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Abstract: This paper explores the working principles, performance metrics, and architectural nuances of various object detection 

techniques, focusing mainly on the YOLO (You Only Look Once) algorithms. A comprehensive comparative study is conducted, 

considering factors such as loss function, backbone network, and performance on standardized image sizes. Beginning with an introduction, 

the paper classifies object detection algorithms, into one-stage and two-stage object detection techniques. The literature review scrutinizes 

the operational mechanisms and constraints of existing techniques. This study then transitions into weapon detection using the YOLOv7 

and YOLOv8 algorithms, leveraging a dataset sourced and pre-processed from the Roboflow website. The mean Average Precision (mAP) 

achieved by YOLOv7 and YOLOv8 after training for 50 epochs stands at 0.9289 and 0.9430, respectively. Furthermore, the paper 

elucidates how performance metrics fluctuate with respect to epoch count in YOLOv7. In conclusion, the paper outlines avenues for further 

research, highlighting areas that warrant attention and exploration within the realm of object detection methodologies. 

Keywords: anchor box, classifier, feature map, RCNN, YOLO.  

1. Introduction 

The surge in object detection's popularity is attributable to 

several key factors, including the ready availability of large 

annotated datasets, robust computational capabilities, a 

diverse array of network architectures, and the refinement 

of training methodologies. Object detection, which 

encompasses both object localization and classification, has 

become a cornerstone of modern computer vision systems. 

This work analyses different one-stage object detection and 

two-stage object detection techniques and their limitations. 

Classification of object detection algorithms:  

 

Fig.1.  Classification of object detection techniques 

OSD algorithms are also known as single-stage object 

detection techniques. They involve the prediction of both 

the bounding box and class in one pass through the network. 

The predictive model employed in this algorithm uses a 

grid-based approach to analyze images and make 

predictions. These algorithms are known for their high 

speed and suitability for real-time applications; however, 

they have false positives and small object localization 

errors.  

 

Fig. 2.  Basic working of one stage object detector 

In contrast, two-stage object detection methods operate in 

two distinct phases: an initial comprehensive scan of the 

entire scene followed by a focused analysis of regions of 

interest. These methodologies include a region proposal 

stage, which identifies potential object regions, and a 

refinement stage responsible for precise bounding box 

determination and class labelling. While two-stage 

algorithms may operate at a slower pace compared to OSD 

counterparts, they offer higher accuracy. The type of object 

detector required is decided on the basis of application 

needs, response time, and accuracy. 11 DAVV, Indore-452001, India 
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Fig. 3. Basic working of two-stage object detector 

2. Literature Survey 

Object detection algorithms have demonstrated a consistent 

ability to accurately detect and classify various real-world 

objects such as vehicles, persons, faces, buildings, and 

different objects in both images and videos. Object detection 

algorithms can be used in a variety of contexts, including 

human-computer interface (HCI), robotics, consumer 

electronics, transportation, security, and many more. 

Traditional techniques such as edge detection, template 

matching, and sliding window methods have given way to 

more advanced forms of object detection. Among the 

algorithms that use the traditional method are SIFT, which 

extracts scale-invariant, rotation-invariant, and 

transformation-invariant features[1]; Viola Jones, which 

uses haar-like features and a cascade classifier for face 

detection [2]; the Deformable Parts model, which considers 

an object as a deformable part and the relationship between 

them [3]; and the HOG algorithm using the distribution of 

gradients (HOG features) with SVM [4]. All of these 

algorithms have performance issues with complex images 

with many background details, occlusions, and scale 

variations. In 2012, Hinton et al. introduced the first CNN 

network named AlexNet in ILSVRC. It uses a graphical 

processing unit and a linear activation function to provide 

higher accuracy and reduce the error rate[5]. Consequently, 

new DCNNs are proposed yearly with some unique 

properties.  

