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Abstract: In this comprehensive study, the focus is on sign language recognition using the WLASL dataset, where various models undergo 

evaluation, leading to a meticulous analysis of their performance metrics. Notably, the proposed reinforcement learning (RL) model 

emerges as a standout performer, showcasing exceptional results with an accuracy rate of 99%, sensitivity at 99%, specificity reaching 

98%, and an impressive F1 Score of 99%. A noteworthy observation is the superior feature extraction capabilities of EfficientNet-B1, 

outperforming the widely used ResNet-101. The integration of bidirectional recurrent neural networks (RNN) emphasizes the critical role 

of temporal understanding in enhancing the accuracy of sign language recognition. Moreover, the RL-enhanced EfficientNet-B1 

demonstrates excellence not only in accuracy but also in generating contextually rich captions, as evidenced by a commendable BLEU 

score of 0.51. These findings not only contribute significantly to the ongoing advancements in sign language recognition technology but 

also underscore the pivotal role of reinforcement learning and model selection in achieving heightened accuracy and contextual 

understanding, particularly within the challenging context of the WLASL dataset. 
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1. Introduction 

The field of sign language recognition from video has 

become a focal point of research, serving as a pivotal means 

to bridge communication gaps between the deaf and hearing 

communities. Recent strides in computer vision and deep 

learning have paved the way for the development of more 

accurate and efficient sign language recognition systems 

[1]. This study delves into the intricate domain of sign 

language recognition, specifically concentrating on the 

analysis of video sequences to interpret and translate sign 

gestures into meaningful text. 

Video sequence based sign language recognition is 

challenging task. The hand gesture based sign language 

recognition from dynamic video sequences, being 

inherently dynamic, presents distinct challenges compared 

to static image recognition, as it captures the temporal 

evolution of signs. The overarching goal is to create a robust 

system capable of accurately recognizing and translating a 

diverse range of sign gestures into text. For establishing the 

bridge the communication gap between normal and deaf 

people this work shows its significance beyond technical 

aspects. The advancement of sign language recognition 

from video, this research seeks to foster inclusivity, 

empower individuals with hearing impairments, and 

promote equal participation in various aspects of life [2]. 

The proposed system employs a deep learning approach to 

address the complexities associated with sign language 

recognition [3]. In this contributing work, a pretrained 

model is utilized for feature extraction from the frames of 

sign language video sequences. These extracted features are 

then paired with corresponding text descriptions through the 

implementation of an attention-based model. The inclusion 

of Bidirectional Long Short-Term Memory (BiLSTM) and 

Bidirectional Gated Recurrent Unit (BiGRU) models serves 

to enhance the temporal understanding of sign gestures. This 

is achieved with the forward and backward directions 

dependencies extraction.  

The choice of utilizing a pretrained model for feature 

extraction adds a layer of efficiency to the system, 

leveraging the knowledge embedded in the pretrained model 

to enhance the recognition accuracy. The attention 

mechanism, a critical component of the model, enables the 

system to focus on relevant parts of the video sequence, 

emphasizing the importance of certain frames during the 

recognition process. 

Furthermore, the integration of Bidirectional LSTMs and 

BiGRUs enhances the model's ability to capture the 

temporal dynamics of sign gestures. By considering 

information from both past and future frames, these 

bidirectional models provide a more comprehensive 

understanding of the sequential nature of sign language, 

improving the overall accuracy of the recognition system. 

In conclusion, this research stands at the forefront of sign 

language recognition from video, utilizing deep learning 
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techniques to develop a robust and efficient system. The 

application of pretrained models, attention mechanisms, and 

bidirectional recurrent units collectively contributes to the 

temporal understanding necessary for accurate sign 

language recognition. As technology continues to advance, 

the outcomes of this study have the potential to 

revolutionize communication accessibility for the Deaf 

community, fostering a more inclusive and equitable 

society. 

2. Related Work: 

Recognizing sign language in both images and videos 

represents a unique form of behaviour identification, often 

executed through the powerful capabilities of machine 

learning. In this domain, deep learning, known for its 

prowess in handling complex patterns, particularly stands 

out, demonstrating superior performance when provided 

with large datasets for training. The intricate process 

involves multiple stages, including detecting, tracking, and 

recognizing gestures, presenting a substantial challenge in 

the extraction of efficient features. This study not only 

addresses the nuances of sign language recognition but also 

extends its focus to video-to-text description generation, 

offering valuable insights into the intersection of video and 

text processing approaches. 

