

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 858

Enhancing Big Data Retrieval: A Comparative Analysis of Standard and

Three-Level Indexing Techniques Using Dictionary Words Dataset

Tara Prakash Gowdar1, Dr. Paras Nath Singh2

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: Utilizing a large dataset of dictionary words, this study examines the way three-level indexing approaches perform when

compared to traditional indexing techniques for improving big data retrieval. The research is concerned with assessing the retrieval

effectiveness, efficiency, and scalability of these indexing systems in the context of managing huge datasets. The dictionary terms dataset

will be subjected to standard indexing and three-level indexing as part of the experimental framework, and the retrieval accuracy and

efficiency metrics will be subjected to a thorough comparison study. Particularly in the context of linguistic datasets, the findings provide

helpful information on optimizing big data retrieval strategies. This study emphasises the need of sophisticated indexing techniques for

organizing and gleaning useful data from huge databases.

Keywords- Big Data Retrieval, Indexing Techniques, Three-Level Indexing, Standard Indexing, Comparative Analysis, Dataset,

Dictionary Words, Retrieval Performance, Efficiency, Scalability, Information Extraction, Linguistic Datasets.

1. Introduction

In the context of the English language, word indexing,

and search are essential because they make it possible to

retrieve, analyse, and understand content quickly. The

ability to index and search words is essential for people,

corporations, and researchers alike in a world where

there is an abundance of textual data. Steps in the big

data indexing are shown below. Word indexing primarily

enables the organised storage and classification of words.

An index is made by giving each word a special number

or address, serving as a guide for finding terms within a

corpus of text. This indexing procedure gives order to the

otherwise disorganised world of language, enabling rapid

information access when required. It doesn't matter if it's

a book, a website, or an entire database—indexing makes

sure that words are arranged logically and methodically.

Furthermore, efficient search operations are made

possible via word indexing. Users can enter keywords or

phrases to find relevant information from huge

collections of documents or web pages with the aid of

search engines and their algorithms. This talent is

especially useful for academic study since it allows

students to uncover pertinent articles, sources, and

references more quickly, which speeds up their

understanding of difficult subjects. People can use search

engines to discover new ideas, explore different topics of

interest, and find solutions to questions in their daily

lives. Word indexing assists with information access but

also aids in the study and comprehension of textual

material. In a text corpus, when we index words, we will

be able to investigate the frequency, patterns, and

relationships between keywords. Some applications of

this skill are in linguistics, computational linguistics,

natural language processing, and information retrieval.

Acquiring insights into language usage, tracking trends,

performing sentiment analysis, and constructing

advanced language models are useful for researchers. For

improving language understanding, word indexing, and

search is critical. Individuals can quickly search

unknown terms or concepts utilising dictionaries, online

resources, or digital platforms that provide fast

definitions and explanations. This ability to quickly seek

the meaning and context of words greatly benefits

language learners, students, and professionals,

encouraging good communication, writing, and reading

skills.

1Research Scholar, CMRIT, Bangalore, Karnataka, India1
2Professor, CMRIT, Bangalore, Karnataka, India2.

tara.enner@gmail.com, PNSingh2810@gmail.com

mailto:tara.enner@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 859

 Fig 1: Big data indexing technique.

For exploring and understanding the English language

word indexing and searching are important instruments.

Effective information retrieval, knowledge acquisition,

and language comprehension can be done as indexing &

search give structure, accessibility, and analytical

capabilities. The value of word indexing and search in

our digital age only grows, as the volume of written

content grows drastically, allowing us to make the most

of the vast amount of information at our fingertips. It is

possible to investigate the frequency, patterns, and

relationships between keywords in a text corpus if

indexing can be applied. A wide range of applications in

domains such as linguistics, computational linguistics,

natural language processing, and information retrieval

are applications of this analytical power. It enables

academics to learn more about how language is used,

follow trends, carry out sentiment analysis, and create

sophisticated language models. Additionally, word

indexing, and search is essential for improving language

understanding. People can quickly seek up words or

ideas using dictionaries, internet databases, or other

digital tools that offer rapid definitions and explanations.

Language learners, students, and professionals greatly

benefit from this ability to quickly seek for the meaning

and context of words, which promotes good writing,

reading, and communication skills. For navigating and

comprehending the English language, word indexing,

and search are crucial tools. They offer organisation,

accessibility, and analytical skills that support effective

knowledge acquisition, language understanding, and

information retrieval. Word indexing and search are more

important in our digital age as the amount of textual data

keeps increasing exponentially and allows us to fully

utilise the abundance of information at our disposal.

