22.57

Avg 16.28 4.46 15.09

Table 2 illustrates that the ROUGE metric for maximum

length surpasses that for average length. It is also observed

that the model generates better summaries for maximum

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 848

length. For the "max" type, a fixed length of 30 words for

text and 15 words for summaries is employed. On the other

hand, for the "avg" type, a fixed length of 19 words for text

and 10 words for summaries is set. The model's

effectiveness is examined while considering both

maximum length and average length of text and summaries

in the dataset. When taking into account the maximum

length, 99% of instances are taken without truncating.

However, when considering the average length, the

coverage drops to 58%. In other words, only 58% of

instances are taken without truncating, while the remaining

42% require truncation. Our findings suggest that the

model exhibits more effective performance when evaluated

based on the maximum length, which covers the maximum

input data, as opposed to the average length.

4.4. Comparison of optimizers

Table 3. Comparison of ROUGE values using Adam

optimizer and Rmsprop.

Optimizer es ROUGE-1 ROUGE-2 ROUGE-L

Adam 4 24.04 8.43 22.57

Rmsprop 9 24.28 7.86 22.80

In this study, both Rmsprop [19] and Adam optimizers

[23] were employed, and Table 3 outlines ROUGE values

and ‘es’ represents the number of epoch required for

training model with early stopping for both optimizers.

Notably, Adam halted training at the 4th epoch, while

Rmsprop continued until the 9th epoch. Despite a marginal

difference in rogue scores between the two optimizers,

with only a single-point variation, it is noteworthy that the

training duration for the model was twice as long with

RMSprop compared to Adam.

4.5. Learning rate analysis

Fig. 6. Learning Rate Analysis

Figure 6 illustrates the relationship between the learning

rate and ROUGE-l values. The learning rate holds

significant importance as one of the key hyperparameters

that dictate the step size for adjusting a model's weights

during training, impacting both convergence speed and

stability. Notably, at the default learning rate value is 0.001

for the Adam optimizer, we observe high ROUGE values.

Specifically, Rogue-1 is 24.27, ROUGE-2 is 8.57, and

ROUGE-l is 23.13. Based on these results, the decision

was made to stick with the default learning rate, as it

consistently yields the maximum ROUGE value.

4.6. Unidirectional and bidirectional LSTM encoders

Table 4. ROUGE values for unidirectional and

bidirectional LSTM encoder model

Encoder type ROUGE-

1

ROUGE-

2

ROUGE-L

Bi-LSTM 24.04 8.43 22.57

LSTM 25.64 8.77 24.05

From table 4, We notice that the Rouge1 and RougeL

scores of the unidirectional LSTM encoder model are

slightly higher compared to the Bi-LSTM model.

However, the Rouge2 score is greater for the model with a

Bi-LSTM encoder. Summaries generated by model using

Bi-LSTM are more readable than unidirectional LSTM

encoder model.

4.7. Summary generated by our model

The samples below (Figure 4, Figure 5, Figure 6) display

the outputs obtained by our model. In these figures,

"original text" refers to the text from the dataset, "original

summary" corresponds to the summary present in the

dataset, "cleaned text" and "cleaned summary" represent

the text and summary obtained through the data cleaning

process in the text preprocessing step, and "predicted

summary" refers to summary produced by proposed model.

Fig. 7. Comparison of Original and Predicted Summaries:

Sample 1 [6]

In Figure 7, it is evident that the predicted summary

matches the cleaned original summary.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 849

Fig. 8. Comparison of Original and Predicted Summaries:

Sample 2 [6]

In Figure 8, the predicted summary is better than original

summary. Also certain words in the predicted summary are

not in original text.

Fig. 9. Comparison of Original and Predicted Summaries:

Sample 3 [6]

In Figure 9, the predicted summary is not the same as the

original, however it is relevant considering the original

text.

4.8. Discussion

Our model demonstrates varying levels of performance in

summary prediction. It accurately predicts the summary as

the original in some cases, surpasses the original summary

in others, and in a few instances, generates irrelevant

summaries. The model tends to produce more accurate and

relevant summaries when the input news closely aligns

with the patterns observed in the training dataset such as

domain of news like news related to currency fluctuations.