In the reinforcement based learning strategy in deep model 

by Xu et al. [4], firstly word denoising and grammar 

correction model is employed. The challenge associated 

with long video data processing a reward based strategy is 

employed for better training of the model. In the video to 

description generation work, sequenctial data association 

with text description with the use of embedding layer for 

weights attention is explained.  

Similarly, significance of embedding layer in the video 

captioning work is discussed by Yasin et al. [5]. The use of 

contextual information with respect to odel architecture 

requirements are discsussed in their article. The significane 

of LSTM is discussed by Nabati et al. [6]. The use of 

ensemble approach with boosting of features using 

Adaboost model is discussed. The iterative training of 

LSTM for small length video is evaluated and importance 

of encoder decoder approach is discussed with validation of 

results. 

In the image captioning work, the object oriented feature 

extraction for medical applications is presented by Chohan 

et al. [7]. In their encoder decoder based approach industrial 

and entertainment video applications are elaborated. In the 

video captioning work by Mun et al. [8], temporal and 

coherent feature extraction is performed. The state-of-the-

art work with the proposed model by authors, ActivityNet is 

compared with other existing models.  In the training 

scenarios, the videos are considered with respect to events 

and event oriented caption generation is focused. Also, in 

video captioning work by Absra et al. [9], used generative 

adversarial model for generation of large dataset of video. 

The generated dataset is then used for training the CNN 

model. The temporal features using semantic guided 

network for video sequence with respect to text is 

performed. The key frames extraction is carried out by Guo 

et al. [10] in video captioning work. The semantic features 

of these frames are processed for feature extraction and 

association with text features. In the model updation 

process, new data vectors are added with the use of encoder 

decoder approach by Fujii et al. [11]. The model 

performance is evaluated with the use of cooking receipeis 

videos. The process to process sequence is considered for 

predicting the next text data. The past process features are 

important in this sequential processing steps. The cross 

modal approach considered by Han et al. [12] the reasoning 

approach is considered. The important features with respect 

to event. In this subjective approach the graph model design 

is followed. In the word level sign language recognition 

work, the required dataset is prepared by Li et al. [13]. The 

work with the use of LSTM based model is evaluated for 

highlighting the significance of the dataset in the domain of 

sign language recognition. 

3. Proposed Work 

The proposed sign language recognition system represents 

a novel endeavour in processing video data and target text, 

leveraging the capabilities of a deep learning model with the 

ultimate goal of generating coherent text sentences from 

sign language video sequences. At the core of this 

innovative approach lies the utilization of a pretrained 

model for extracting intricate features from the dynamic 

frames of sign language videos. The extracted features are 

seamlessly paired with corresponding text descriptions 

through an attention-based model, enriched by the 

integration of BiLSTM and BiGRU models. 

In the training phase, the model undergoes a meticulous 

learning process, acquiring the ability to recognize and 

interpret diverse sign gestures captured in the videos. 

Subsequently, the system is put to the test on designated 

video sequences, where the generated descriptions are 

meticulously compared with the ground truth for 

comprehensive performance evaluation, as depicted in 

Figure 1. This meticulous evaluation process ensures that 

the system's output aligns with the expected accuracy and 

coherence, validating its proficiency in enhancing sign 

language understanding through the application of advanced 

deep learning techniques. The system's effectiveness in 

processing and interpreting sign gestures from videos stands 

as a testament to the potential transformative impact of this 

research on fostering more inclusive communication 

avenues for the deaf community. 
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Fig. 1.  Stages involved in the proposed system framework 

The stabdard CNN models are trained on ImageNet dataset 

[14] for their performance validation and finalizing the 

architecture. The standard pretrained CNN models 

VGGNet-16 [15], VGGNet-19 are used for the extraction of 

features from video frames. Similarly, ResNet-50 [16], 

ResNet-101 are used in second experiment. The more recent 

advanced models are also considered one at a time for 

features generations which include such as MobileNet-V2 

[17], DenseNet-121 [18], Inception-V3 [19], EfficientNet-

B0 [20] and EfficientNet-B1. The LSTM based Encoder-

Decoder model is designed. This model is designed to take 

in a sequence of video frames and output a descriptive 

caption for the entire video.  

EfficientNet-B0 and EfficientNet-B1 are part of the 

EfficientNet family of convolutional neural network 

architectures designed for efficient and effective deep 

learning tasks, particularly in computer vision. Developed 

by Google, these models aim to achieve a balance between 

model size, computational efficiency, and performance. 

EfficientNet-B0 serves as the baseline model, featuring a 

simple and lightweight architecture. It is well-suited for 

tasks where computational resources are limited, making it 

efficient for applications with constrained hardware 

environments. 