A region-based convolutional network by Girshik et al. 

revolutionized object detection in 2014. Its three 

components include a selective search algorithm-generated 

region proposal, a convolutional neural network that 

extracts features from input data and a class-specific SVM 

scores each feature vector. Multiple bounding boxes 

projected for a single object are often addressed with non-

maximum suppression [6]. In addition to the RCNN 

algorithm, other widely recognized object detection 

algorithms within the RCNN family include Mask RCNN, 

Faster RCNN, and Fast RCNN. Fast RCNN provided by 

Girshik et al. improved accuracy and significantly increased 

speed over RCNN. The key improvements of Fast RCNN 

over RCNN are ROI pooling, shared convolutional features, 

and end-to-end training. Fast RCNN suffers from slow 

region proposal due to selective search on each grid cell, 

suboptimal performance due to discrepancies between 

training and inference, and low localization accuracy in 

small and overlapping objects [7]. Faster RCNN addresses 

these issues using region proposal network (RPN), unified 

training, and anchor boxes. In Faster RCNN, RPN and its 

other components can be trained together, resulting in 

alignment in training and inference. It uses an anchor box 

with a predefined set of reference bounding boxes for more 

accurate localization of objects [8]. Faster RCNN extension 

is Mask RCNN. It produces a bounding box and 

segmentation mask of each object for deep investigation of 

its borders and forms. Mask RCNNs have parallel branches 

with bounding box regression for mask prediction [9]. 

Table-I shows a comparison of the different RCNN family 

algorithms. 

Many object detection methods uses Intersection over 

Union (IoU) threshold to predict an Object in an image. The 

threshold value signifies the quality of the findings. A 

threshold of 0.5 can produce low-quality results, whereas a 

high threshold value will impair the model's performance. 

To solve these issues, the Cascade RCNN was proposed in 

2018. It uses a cascaded detector-trained incremental IoU 

threshold. Here, the output of one detector trains the next. It 

ensures a positive training set of equal size for all detectors 

and avoids overfitting[10]. 

The one-stage object detection technique features a 

streamlined detection pipeline and operates very 

instantaneously. Examples include various YOLO versions, 

SSDs, retinanet, and EfficientDet. Over the time, this 

techniques has improved its accuracy, efficiency, and 

precision while simultaneously increasing in complexity. A 

real-time object detector requires a faster and stronger 

architecture for feature detection, better feature integration 

capabilities, accurate detection, a stronger loss function, and 

better label assignment and training. Different versions of 

YOLO have been discussed below: 

2.1. YOLOv1 

YOLOv1 was proposed in 2016 using a deep CNN as the 

backbone. The image in YOLOv1 is partitioned into S*S 

grid cells. For a given class probability, two bounding boxes 

are produced using grid cells; one bounding box is chosen 

using the non-maximum suppression method. This 

enclosing bounding box is accompanied by a probability 

and class designation. An unstable gradient causes the 

model to diverge often when a high learning rate is 

employed. Dropout or significant data augmentation can be 

employed to prevent the overfitting issue [11]. YOLOv1 

lags in detecting small objects and localization accuracy.  
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               Fig. 4. Timeline of various RCNN family and 

YOLO family object learning algorithm 

2.2. YOLOv2 

YOLOv2 improves localization accuracy and small object 

recognition with anchor boxes and feature maps of different 

scales. YOLOv2 struggles to recognize very small, huge, 

and overlapping objects and performs computation-

intensive training. It divides the image into a grid. YOLOv2 

treats these grids independently and does not consider the 

relationship that may exist between objects in a different 

grid. One of its improvements, YOLO9000, has provided a 

2% increase in mAP by including batch normalization. It 

trains the network on detection and classification 

simultaneously by using the COCO dataset for detection and 

the Imagenet dataset for classification. This joint training 

enabled YOLO9000 to train the network on a dataset that 

does not have labelled detection data [12]. It calculates the 

loss function on every anchor box and provides a high-

resolution feature map. The major drawback of YOLOv2 

was its inability to detect multi-scale images.  