Even though the word indexing, and search algorithms

used today are efficient, there are some issues that

needs to be resolved. First off, these algorithms

frequently require sorted strings to produce a speedier

search result, which adds another level of temporal

complexity. Unfortunately, the algorithms lack the

capacity to extrapolate data or make educated judgments,

which would improve their effectiveness. Furthermore, it

is difficult to do speedier search operations since terms in

the English lexicon lack distinctive numbers or

identifiers. The lack of a consistent system for indexing

new words makes search results less accurate and slower

as more words are introduced to the language. The way

in which homophones and synonyms are handled by the

current word indexing and search algorithms is another

problem. While synonyms have similar meanings,

homophones are words with the same spelling but

different pronunciations. Due to the algorithms' frequent

inability to discern between these changes, search results

are frequently unclear. For instance, depending on the

context, a search for the word "bank" can turn up

information about banks of rivers or financial

institutions. The accuracy and relevancy of search results

would increase if the algorithms were enhanced to take

contextual clues and semantic linkages into account.

Another difficulty is the absence of support for

morphological differences. English words can change

morphologically in several ways, including verb

conjugation, pluralization, and distinct tenses. However,

the current algorithms frequently regard these variants as

separate. The current algorithms, however, frequently

regard these variations as different entities, necessitating

separate searches for each type. The user experience is

hampered by this redundancy in addition to slowing

down the search process. By identifying and

renormalizing these morphological changes, stemming or

lemmatization approaches would enable more effective

searches. Accurate word indexing and search are also

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 860

significantly hampered by the problem of linguistic

ambiguity. The algorithms struggle to accurately grasp

the nuances and various meanings of the English

language. Multiple-meaning words, or polysemous

words, can be confusing and produce inaccurate search

results. Contextual analysis and semantic disambiguation

techniques must be incorporated into the algorithms to

better comprehend the intended meaning behind the

words and offer more relevant results.

2. Methodology

In this part, we outline the technique used to analyse the

effectiveness of four distinct indexing systems—B-tree,

Inverted Index, Hashing, and Trie—when used in

conjunction with the word-searching algorithm that is

provided. The goal is to examine and assess how well

each indexing approach performs in terms of search

process duration, time complexity, and space complexity.

a) Data Collection and Preprocessing

1) Data Source: The Reuters corpus, a well-used dataset

containing a selection of news stories, is utilised as the

data source for assessing the indexing methodologies.

Using the Natural Language Toolkit (NLTK) library, one

can access the corpus.

2) Algorithmic Combination: Combination of the

supplied algorithm with each of the four indexing

systems—B-tree, Inverted Index, Hashing, and Trie—as

described in Section 1. The preprocessing stages must be

changed as part of this integration to create the

appropriate data structures for indexing.

b) Implementation and Evaluation

1)B-tree indexing: By combining the technique with a B-

tree data structure, words can be stored and retrieved

quickly. The B-Tree Node class, which is defined in the

code, is used to build the B-tree. Throughout the search

process, time duration, time complexity, and space

difficulty are noted.

2)The inverted index is created by mapping each term to

where it appears in the documents. To create the inverted

index, the preprocessing phase is modified. The word is

looked up during the search process using the inverted

index. Performance indicators are gathered, including

measurements for complexity and time length.

3) Hashing: Words are mapped to specified indices in an

array-like data structure via hashing. To function with the

hash-based indexing system, the algorithm is modified.

The search procedure entails looking up the target term

in the hash table. Measurements of complexity and

execution time are kept.

4) Indexing Trie: To store and look up words quickly, a

Trie data structure is created. The Trie is populated by

adapting the preprocessing stage. Finding the target word

requires searching through the Trie. Measurements are

made of duration, intricacy, and space.

c) Performance Comparison

1) Comparison of search times: The amount of time it

took for each indexing method to find the specified term

was noted. The time module is used to calculate the

execution time in milliseconds.

2) Time Complexity Analysis: Each technique's

theoretical time complexity is covered. While Inverted

Index and Hashing offer constant-time lookup with

varying overheads, B-tree and Trie have logarithmic

search time complexity.