EfficientNet-B1 builds upon the foundation of EfficientNet-

B0, introducing slight modifications to enhance its 

performance. While still maintaining efficiency, B1 

incorporates additional parameters and complexity to 

improve accuracy, making it a suitable choice for tasks that 

demand a bit more computational power while delivering 

superior results compared to B0. 

Both EfficientNet-B0 and B1 exemplify the effectiveness of 

the EfficientNet architecture in providing scalable solutions 

for various machine learning applications, offering a range 

of options to match the specific requirements of a given task 

or computational environment. 

In the sign language recognition work, the feature extraction 

of video and text data processing is performed in following 

steps. 

Step 1: Feature Extraction from Video Frames 

Firstly input video is converted into set of frames in 

sequential fashion. The total number of frames in a video 

depend on frame rate and length of video. If video has length 

of 10seconds and 25 frames per second rate then total 250 

frames are generated in the conversion. 

The frame set undergoes feature extraction through 

pretrained models. Specifically, features are extracted, 

emphasizing the layers immediately preceding the Dense 

Layers in standard CNN architectures. This yields all frame 

features as one-dimensional vectors, ensuring compatibility 

with the subsequent input of LSTM and GRU-based 

architectures. 

Step 2: text data (captions) preprocessing 

First captions are tokenized for assigning the index value. 

The beginning of value (bos) and end of sequence (eos) 

identification becomes possible after indexing process.  

Step 3: Model Design 

The model architecture with use of LSTM and GRU is 

designed to process the fvideo frames features as input x for 

target text vectors y. the encoder decoder architecture is 

designed.  

Step 4: Training 

The reinforcement learning based loss function is used for 

training of the models. The loss minimization is the main 

objective for the training with the use of back propagations.  

Step 5: Captions generation 

With the strategy of greedy search, captions are generated 

using test video set features and trained model. 

Text Data Processing Model 

In BiLSTM-based architectures, the self-attention is 

introduced. The focus on the relevant parts of the sequence 

vectors is applied during captions generations. The attention 

is achieved using following steps: 

1. Forward Encoding: 

The input sequence (e.g., video features and text 

vectors) is fed into a BiLSTM layer. The contextual 

information is captured with the forward and backward 

direction processing of sequences by the BiLSTM layer. 

The equation for encoding in a BiLSTM can be represented 

as follows: 

Input Video 
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ℎ𝑡
⃗⃗  ⃗ =  𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑐𝑡−1⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

ℎ𝑡
⃖⃗ ⃗⃗ =  𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑐𝑡−1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) 

ℎ𝑡 = (ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃖⃗ ⃗⃗ )                                      ...(1) 

With the hidden state and cell state ℎ𝑡⃗⃗  ⃗ 𝑎𝑛𝑑 𝑐𝑡⃗⃗⃗   respectively 

input sequence xt is processed at each time step t. In these, 

hidden state is the combination of forward and backward 

hidden states with concatenation operation.  

The equation processes input sequences with bidirectional 

LSTMs, combining forward and backward hidden states to 

create the final encoded representation at each time step. 

BiGRU, a bidirectional RNN variant, offers an alternative 

with a gating mechanism similar to BiLSTM, capturing 

context information bidirectionally. 

ℎ𝑡
⃗⃗  ⃗ =  𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑐𝑡−1⃗⃗ ⃗⃗ ⃗⃗  ⃗) 

ℎ𝑡
⃖⃗ ⃗⃗ =  𝐿𝑆𝑇𝑀(𝑥𝑡 , ℎ𝑡−1

⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗, 𝑐𝑡−1⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ) 

ℎ𝑡 = (ℎ𝑡
⃗⃗  ⃗, ℎ𝑡

⃖⃗ ⃗⃗ )                                      ...(2) 

In BiGRU architecture, input sequences are processed by 

two separate GRU layers in both forward (ℎ𝑡
⃗⃗  ⃗) and backward 

(ℎ𝑡
⃖⃗ ⃗⃗ ) directions. GRU, a simplified LSTM version, uses 

gating mechanisms to decide information retention. BiGRU 

captures context from past and future steps, similar to 

BiLSTM. Finally hidden state ht is obtained with 

concatenation of forward and backward hidden states. This 

representation is input for the attention mechanism, 

enabling the model to focus on relevant parts during output 

generation. 

2. Attention Mechanism: 

For the input sequence the attention weights are 

calculated for focusing on relevant information. The hidden 

states from encoder and decoder are considered for 

similarity estimation based on which attention weights are 

calculated. The softmax operation is applied to obtain 

normalized attention weights as shown in equation (3). 