2.3. YOLOv3 

YOLOv3 uses the concept of a feature pyramid, where an 

image is analyzed at three different scales and uses three 

detection heads to process different-sized feature maps and 

detect objects of different scales. It uses the multi-label 

concept, where the same object can be classified into 

different categories by using independent logistics 

classifiers and binary cross-entropy loss for class 

predictions [13]. 

2.4. YOLOv4 

YOLOv4 has different components, namely the backbone, 

neck, and head. Backbone works as a features extractor by 

using one of the models, such as VGG16, shuffleNet, 

MobileNet, and squeezeNet. These features are passed to 

the neck, performing feature aggregation. And at last, the 

head is used for object detection. Backbone and detection 

both use the bag of freebies and the bag of specials. In order 

to overcome issues like small dataset size or diversity of data 

and increase training quality, Backbone uses the CutMix 

and Mosaic data augmentation techniques. Backbone also 

uses DropBlock regularization to explore different paths in 

the network and prevent overfitting, and class label 

smoothing to prevent the model from getting overconfident 

on predictions[14]. Backbone uses Mish activation (an 

alternative to YOLO that brings non-linearity to the 

network), cross-stage partial connections (connecting 

multiple stages of the network together for improved feature 

extraction capability), and multi-input weighted residuals 

(combining features from different scales and levels) as a 

bag of specials. The detector uses CIoU (Complete 

Intersection over Union), CmBN (Cross Mini-Batch 

Normalizations), self-adversarial training, and several 

anchors pointing to same ground truth, a cosine annealing 

scheduler to periodically reduce the learning rate, grid 

sensitivity elimination, and random training shapes as a bag 

of freebies. The detector has Mish activation, SPP-block 

(special pyramid pooling block), SAM block (Spatial 

Attention Module), PAN path, and Distance IoU [15]. The 

block diagram of the backbone, neck, and head with their 

respective algorithms is listed below: 

Fig. 5. Basic components of object detection algorithms 

used after YOLOv4 

2.5. YOLOv5 

In 2020, Ultralytics proposed YOLOv5 and made it open-

source. It outperforms the earlier versions because of the 

dynamic architecture using the new CSP-Darknet 53 as a 

backbone, Spatial Pyramid Pooling Fast (SPPF), and CSP-

PAN as a neck. SPPF accelerates computation by combining 

features into a map of fixed dimensions. It produced the 

final output using the same YOLOv3 head. To enhance the 

dataset's quality, it has included mosaic augmentation, 

copy-and-paste augmentation, arbitrary affine 

transformation (random rotation, scaling, shearing, and 

translation), mix-up augmentation, albumentation, and HSV 

augmentation. [16]. YOLOv5 has maintained a high level of 

speed while improving accuracy and efficiency. It employed 

an auto-anchor training technique to examine and test ill-

fitted anchor boxes in the dataset [17]. 

2.6. YOLOv6 

YOLOv6 was introduced in 2022 with two scalable, 

reparameterizable backbones and necks that can fit models 

of different sizes. For better speed and accuracy trade-offs, 

it uses the RepVGG reparameterization technique, which 

separates the multi-branch structure used during training 

time from the plain structure used during inference time. For 

training small models, Rep-Block (a collection of RepVGG 

blocks activated by ReLU) is used as the backbone, while 

CSPStackRep Block is used for large and medium-sized 
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networks. YOLOv6's neck component is built on a modified 

PAN topology derived from YOLOv4 and YOLOv5. It 

employs an efficient decoupled head that divides the 

classification and regression operations into two distinct 

branches. These modifications reduce computation costs 

further in order to decrease inference latency. The 

regression task predicts the regression box. A model based 

on anchor points can be used to predict the distance between 

the anchor point and the four sides of the bounding boxes. 

The model performed better when it was trained with the 

same optimizers and learning settings as YOLOv5 for 300 

to 400 epochs [18]. Additionally, training for a longer time 

has been proven to yield improved results. 