3) Analysis of Space Complexity: Each indexing

system's space complexity is covered. While hashing and

Trie include space for tree structures and hash tables,

respectively, B-tree and Inverted Index need additional

space for data storage.

d) Experimental Setup

Hardware configuration and software Environment:

OS Name: Microsoft Windows 11 Pro

Programming language: Python 3.8

Libraries & framework used: NLTK 3.5, sorted

containers 2.3.

e) Data Collection and Analysis

Data Points: From the Reuters corpus, a representative

sample of search queries is chosen for analysis.

Execution and Metrics: For each query, the four indexing

strategies are used to carry out the search operations. For

analysis, the execution time and resource usage are

logged.

Results Interpretation: For each indexing strategy, the

results are graphically displayed and described in terms

of time duration, time complexity, and space complexity.

f) Ethical Considerations

Data Usage: The Reuters corpus is a publicly available

dataset, and its usage adheres to ethical data usage

guidelines.

Code Implementation: The code implementation for each

indexing technique respects software licensing and

copyright considerations.

The following sections of the research paper will delve

into the results and discussion of the performance

comparison, drawing conclusions on the effectiveness of

each indexing technique in the context of the provided

algorithm and outlining potential implications and future

research directions.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 861

3. Methodology for Data Collection and

Corpus

The English language corpus offered by the Natural

Language Toolkit (NLTK) dataset is used to test the

methodology. The English language corpus offers a

broad range of English texts, including novels, essays,

and web content, making it appropriate for a variety of

language analysis applications. The corpus includes a

sizable and varied collection of English texts that reflect

various tenses, genres, and subjects. It is appropriate for

analysing the qualities and traits of English words since

it offers a complete and representative sample of the

English language.

3.2 Methodology for Indexing and Search

Algorithms:

General algorithm for search:

1) Build the indexing technique 1 (3-level

indexing technique) and indexing technique 2

(It may be trie, hashing, inverted indexing, B-

Tree).

2) Preprocess and index data.

3) Search using technique 1 then search using

technique 2.

4) Retrieve results.

5) Measure and report performance.

 Here's an explanation of each step in the general

algorithm for search:

1) Build the Indexing Technique 1 and Indexing

Technique 2:

 - In this step, you select one indexing technique from

among trie, hashing, inverted indexing, B-tree and use 3-

level indexing technique to efficiently organize and store

your data for quick retrieval. These techniques can be

chosen based on the specific requirements and

characteristics of your dataset.

2) Preprocess and Index Data:

 - In this step, dataset is prepared for indexing. This

includes cleaning, normalizing, and transforming the

data to make it suitable for the chosen indexing

techniques.

 - Then build the actual index structures for both

Technique 1 and Technique 2. This involves creating

data structures, populating them with the data, and

organizing them in a way that allows for efficient

searching.

3) Search Using Technique 1, Then Search Using

Technique 2:

 - After indexing the data, the search is performed in

two stages: first using Technique 1 and then using

Technique 2.

 - The search in Technique 1 leverages the primary

indexing method (e.g., 3-level indexing) to quickly

identify potential matches or candidates in the dataset.

 - If the search in Technique 1 doesn't yield the desired

results or needs further refinement, you proceed to the

second stage of the search using Technique 2.

 - Technique 2 is used to refine the search results

obtained from Technique 1. It's a complementary

indexing method designed to handle specific search

criteria or scenarios.

4) Retrieve Results:

 - In this step, you retrieve the search results from both

Technique 1 and Technique 2.

 - You may need to combine or compare the results

from both techniques to ensure accuracy and

completeness in the final set of results.

 - Depending on your application, you might have

different strategies for presenting or ranking the results.

5) Measure and Report Performance:

 - Finally, assessment takes place for of the search

process in terms of speed, efficiency, and accuracy.

 - The time taken to execute each search stage are

measured (Technique 1 and Technique 2) and recorded.

 - The correctness of the results is evaluated and how

well they match the search criteria can be observed.

 - The performance metrics are reported, allowing to

analyse which indexing technique performed better for

this specific use case.

This general algorithm for search provides a structured

approach to optimize search operations by combining

different indexing techniques, which can be especially

valuable when dealing with large and complex datasets.

It helps improve search efficiency and accuracy by

leveraging the strengths of multiple indexing methods.

I. Introduction to English Word Indexing

Techniques

Information retrieval systems use a variety of indexing

techniques and algorithms to effectively index and

retrieve English words. Here are several methods that are

frequently used:

1) One essential method utilized by information

retrieval systems is inverted indexing. It entails

building an index system that associates words

with the texts or chapters where they appear.