However, in certain cases, it may produce irrelevant

output.

The hardware requirements for this study are as follows:

1. The minimum RAM requirement for training and testing

the model is 12 GB, a recommended amount of 32 GB or

more.

2. Google Colab's T4 GPU processor is utilized for optimal

performance. While the CPU can also be used, however it

necessitates more than twice the time compared to the T4

GPU when utilized as the runtime.

5. Conclusion

In this study, an approach for single-line abstractive

summarization, specifically for headline generation, is

proposed. The proposed system uses an encoder-decoder

architecture which incorporates attention mechanism,

designed for English news. The usage of Bi-LSTM in the

encoder produces a more readable summary than

unidirectional LSTM. Our findings indicate that

incorporating the attention mechanism, along with Bi-

LSTM encoding and LSTM decoding, results in improved

summarization outcomes. Based on our experimental

analysis, a model is configured with an embedding

dimension of 300, and a latent dimension of 350, and

employed an Adam optimizer having 0.001 learning rate.

Additionally, early stopping was implemented to mitigate

overfitting. The peak length of both the summary and text

covered approximately 99% of the input. Our model

achieved its optimal performance with ROUGE-1,

ROUGE-2, and ROUGE-L scores of 24.27, 8.57, and

23.13, respectively. The model displays diverse

performance in summary generation, ranging from

accurately predicting the original to surpassing it or

occasionally producing unrelated summaries.

Certain limitations were recognized in this experiment. An

essential constraint involves the necessity to predefine the

text and summary lengths to a fixed number before feeding

the data within the neural network. Model’s training and

testing phases demand a considerable time frame and

hardware resources that exceed the conventional capacities

of personal computers or laptops.

In the future, our objective is to assess the model's

effectiveness across a range of datasets and further

enhance its capabilities by training it on larger datasets and

additional datasets for news summarization. In addition,

future work will explore the potential of extending the

model to domains beyond news text and headlines, with a

particular focus on handling multi-sentence

summarization. Also try extending the model to different

languages.

Conflicts of interest

The authors have no conflicts of interest to declare.

References

[1] Suleiman D, Awajan A. Deep learning based

abstractive text summarization: approaches, datasets,

evaluation measures, and challenges. Mathematical

problems in engineering. 2020 Aug 24;2020:1-29.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 850

[2] Dilawari A, Khan MU, Saleem S, Shaikh FS. Neural

Attention Model for Abstractive Text Summarization

Using Linguistic Feature Space. IEEE Access. 2023

Feb 27;11:23557-64.

[3] Jobson E, Gutiérrez A. Abstractive text summarization

using attentive sequence-to-sequence rnns.

[4] Rush AM, Chopra S, Weston J. A neural attention

model for abstractive sentence summarization. arXiv

preprint arXiv:1509.00685. 2015 Sep 2.

[5] Bahdanau D, Cho K, Bengio Y. Neural machine

translation by jointly learning to align and translate.

arXiv preprint arXiv:1409.0473. 2014 Sep 1.

[6] Parker, Robert, et al. English Gigaword Fifth Edition

LDC2011T07. Web Download. Philadelphia:

Linguistic Data Consortium, 2011.

[7] Resnik P, Niv M, Nossal M, Schnitzer G, Stoner J,

Kapit A, Toren R. Using intrinsic and extrinsic metrics

to evaluate accuracy and facilitation in computer-

assisted coding. InPerspectives in health information

management computer assisted coding conference

proceedings 2006 Aug (pp. 2006-2006).

[8] Liu F, Liu Y. Exploring correlation between ROUGE

and human evaluation on meeting summaries. IEEE

Transactions on Audio, Speech, and Language

Processing. 2009 Jun 10;18(1):187-96.

[9] Jiang J, Zhang H, Dai C, Zhao Q, Feng H, Ji Z,

Ganchev I. Enhancements of attention-based

bidirectional lstm for hybrid automatic text

summarization. IEEE Access. 2021 Sep 3;9:123660-

71.

[10] Li Z, Peng Z, Tang S, Zhang C, Ma H. Text

summarization method based on double attention

pointer network. IEEE Access. 2020 Jan 10;8:11279-

88.