𝑒𝑡 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(ℎ𝑡 , 𝑈) 

𝛼𝑡 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑒𝑡) 

𝑐𝑡 = ∑ 𝛼𝑡′ 𝑡′ . ℎ𝑡′                                   ...(3) 

Where, et represents the attention scores for each time step 

t, U is a weight matrix used to calculate the attention scores, 

αt is the normalized attention weight for time step t, Softmax 

is the softmax function, which normalizes the attention 

scores to obtain attention weights, ct represents the context 

vector or attended representation at time step t, which is a 

weighted sum of the encoded representations based on the 

attention weights. 

The relevant information for current decoding time step 

attention weights are computed using weighted sum of 

encoder hidden state. This way, integration of attention 

weights are useful for highlighting the important parts of the 

sequence ate each decoding time step. 

3. Decoding and Output Generation: 

The decoder hidden states and integrated relevant context 

are passed through the LSTM decoder to generate the final 

output text. The entire sequence generation is generated 

with the continuous process of decoding and process stops 

when entire sequence is generated. 

During decoding, the previously generated token or word is 

used as input to predict the next token in the sequence. This 

process is iterative, where the decoder generates one token 

at a time, conditioned on both the encoded information from 

the input and the previously generated tokens.  

Reinforcement Learning: 

RL Loss Function: 

Given: 

• ytrue: One-hot encoded vector representing the 

action taken. 

• ypred: Predicted Q-values from the model. 

1. Action Probabilities Calculation:  

𝐴𝑐𝑡𝑖𝑜𝑛𝑃𝑟𝑜𝑏𝑠 =  ∑ 𝑌𝑡𝑟𝑢𝑒,𝑖 . 𝑌𝑝𝑟𝑒𝑑,𝑖𝑖                 ...(4) 

The action probabilities are calculated by summing the 

element-wise product of the one-hot encoded vector ytrue and 

the predicted Q-values ypred. 

2. Negative Log Probability: 

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑜𝑔𝑃𝑟𝑜𝑏 = log (𝑎𝑐𝑡𝑖𝑜𝑛𝑝𝑟𝑜𝑏)         ...(5) 

The negative log probabilities are obtained by taking the 

negative logarithm of the action probabilities. This step 

encourages an increase in the probability of the chosen 

action. 

3. Weighting by Predicted Q-Values:  

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑙𝑜𝑠𝑠 = 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑙𝑜𝑔𝑃𝑟𝑜𝑏 . 𝑆𝑞𝑢𝑒𝑒𝑧𝑒𝑑(𝑦𝑝𝑟𝑒𝑑)  

...(6) 

The negative log probabilities are then multiplied by the 

corresponding predicted Q-values. The operation 

squeezed(ypred) denotes squeezing the tensor ypred to obtain 

a scalar value for each sample in the batch. 
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Fig 2: Proposed architecture with use of BiLSTM and 

BiGRU 

4. Final Loss:  

𝐹𝑖𝑛𝑎𝑙𝑙𝑜𝑠𝑠 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑙𝑜𝑠𝑠                       ...(7) 

The final loss is the weighted loss obtained from the 

negative log probabilities and the squeezed predicted Q-

values. 

In summary, this loss function aims to maximize expected 

cumulative rewards by adjusting the model parameters 

based on the negative log probabilities of the chosen actions 

and their corresponding predicted Q-values. This approach 

is common in policy gradient methods for reinforcement 

learning. 

4. Results and Discussion 

The performance evaluation of sign language recognition is 

carried out with dataset preparation, and use of different 

standard CNN model for video features extraction. The 

proposed model composed of BiLSTM and BiGRU is 

evaluated using suitable parameters. 

A. Dataset Preparation 

Extensive in scale, the Word-Level American Sign 

Language (WLASL) video dataset encompasses the 

demonstration of over 2000 words, skillfully performed by a 

diverse group of more than 100 signers. 

B. Performance Analysis 

In the natural language processing applications, the BLEU 

(Bilingual Evaluation Understudy) score is estimated for 

generated text. The use of BLEU also includes machine 

learning based translation and text generation tasks. It 

evaluates the quality of generated text by comparing it to 

one or more reference texts written by humans. 

the n-gram precision is estimated while estimating the 

BLEU score for n items with respect to ground truth text. 

The fundamental idea is to measure how well the generated 

text aligns with the human-written references. A higher 

BLEU score indicates better alignment and, consequently, a 

higher perceived quality of the generated text. 