2.7. YOLOv7 

In 2022, following a brief period of Yolov6, Yolov7 was 

released. It focuses on training process optimizations in 

addition to architecture optimization. To boost real-time 

object detection accuracy while keeping inference costs 

low, Wang et al. have developed a collection of trainable 

bag-of-freebies techniques. Model scaling is performed to 

achieve a good balance between aspects like the number of 

parameters used, accuracy, inference speed, and processing 

requirements. Model scaling can be achieved by using 

resolution, model depth, model channels, and the number of 

feature pyramids as scaling variables. Piotr Dollar et al. have 

analyzed individual scaling factors individually and also in 

a combined way. They came to this result by increasing the 

width of the models while scaling the depth and resolution 

to a lesser level [19]. The authors of YOLOv7 have 

addressed issues arising from the replacement of the original 

module by a re-parameterized module and output layer 

assignment by using a dynamic label assignment approach. 

They have developed the ideas of extended and compound 

scaling to make efficient use of both parameters and 

computational resources [20]. By controlling the shortest, 

highest-gradient path, deeper networks can train and 

converge more quickly. The major challenge is the gradient 

deviation. Expand, shuffle, and merge cardinality help E-

ELAN improve network learning by controlling gradient 

path deviation. Fig. 6 shows ELAN's design. Group 

convolution increases the computational block channel and 

cardinality. Layered computational blocks share a group 

parameter and a channel multiplier. The feature maps 

generated by each processing unit are combined after being 

randomly partitioned into g-groups. Each cluster of feature 

maps will keep its previous configuration's number of 

channels. In the end, the feature map's g-group cardinality is 

added. While maintaining the ELAN design architecture, E-

ELAN can be used to teach computational blocks new 

capabilities. The width of the computational block output 

grows when the depth of a model is scaled up. The result is 

a wider input to the gearbox layer. For this reason, YOLOv7 

scales solely the depth of a computational block when using 

a model based on concatenation.  

 

Fig. 6. Extended-ELAN[18] 

2.8. YOLOv8 

The YOLOv8 backbone is similar to YOLOv5, however, 

the C2f module replaces the CSP layer. Here, high-level 

characteristics and contextual information boost detection 

accuracy in the C2F module[21]. The decoupled head 

manages objectness, classification, and regression 

operations along with an anchor-free model. This layout 

improves model correctness and facilitates more focused 

work at each branch. The likelihood of an item being 

contained by a given bounding box is expressed by 

objectness probability. For objectness probability, a sigmoid 

activation function is used at the output layer. Class 

probabilities are represented by the softmax function. The 

model uses binary cross-entropy loss and CIoU, DFL loss 

for classification loss and bounding box loss respectively. 

These losses has specially increased small object detection 

[22]. 

In the Table 2 given below we are comparing YOLO 

algorithm from YOLOv1 to YOLOv8 on the basis of the 

architecture, image size, type of training used and 

performance.   

YOLOv1 is known for its simplicity, but it does not 

incorporate the use of anchors. However, YOLOv2 and its 

subsequent versions have used the concept of anchors, 

thereby providing a noticeable improvement in accuracy. 

The use of anchors remained prevalent until the advent of 

YOLOX. The YOLOX onward version employed an 

anchor-free approach, which provides better accuracy than 

previous methods. 

3. Comparison of Different Object Detection 

Techniques 

3.1. Two-stage object detection techniques:  

Table 1: Comparison of some core RCNN family 

algorithms 

S. 

No. 

Algorit

hm 

Region 

proposal 

method 

used 

mAP 

Dataset 

Used for 

training 

Drawbacks 
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1. 
R-CNN 

[23]  

Selective 

Search 
58.5 

Pascal VOC 

2007 

Network training 

is time-

consuming as it 

classifies 2000 

area proposals 

in each image. 

2. 

Fast-

RCNN 

[7][12]  

Selective 

Search 

66.9 
Pascal VOC 

2007 

Uses time 

consuming 

selective search 

region proposal 

generation 

algorithm 

70.0 

 

Pascal VOC 

2007+ 2012 

 

3. 