Each word has a list of document identifiers or

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 862

pointers attached to it, making it easy to quickly

search for and retrieve documents that include a

certain phrase. Due to its effectiveness in

managing huge text collections, inverted

indexing is commonly utilized.

2) The Term Frequency-Inverse Document

Frequency (TF-IDF) method is A statistical

weighting method called TF-IDF is used to

evaluate a word's significance within a

collection of documents. Each word is assigned

a weight depending on its frequency in a

document and its inverse frequency across the

entire collection. Words that are more prevalent

in a particular text but less prevalent across the

board are given higher weights. In ranking

algorithms, TF-IDF is frequently used to

emphasize significant phrases in search results.

3) N-Gram indexing involves breaking down

words into contiguous groups of N letters, or

subwords. For managing imperfect string

matching and incomplete matches, this method

is especially helpful. The words "hello," for

instance, would be indexed as "hel," "ell," and

"llo" in a trigram index. Effective word

searching for words with missing characters,

variants, or misspellings is made possible by N-

Gram indexing.

4) Algorithms: Compression techniques are used

to shrink the index, enabling quicker retrieval,

and requiring less storage. Variable Byte

Encoding, Golomb coding, and Elias Gamma

coding are a few common compression

algorithms. These techniques take advantage of

word frequency statistics and spaces between

posting lists to achieve efficient compression

without sacrificing retrieval speed.

5) Language-Specific Techniques: A few indexing

strategies consider the linguistic nuances of the

English language. Stemming algorithms, for

instance, condense words to their basic forms

(e.g., "running" to "run") while capturing word

variants. Lemmatization takes it a step further

and reduces words to their dictionary or basic

form (for example, "mice" becomes "mouse").

These methods aid in overcoming word

morphological problems and enhancing search

recall.

6) Advanced Ranking Algorithms: Ranking

algorithms are just as important in evaluating

the relevancy of search results as indexing

techniques are. Search results are scored and

ranked using a mix of phrase frequency,

document length, and inverse document

frequency by algorithms like Okapi BM25 (Best

Matching 25). The value and relevance of pages

are sometimes determined using techniques like

PageRank and link analysis, which were

initially developed for web searches.

These are only a few illustrations of the indexing

techniques and algorithms employed by English word

information retrieval systems. The features of the text

collection, the search needs, and the desired trade-offs

between indexing effectiveness, retrieval accuracy, and

storage considerations are only a few of the variables

that influence the technique choice.

Although the current approaches to word indexing and

search in information retrieval systems have shown

promise, they also have drawbacks and room for

development. Here is a breakdown of their advantages,

drawbacks, and prospective improvement areas:

Strengths:

1. Effective Retrieval: Current methods offer effective

retrieval of pertinent texts or passages, including inverted

indexing and compression algorithms. They make it

possible to obtain information quickly via keyword

searches, making them appropriate for managing big text

collections.

2. Scalability: A variety of indexing techniques are built

to manage scalability, enabling effective indexing and

retrieval even for enormous amounts of textual material.

Compression algorithms and distributed indexing are two

methods for managing and analysing massive document

collections.

3. Language-Agnostic Approach: Several approaches,

such TF-IDF and inverted indexing, are language-

agnostic and so usable with many languages, including

English. Due to their adaptability, they can be widely

used in a variety of language contexts.

4. Robustness to variants: Methods like stemming

algorithms and N-Gram indexing consider word variants

as well as partial matches, misspellings, and

morphological variances. They do this by considering

various word renderings, which improves the memory

and coverage of search results.

Limitations:

1. Semantic Gap: Current methods frequently

concentrate on surface-level characteristics like word

frequencies and character sequences but fall short of

accurately capturing the semantic linkages between

words. When dealing with polysemous words or intricate

semantic settings, this restriction may lead to less precise

search results.

2. Managing synonymy (words with similar meanings)

and polysemy (words with many meanings) continue to

be difficult. Retrieval algorithms may have trouble

correctly identifying and retrieving pertinent information

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 863

when different words are used to represent the same idea

or when a single word has several meanings.

3. Contextual Understanding: Generally speaking,

contextual information like word relationships,

grammatical structures, or semantic meaning is not fully

captured by existing approaches. As the context in which

words appear greatly influences how they are interpreted,

this restriction may have an impact on the accuracy and

relevancy of search results.

4. Handling Noisy or Ambiguous inquiries: When

handling noisy or ambiguous inquiries, when the user's

intent is unclear, existing solutions may have trouble.

These issues can be resolved by using strategies like

query extension, relevancy feedback methods, or user

engagement.