[11] Hanunggul PM, Suyanto S. The impact of local

attention in lstm for abstractive text summarization.

In2019 International Seminar on Research of

Information Technology and Intelligent Systems

(ISRITI) 2019 Dec 5 (pp. 54-57). IEEE.

[12] Nallapati R, Zhou B, Gulcehre C, Xiang B.

Abstractive text summarization using sequence-to-

sequence rnns and beyond. arXiv preprint

arXiv:1602.06023. 2016 Feb 19.

[13] Wong KF, Wu M, Li W. Extractive summarization

using supervised and semi-supervised learning.

InProceedings of the 22nd international conference on

computational linguistics (Coling 2008) 2008 Aug

(pp. 985-992).

[14] Moratanch N, Chitrakala S. A survey on extractive

text summarization. In2017 international conference

on computer, communication and signal processing

(ICCCSP) 2017 Jan 10 (pp. 1-6). IEEE.

[15] Mridha MF, Lima AA, Nur K, Das SC, Hasan M,

Kabir MM. A survey of automatic text summarization:

Progress, process and challenges. IEEE Access. 2021

Nov 22;9:156043-70.

[16] See A, Liu PJ, Manning CD. Get to the point:

Summarization with pointer-generator networks.

arXiv preprint arXiv:1704.04368. 2017 Apr 14.

[17] Shi T, Keneshloo Y, Ramakrishnan N, Reddy CK.

Neural abstractive text summarization with sequence-

to-sequence models. ACM Transactions on Data

Science. 2021 Jan 3;2(1):1-37.

[18] Sakhare DY. A Sequence-to-Sequence Text

Summarization Using Long Short-Term Memory

Based Neural Approach. International Journal of

Intelligent Engineering & Systems. 2023 Mar 1;16(2).

[19] Singh S, Singh JP, Deepak A. Deep Learning based

Abstractive Summarization for English Language.

InWorking Notes of FIRE 2022-Forum for

Information Retrieval Evaluation, Kolkata, India 2022

Dec 9.

[20] Kouris P, Alexandridis G, Stafylopatis A. Abstractive

text summarization: Enhancing sequence-to-sequence

models using word sense disambiguation and semantic

content generalization. Computational Linguistics.

2021 Dec 23;47(4):813-59.

[21] Wazery YM, Saleh ME, Alharbi A, Ali AA.

Abstractive Arabic text summarization based on deep

learning. Computational Intelligence and

Neuroscience. 2022 Jan 11;2022.

[22] Siddiqui T, Shamsi JA. Generating abstractive

summaries using sequence to sequence attention

model. In2018 International Conference on Frontiers

of Information Technology (FIT) 2018 Dec 17 (pp.

212-217). IEEE.

[23] Masum AK, Abujar S, Talukder MA, Rabby AS,

Hossain SA. Abstractive method of text

summarization with sequence to sequence RNNs.

In2019 10th international conference on computing,

communication and networking technologies

(ICCCNT) 2019 Jul 6 (pp. 1-5). IEEE.

[24] Rahman MM, Siddiqui FH. An optimized abstractive

text summarization model using peephole

convolutional LSTM. Symmetry. 2019 Oct

14;11(10):1290.

[25] Anvitha Aravinda, Gururaja H S, Padmanabha J,

Unique Combinations of LSTM for Text

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 842–851 | 851

Summarization, International Journal of Engineering

Research & Technology (IJERT) ICEI – 2022

(Volume 10 – Issue 11)

[26] Sanjabi N. Abstractive text summarization with

attention-based mechanism (Master's thesis,

Universitat Politècnica de Catalunya).

[27] Huang L, Wu H, Gao Q, Liu G. Attention Localness in

Shared Encoder-Decoder Model For Text

Summarization. InICASSP 2023-2023 IEEE

International Conference on Acoustics, Speech and

Signal Processing (ICASSP) 2023 Jun 4 (pp. 1-5).

IEEE.

[28] Parker, Robert, et al. English Gigaword Fifth Edition

LDC2011T07. Web Download. Philadelphia:

Linguistic Data Consortium, 2011.