Faster 

RCNN 

[8] [12] 

Region 

proposal 

network 

69.9 
Pascal VOC 

2007 

It generates 

region proposal 

based on 

predefined 

anchor boxes 

which is not 

suitable for all 

type of objects 

73.2 
Pascal VOC 

2007+ 2012 

 

3.2. One-stage object detection techniques: 

       

Table 2: Comparison of some core YOLO family algorithms 

S. No. Algorithm i/p image size Dataset 

Used 

CNN Architecture used Loss Function 

Used 

Training 

technique 

AP[24] 

 

1 YOLO v1[11]  448*448 Pascal VOC 24 convolution layer with 

2 fully connected layer 

Multiple sum 

squared 

error(MSE) 

Single stage 

training 

 63.4 

 

2 YOLO 

9000[12] 

224*224 for 

160 epoch and 

448*448 for 

10 epoch 

during 

training 

 

Imagenet for 

training & 

Pascal voc  

 

Darknet-19 with anchor 

box 

MSE+cross 

entropy loss 

Multi stage 

training 

78.6 (on 

pascal voc 

2007)s 

3 YOLO v3[13] 416*416 MS-COCO Darknet-53 with anchor 

box and SPP-Net 

MSE+cross 

entropy 

loss+weighted 

smooth L1 loss 

Multi Scale 

training 

AP:36.2 

AP50:60.6 

At 20 FPS 

 

4 YOLO v4[20]  Standard size 

for YOLOv4 

is 416* 416 

but this model 

has been 

trained on 

different 

image size 

 

BDD 100K* 

MS COCO* 

CSPDarknet53 with 

anchor box and FPN 

MSE + cross 

entropy loss+ CIoU 

+ GIoU loss 

Multi Scale 

training with 

FPN and self 

adversial 

training 

AP:43.5 

AP50:65.7 

At about 65 

FPS 

 

5 Scaled YOLO 

v4[25] 

640*640 MS-COCO 

test dev 

2017 

 

 

scaled-down 

architecture(YOLOv4-

Tiny) 

scaled-up model 

architecture (YOLOv4-

Large) 

MSE + cross 

entropy loss+ CIoU 

+ GIoU loss 

SGD Optimizer AP:55.54 

AP50:73.4 

At 16 FPS 

[25] 

6 YOLOR[26]  MS-COCO 

test dev 

2017 

 

 

YOLOv4-CSP MSE + cross 

entropy loss+ CIoU 

+ GIoU loss 

Explicit and 

implicit 

knowledge 

based training 

AP:55.4 

AP50:73.3 

At 30 FPS 
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7 YOLOX[27] 640*640 MS-COCO 

test dev 

2017 

 

 

YOLOv5 backbone with 

modified CSPNet, SiLU 

activation and PAN 

BCE loss for 

objectness and 

classification.  IoU 

for regression task 

Training based 

on EMA weight 

updation, cosine 

lr schedule and 

IoU 

AP:51.2 

AP50:69.6 

At 57.8 FPS 

8 YOLOv5[16] 640*640 MS-COCO 

test dev 

2017 

 

 

CSPDarknet53 with 

anchor box and PAN 

  MSE + cross 

entropy loss + 

GIoU loss + DIoU 

loss + MSEoU 

loss[17] 

Multi scale 

training with 

PAN, 

exponential 

moving average, 

mixed precision 

AP:50.7 

9 YOLO v6[18] 640*640 MS-COCO 

test dev 

2017 

 

EfficientRep with PAN VariFocal Loss + 

SIoU/GIou* 

Quantization 

aware training 

AP:52.5 

AP50:70 At 

50 FPS 

10 YOLOv7-

E6[19] 

1280*1280 MS COCO 

dataset test-

dev 2017 

 