The metric's computation involves precision at different n-

gram levels, ranging from unigrams (single words) to 

higher-order n-grams. It also considers brevity penalty to 

address situations where generated texts are excessively 

short compared to references. The BLEU score is expressed 

as a value between 0 and 1, where a score of 1 signifies a 

perfect match with the reference texts. 

In the context of video captioning, applying BLEU helps 

quantify the accuracy and contextual relevance of the 

generated captions by comparing them to the reference 

captions. A higher BLEU score indicates that the model-

produced captions align well with human references, 

showcasing the model's proficiency in capturing the 

semantics and nuances of the video content. Evaluating 

video captioning systems using BLEU provides a 

quantitative measure of their linguistic quality, aiding 

researchers and developers in optimizing models for more 

accurate and contextually relevant caption generation. 1. 

In n-gram, let c be the count and the count for the human 

generated ground truth be r. Thus, 

𝐵𝐿𝐸𝑈𝑛 =
min (𝑐,𝑟)

max (𝑐,𝑟)
  (1) 

Thus with a weighted geometric mean, 

𝐵𝐿𝐸𝑈 = 𝐵𝑃 × exp ( ∑ (𝑤𝑛  log(𝐵𝐿𝐸𝑈𝑛)
𝑁
𝑛=1 ) (2) 

The value of N decides the maximum n-grams used with 

precision weights wn, thus, 

𝐵𝑃 = (1 −
𝑟

𝑐
)   (3) 

The penalty of shorter sentences is more in this analysis and 

hence BLEU scores for short description dataset are 

maximum up to 0.7 when observed with state-of-the-art 

methods in literature. 
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Fig 3 Average BLEU analysis for 10 videos 

Combining these metrics allows for a nuanced evaluation of 

the sign language recognition system. A high accuracy 

suggests overall reliability, while specificity, sensitivity, 

and the F1 score offer insights into how well the system 

performs for specific sign language gestures. Monitoring 

these metrics during the development and testing phases 

helps identify areas for improvement. For instance, if 

sensitivity is low for a particular sign, it indicates that the 

system needs enhancement in recognizing that specific 

gesture. In real-world applications, a well-balanced 

combination of these metrics ensures that the system is not 

only accurate but also effective in capturing the nuances of 

sign language, where each gesture holds unique 

significance. Figure 4 shows the comparative analysis of 

different pretrained models used for feature extraction with 

proposed attention based model. Figure 5 shows the 

comparative of proposed attention model with that of LSTM 

and GRU combination models. 

 

Fig 4 Comparative analysis of different feature extraction 

models 

 

Fig 5 Comparative of different combinations of LSTM and 

GRU models 

5. Conclusion 

The exploration into sign language recognition from video 

sequences has yielded compelling outcomes, showcasing 

the efficacy of various models and architectures. Through a 

comprehensive evaluation encompassing pretrained models 

for feature extraction, RNN models, and a proposed model 

utilizing reinforcement learning, valuable insights have 

been gained into their respective strengths and performance 

nuances. 

Pretrained models, including VGG16, VGG19, MobileNet-

V2, ResNet50, EfficientNet-B0, and EfficientNet-B1 with 

reinforcement learning, have demonstrated noteworthy 

capabilities in extracting features from sign language video 

sequences. Contrary to the initial assessment, EfficientNet-

B1 emerges as the top performer, showcasing remarkable 

accuracy, sensitivity, specificity, and F1 Score. This finding 

underscores the efficiency of the model, specifically tailored 

for effective feature extraction. 

The RNN models, encompassing LSTM, GRU, BiLSTM, 

BiGRU, BiLSTM with BiGRU and the proposed model 

with reinforcement learning, continue to emphasize the 

importance of temporal understanding in sign language 

recognition. Bidirectional architectures such as BiLSTM 

and BiGRU showcase advantages over their unidirectional 

counterparts, highlighting the significance of capturing 

temporal dependencies from both past and future contexts. 

The proposed model, utilizing reinforcement learning and 

demonstrating exceptional accuracy and scores, affirms the 

success of incorporating innovative features for robust sign 

language recognition. 

Moreover, the BLEU score analysis reveals that the 

EfficientNet-B1 model with reinforcement learning excels 

in generating captions closely aligned with human 

references, further emphasizing the significance of selecting 

an appropriate model for accurate recognition and 

contextually rich descriptions. 

These findings collectively contribute to the advancement 
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of sign language recognition technology, particularly 

highlighting the efficiency of EfficientNet-B1 with 

reinforcement learning. As future work, continued research 

could explore optimization strategies, real-world 

applicability, and the integration of additional modalities, 

such as facial expressions, to further enhance the overall 

accuracy and inclusivity of sign language recognition 

systems. 
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