Areas for Development

Some areas for development in indexing & searching

are:

1. Semantic Search: To achieve more accurate and

context-aware search results advances in strategies for

capturing and exploiting semantic linkages between

words can be used. To reduce the semantic gap and

increase retrieval accuracy we can use word embeddings,

knowledge graphs, and semantic analysis together.

2. Personalization and User Intent: Research might

concentrate on figuring out user intent and tailoring

search results to each user's preferences, browsing habits,

and demographic data. The usefulness of search results

may be improved by incorporating machine learning

techniques and user feedback methods.

3. Integration of multimodal data sources in the indexing

and search process is crucial as information retrieval

expands beyond text to incorporate images, audio, and

video. Search experiences that are more thorough and

multimodal can be made possible by techniques that

combine textual and visual/auditory features.

 4. Real-Time Indexing and Updating: Research can

examine methods for indexing and updating information

instantly as data streams and real-time information

become more common. In dynamic situations, retrieval

systems would then be able to deliver timely and current

search results.

Improvements can be made to word indexing and search

algorithms in the English language domain to improve

their accuracy, relevance, and contextual understanding

by addressing these research gaps and concentrating on

the shortcomings of current methodologies.

4. English Word Indexing Techniques

To efficiently organise and retrieve data from huge

datasets, indexing techniques are essential. To enable

quicker and more precise word searches, a variety of

indexing techniques have been developed for English

terms. We will examine and contrast four well-known

indexing methods in this discussion: the inverted index,

the B-tree, the hash-based index, and the trie.

1. Inverted Index: One popular method for retrieving text

is the inverted index. Each distinct word in the dataset is

mapped to a list of document identifiers or locations

where the word appears using a dictionary. Quick word-

based searches are made possible by inverted indexes,

which quickly spot documents that contain certain terms.

Principle and Algorithm:

Tokenization: The text is divided into individual words

or tokens.

Term Frequency: Count the number of times each term

appears in a document.

Inverted Index Construction: Create a mapping from

terms to documents or positions to create an inverted

index.

Example: Think of a collection of three texts: "Document

A: The sky is blue," "Document B: The ocean is vast,"

and "Document C: The sky meets the ocean."

"Document A" and "Document C" would be listed as

instances of the word "sky" in the inverted index.

Table 1: Inverted Index

Token Document Id

The A, B, C

Sky A, B

Is A, B

blue A

meets C

Ocean B, C

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 864

vast B

Advantages:

Word-based searches that work well.

Because it stores term-document associations, it is

memory-efficient.

Disadvantages:

Ineffective at finding phrases.

Large vocabulary usage consumes a lot of RAM.

Performance Inverted indexes excel at speedy word

retrieval but may take longer to respond to queries with

several terms or phrases.

2. B-Tree: Self-balancing tree structures known as B-

trees are utilised for indexing. They offer search,

insertion, and deletion operations with logarithmic time

complexity, making them ideal for database applications.

A B-tree's ability to have numerous keys and child nodes

makes for a balanced structure.

The Algorithm and the Principle:

Node Splitting: When a node has more keys than it can

handle, it splits into two nodes.

Balancing: Ensures that the tree's height is maintained in

a balanced manner.

Search: Uses a binary search strategy to find keys.

For instance, a B-tree with the keys [4, 8, 12, 16, 20]

could speed up key searches.

Fig 2: B-tree

Advantages:

Structure with balance for effective operations.

Appropriate for ordered data and range queries.

Disadvantages:

Owing to node overhead, and not being memory

efficient.

During insertions and removals calls for reorganisation.

B-trees are good at handling frequent updates and range-

based searches, making them excellent for dynamic

datasets.

3. Hash-Based Index: Hash-based indexing uses hash

functions to associate keys with locations in a data

structure. It is renowned for its quick access times but is

susceptible to collisions.

The Algorithm and the Principle:

Hash Function: Creates fixed-size values from keys

using the hash function.

Collision Handling: Handles situations where various

keys provide the same hash value.

Storage and Retrieval: Locate values using their hash

addresses.

A hash-based index, for instance, can be used to swiftly

find information related to English terms.

Advantage:

Quick single-key retrieval access times.

Suits static datasets well.

Disadvantage:

Collisions may happen, which can slow down retrieval.

For range queries, ineffective.

Hash-based indexes are the best choice for lookups in

settings with steady data since they are excellent at quick

single-key retrieval.

Fig 3: Hash based index.