E-ELAN Assistant loss Other trainable 

bag of freebies 

AP:55.9 

AP50:73.5 

At 50 FPS 

11 YOLO v8[24] 640 * 640 MS COCO 

dataset test-

dev 2017 

CSPDarknet53 with FPN 

and c2f module 

CIoU, DFL and 

binary cross 

entropy 

Adaptive 

training 

AP:53.9 

At 280 FPS 

4. Weapon Detection by Using Yolov7 and Yolov8 

The easy availability of CCTV cameras, thermal imaging 

cameras, and other sensor networks has paved the way for 

AI-enabled weapon detection. Object detection has gained 

popularity because of real-time object detection and 

increased accuracy. We have a large weapon dataset 

available, and a model can be trained to identify a weapon. 

This model can be used in many sectors and public places 

where enhanced security measures are required to meet 

security standards. In this paper, we are creating a model by 

using the YOLOv7 and YOLOv8 algorithms and comparing 

their performance. 

4.1. Dataset Used 

The weapon dataset used in this experimentation was 

acquired from the source https://roboflow.com/[28]. We 

have performed some preprocessing on this dataset. This 

weapon dataset has five different classes, namely: 0: 

Grenade, 1: Gun, 2: Knife, 3: Pistol, 4: Handgun, and 5: 

Rifle. The total images of these individual classes in train, 

test, and valid have been listed in the table III. Some of the 

sample train images are shown in Fig. 7. 

TABLE 3: CLASS-WISE IMAGE COUNT IN DATASET 

Class Train 

images 

Test 

Images 

Valid 

images 

0 3489 141 317 

1 2882 109 253 

2 2675 128 302 

3 2908 102 246 

4 893 38 73 

5 1220 98 200 

Total 

annotations 

5829 274 612 

 

 

Fig. 7. Sample train images 

4.2. Results & Discussion 

The model's performance was evaluated through the 

measurement of mean Average Precision (mAP), recall, and 

precision at different epochs. Precision is an indicator that 

counts how many correctly identified objects there are out 

of all the known objects. Recall is the ratio of correctly 

identified objects to the known objects in an image. mAP 

assesses the comprehensive effectiveness of an object 

detection model across several categories and Intersection 

over Union (IoU) criteria. During YOLOv7 experiment, the 

model was trained using a dataset comprising 612 images 

that were accompanied by 1391 labels in each epoch. The 
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model underwent training across multiple epochs, and the 

evolution of performance parameters is presented in Table 

IV. It was observed that the performance parameter graph 

nearly reached a plateau after 50 epochs, with minimal or 

negligible changes to the performance parameter (as shown 

in fig of Table-IV). 

Table 4: Illustration of the model precision, recall and 

mAP on different epochs 

 

The output obtained on some of the sample images is shown 

below in Fig 8. The model is providing precision of 0.9099 

after 50 epochs.  Furthermore, the system exhibits limitation 

of inability to identify multiple weapons in a bounding box. 

This problem can be solved up to an extent by increasing the 

dataset and number of epochs.  

 

Fig.8. Models Predictions on test images 

We have also measured the performance of our custom 

dataset on YOLOv8 and found that the performance of 

YOLOv8 is way better than YOLOv7. Performance of 

YOLOv8 is 0.02% better than YOLOv7 when model is 

trained on 50 epochs is shown in Table 5. YOLOv8 is giving 

better performance due to albumentation training which 

involves generation of more training dataset by applying 

blue, scaling augmentation techniques. 

TABLE 5: YOLOV7 AND YOLOV8 PERFORMANCE ON 

WEAPON DATASET 

S. 

No. 

Algorithm 

Used 

Precision Recall mAP 

1 YOLOv7 0.9099 0.8808 0.9289 

2 YOLOv8 0.922 0.897 0.943 

5. Research Directions in Object Detection 

Earlier object detection algorithms were working on 

information extracted from images such as edges, corners, 

and color histograms. These techniques are based on 

template matching or sliding windows and are time-

consuming in nature. Subsequent to the year 2000, machine 

learning-based object detection has become more prevalent. 

In this paper, some cutting-edge algorithms are discussed, 

but there are still some unresolved concerns. 

5.1. Detecting small objects: 

 Many advanced algorithms fail to identify small objects in 

an image. Increasing the image's quality or putting together 

high-resolution features can help in finding small objects. 

Mate Kisantal et al. have worked on small object 

augmentation on the MS-Coco dataset and achieved a 7.1% 

relative improvement in object detection [29]. 

5.2. Interpretability and transparency:  

When an object detection algorithm is providing a 

prediction, its reasoning cannot be explained, and one is not 

certain about its prediction. 

5.3. Real-time object detection: 

These algorithms detect and identify objects with minimal 

delay in a resource-constrained environment. This delay 

time ranges between 20 and 50 ms for most of modern 

object detection techniques. 

5.4. Robustness against domain shift:  

Training and testing object detection algorithms on any 

dataset can provide good results, but when the model from 

the same algorithm and dataset is used in real time, it may 

not perform well. Mehran Khodabandeh et. al. have trained 

the model on the target domain by using noisy bounding 

boxes. These noisy bounding boxes are obtained from a 

trained detection model on the source domain [30]. 

5.5. Occlusion:  

If one or more objects are blocking the view of an object, it 

can be difficult to identify that object. Antagtian Wang et. 

al. have used compositional nets for detecting occluded 

10 20 30 40 50

precision 0.395 0.7855 0.8662 0.9091 0.9099

Recall 0.419 0.7516 0.842 0.861 0.8808

mAP 0.332 0.813 0.8899 0.9216 0.9289

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
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0.9
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an
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ar

am
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er
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objects. They have trained surrounding context-aware 

compositional nets by segmenting the surrounding context 

from the object. This algorithm has improved the relative 

performance of object detection by 41% [31]. 

5.6. Adversarial attack:  

It is an intentional attack on data by introducing noise to it. 

This data seems normal to the human eye but leads to the 

misclassification of objects [32]. 

5.7. Lack of standard method:  

There is no universal method to decide hyperparameter 

values such as number of layers, filter size, learning rate, 

etc. Further research is required in the field of 

hyperparameter optimization. 

5.8. Quick training:  

The object detection algorithm should be able to learn more 

features from a smaller training dataset as real-time data is 

limited. The size of training data can be increased by 

applying the augmentation techniques given in [33], but this 

will in turn increase the training time [34]. 

6. Conclusion 

The evolution of computer vision has revolutionized various 

industries, healthcare, and security sectors, with object 

detection algorithms achieving real-time performance at the 

expense of increased complexity. The ongoing 

advancements in YOLO architecture, incorporating cutting-

edge technologies such as deep learning and data 

augmentation, aim to enhance model performance and 

efficiency. However, significant challenges persist, 

including small object detection, occlusion handling, result 

interpretation, algorithm robustness across datasets, and 

susceptibility to adversarial attacks. As models improve, 

benchmark datasets such as COCO 2017 might be replaced 

by more challenging ones. YOLO's flexibility may lead to 

its application in diverse domains involving hard real-time 

response, like home appliances and driverless cars etc. This 

paper's analysis of YOLOv7 on a weapon dataset reveals 

that while performance improves with epoch count, 

challenges remain in identifying multiple weapons within an 

image. Our experiments achieved a maximum precision of 

0.9099 in YOLOv7 and 0.922 in YOLOv8. Further 

investigation could involve exploring alternative YOLO 

algorithms, increasing epoch counts, and expanding dataset 

sizes to refine precision and address existing limitations. 

7. Future Work:  

Future research endeavors will extend the experimentation to 

evaluate alternative YOLO variants and explore other object 

detection algorithms. Additionally, increasing the epoch 

count and dataset size will provide valuable insights into 

scalability and robustness. Transfer learning and ensemble 

approaches will be used to enhance model performance and 

address current challenges in object detection. 
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