4. Trie (Prefix Tree)

Strings may be stored and retrieved effectively using trie

structures. They are especially helpful for dictionary

searches and auto complete suggestions.

The Algorithm and the Principle:

Each node in the node structure represents a character,

while paths stand in for strings.

Prefix Search: Navigates character-based nodes to find

strings.

Compression: To conserve memory, data can be

compressed.

Example: A trie can swiftly determine any word that has

a particular prefix as its first letter.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 865

Advantages:

Efficient for searches based on prefixes.

Suitable for dictionaries and auto complete applications.

Disadvantages:

Huge vocabulary-demanding on memory.

Non-prefix searches are slower.

Characteristics of performance:

Tries perform well in prefix-based searches but may use

more RAM for large vocabulary sets.

Fig 4: Trie Data Structure

 English Word Search Algorithms

1. Exact Match Search: -

-Principle: Exact Match Search only returns results that

are a perfect match to the search query.

 - Algorithm: To locate precise matches, an exact match

search often compares the search query to the terms that

have been indexed directly.

 - Effectiveness: When users are aware of the exact term

they are looking for, an exact match search is quite

effective. Although it guarantees accurate results, if the

search term is misspelt or otherwise altered, it might not

find the desired documents.

2. Fuzzy Search:

 - Principle: Fuzzy search gets results that are

comparable to the search query, considering spelling

mistakes, typos, and other minor variations.

 - Algorithm: The Levenshtein Distance (edit distance)

algorithm, which counts the number of edit operations

(insertions, deletions, and replacements) required to

change one word into another, is a popular fuzzy search

algorithm.

 - Effectiveness: Fuzzy search works well when the

search query has typos or other variants. Even when a

user makes a small input error, it can still produce useful

results.

3. Probabilistic Search: In contrast to exact matches or

fuzzy similarities, probabilistic search finds results based

on the likelihood that they are relevant.

 - Technique: The Vector Space Model (VSM), which

describes documents and queries as vectors in a

multidimensional space, is one popular technique used in

probabilistic search. To determine relevance, it computes

the cosine similarity between the query and document

vectors.

 - Effectiveness: Probabilistic search works well for

determining the relevance of documents. It considers a

document's overall content and is capable of handling

synonyms, different word orders, and a wider context. It

might not be as useful, though, if customers are asking

precise questions.

- Comparison and Analysis: Exact match search is simple

and accurate, but it is not flexible enough to handle

different user queries.

- Fuzzy search offers greater versatility and may

accommodate minor typos or query changes. On the

other hand, it can result in false positives and less

relevant results.

- Probabilistic search is excellent at ranking documents

according to relevance, considering both user queries and

the total content of documents. Complex search

circumstances can be handled with more success using it.

However, it uses more processing power and might not

work as effectively for requests that are brief or

ambiguous.

The selection of a search algorithm is based on both user

behaviour and the unique search requirements. Exact

match search is suitable for applications where accuracy

is important, and users are required to deliver precise

queries. When dealing with user input problems or when

users may have spelling issues, fuzzy search is helpful.

When ranking results based on relevance is important,

notably in information retrieval systems or search

engines, probabilistic search is advantageous.

Many search engines combine these methods to offer a

thorough search experience. For instance, a search

engine may use fuzzy search to handle typos, exact

match search for exact queries, and probabilistic search

to rate results based on relevance. Users can obtain

precise and pertinent search results using this combo,

which also supports flexible search queries.

5. Experimental Results and Analysis

In this section the experimental results will be presented,

and they will be compared. Comparison will take place

in terms of time complexity and space complexity.

In all the searched word “external” is searched.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 866

Table 2: Comparison of combination of standard indexing methods with 3-level indexing

Method used Time taken for

preprocessing

Time taken for search

Hashing with 3-level indexing 5195.16

millisecond

0.284194 millisecond

Inverted index with 3-level

indexing

5205.214

millisecond

1.047372 millisecond

Trie with 3-level indexing 5673.471

millisecond

0.07295 millisecond

B-Tree with 3-level indexing 6076.89

millisecond

0.087976 millisecond

3-level indexing 4844.588

millisecond

0.162124 millisecond

Time complexity for Hashing:

Building hash table: O(N*M), where N is the number of

documents and M is the average number of words per

document.

Searching in hash table: O (1) average case (constant

time), O(N) worst case.

Space complexity for hashing:

Hash Table storage: O(N*M), where N is the number of

words and M is the average number of documents per

word.

Time Complexity for Inverted Index:

Building Inverted Index: O(N*M), where N is the

number of documents and M is the average number of

words per document.

Searching in Inverted Index: O(K), where K is the length

of the search key.

Space Complexity for Inverted Index:

Inverted Index storage: O(N*M), where N is the number

of words and M is the average number of document IDs

per word.

Time Complexity for Trie:

Building Trie: O(N*M), where N is the number of

documents and M is the average number of words per

document.

Searching in Trie: O(K), where K is the length of the

search key.

Space Complexity for Trie:

Trie storage: O(N*M), where N is the number of nodes

in the Trie and M is the average length of words.

Time Complexity for B-tree:

Building B-tree: O (NM log (NM)), where N is the

number of documents, M is the average number of words

per document, and log (NM) is the height of the B-tree.

Searching in B-tree: O(log(N*M)) average case (height

of the B-tree).

Space Complexity for B-tree:

B-tree storage: O(N*M), where N is the number of

words and M is the average number of document IDs per

word.

Time Complexity:

Preprocessing: O(N*M), where N is the number of

documents and M is the average number of words per

document.

Searching in the list: O(M), where M is the number of

words in the samelen list.

Space Complexity:

Storing the samelen list: O(K), where K is the number of

words satisfying the conditions.

Based on the data presented and the time and space

complexity analysis for each indexing method, we may

make the following observations and analyses:

Preprocessing Time: Among the methods evaluated,

"Hashing with 3-level indexing" had the shortest

preprocessing time, requiring 5195.16 milliseconds.

The preparation timings for "Inverted index with 3-level

indexing" and "Trie with 3-level indexing" are 5205.214

milliseconds and 5673.471 milliseconds, respectively.

"B-Tree with 3-level indexing" takes the longest to

preprocess, at 6076.89 milliseconds.

The "3-level indexing" method has a preprocessing time

of 4844.588 milliseconds.

Search Time: - "Trie with 3-level indexing" has the

shortest search time, lasting only 0.07295 milliseconds.

"Hashing with 3-level indexing" searches in 0.284194

milliseconds.

The search times for "B-Tree with 3-level indexing" and

"3-level indexing" are around 0.087976 milliseconds and

0.162124 milliseconds, respectively.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 867

"Inverted index with 3-level indexing" takes the longest

to search, with a duration of 1.047372 milliseconds.

Indexing strategy Comparison: Choosing an indexing

strategy has a substantial impact on both preprocessing

and search times.

Hashing and Trie-based indexing algorithms have faster

search speeds than others, making them suited for speedy

retrieval jobs.

While efficient in preparation, inverted indexing has a

longer search time in this context.

B-Tree indexing has substantially longer preprocessing

and search times, indicating that it may be less efficient

for this specific dataset and search query.

Complexity Analysis: Hashing has an O (N*M) time

complexity for generating the hash table and an O (1)

time complexity for searching.

Inverted Index and Trie have O(N*M) time complexity

for creating and O(K) time complexity for searching

(where K is the length of the search key).

B-Tree has a greater temporal complexity for building

and searching (O (NM log (NM)) and O(log(N*M))

average cases, respectively).

The "3-level indexing" without identifying the method

most likely combines various indexing approaches to

strike a balance between preprocessing and search times.

Space Complexity: All indexing methods have a space

complexity of O(N*M) due to the storage required for

the index structures, where N is the number of

documents and M is the average amount of words per

document.

Discussion and conclusion

The experimental results and the study of time and space

complexities offer important new perspectives on how

different indexing techniques function in relation to the

dataset and search query at hand.

1.Preprocessing Time: Preprocessing times for various

indexing techniques varied greatly. The quickest

preprocessing technique is hashing with 3-level

indexing, which takes 5195.16 milliseconds. This is a

result of how effectively hash tables are made. In

contrast, the preprocessing time for the B-Tree with 3-

level indexing is the longest at 6076.89 milliseconds.

The effectiveness of data preparation is directly impacted

by the indexing strategy chosen.

2. Search Time: Trie with 3-level indexing has an

impressively fast search time of 0.07295 milliseconds.

Trie indexing is hence a fantastic option for quick data

retrieval. The Inverted index with 3-level indexing, on

the other hand, requires the most time to search, taking

1.047372 milliseconds. For applications that require real-

time or nearly real-time results, the search time is a

crucial consideration.

3. Comparison of Indexing Strategies: The indexing

approach selected has a big impact on how long searches

and preprocessing take. Speed-sensitive applications can

benefit from the faster search times of hashing and trie-

based indexing techniques. While efficient for

preprocessing, inverted indexing falls short when it

comes to search speed. The lengthy preparation and

search durations of B-Tree indexing stand out, indicating

that it might not be the ideal option for this dataset and

query.

4. Time Complexity Analysis: The time complexity

analysis highlights the performance gaps even further.

Hashing allows constant-time search (O(1)), but creating

the hash table takes O(N*M) time. Trie and Inverted

Index both require O(N*M) for construction and O(K),

where K is the length of the search key. The most

resource-intensive technique is B-Tree, with construction

times of O(NM log(NM)) and average case search times

of O(log(N*M)). Despite not disclosing the precise

mechanism employed, the "3-level indexing" strategy

seems to establish a balance between preprocessing and

search durations.

5. Space Complexity: Due to the storage needs for each

index structure, all indexing algorithms have a space

complexity of O(N*M). This shows that they all use

roughly the same amount of RAM, which is directly

related to the volume of papers and the average word

count per document in the dataset.

6. Conclusion

The efficiency of information retrieval systems is, thus,

significantly influenced by the method of indexing that is

selected. The quickest search times are provided by

hashing and trie indexing, which makes them appropriate

for use in situations where quick data retrieval is crucial.

But they have their own preprocessing time expenses.

While inverted indexing is effective for planning, it

might not be the greatest option when search speed is

crucial. Although flexible, B-Tree indexing takes a lot of

time for both preprocessing and searching, making it less

appropriate in some situations. Preprocessing and search

durations can be balanced out by using the "3-level

indexing" method, which mixes different indexing

strategies without revealing the precise strategy utilised.

An indexing method may be selected depending on the

individual requirements of an application that links with

the trade-off between preprocessing efficiency and

search performance. The requirements of the application,

the size and makeup of the dataset, and the intended

trade-offs between preparation time, search speed, and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 858–868 | 868

space complexity should all be taken into consideration

when choosing an indexing method.

References

[1] Ali Selamat, Nicholas Akosu (2014). Word-length

algorithm for language identification of under-

resourced languages, Journal of King Saud

University - Computer and Information Sciences

Volume 28, Issue 4, October 2016, Pages 457-469

http://dx.doi.org/10.1016/j.jksuci.2014.12.004.

[2] Julia Fomina, Denis Safikanov et.al (2020).

Parametric and semantic analytical search indexes

in hieroglyphic languages Procedia Computer

Science, Volume 169, 2020, Pages 507-512

https://doi.org/10.1016/j.procs.2020.02.218.

[3] Kamran Kowsari, Kiana Jafari meimandi et.al

(2019) Text Classification Algorithms: A Survey,

doi:10.3390/info10040150, Information 2019,

www.mdpi.com/journal/inform.

[4] Antonio Ferrandez, Jesus Peral (2019), MergedTrie:

Efficient textual indexing PLoS ONE 14(4):

e0215288. https://doi.org/10.1371/journal.

pone.0215288.

[5] Vimal P Parmar, C K Kumbharana (2017),

Implementation of Trie Structure for Storing and

Searching of English Spelled Homophone Words,

International Journal of Scientific and Research

Publications, Volume 7, Issue 1, January 2017 ISSN

2250-3153.

[6] Rahat Yeasin Emon, Sharmistha Chanda Tista

(2019), An Efficient Word Lookup System by using

Improved Trie Algorithm P. N Singh, Tara G P

(2021), Searching String in Bigdata- A better

Approach by applied machine Learning, SN

Computer Science (2021) 2:192.

[7] A Gani, A Siddiqa et.al, 2015, A survey on indexing

techniques for big data: taxonomy and performance

evaluation. DOI 10.1007/s10115-015-0830-y.

[8] Fatima Binta Adamu, Adid Habbal et.al (2015), A

survey on big data indexing strategies, The 4th

International Conference on Internet Applications,

Protocols and Services (NETAPPS2015

DOI:10.13140/RG.2.1.1844.0721).

[9] Dalia A. Abd Al lattif, Murtadha M. Hamad, A

comparative Study of Indexing Techniques effect in

big data system storage Optimization, 2nd Al-Noor

International Conference for Science and

Technology (2NICST2020), Baghdad, Iraq,

https://doi.org/10.1109/NICST50904.2020.9280309

.

https://doi.org/10.1371/journal
http://dx.doi.org/10.13140/RG.2.1.1844.0721

