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Abstract: An essential requirement for the design of a wireless communication system is the determination of the path loss. This 

article compares and estimates path loss using urban macro environment path loss models. Path loss model optimization is taken 

into consideration to represent the real propagation path and to find the optimized path loss model using a genetic algorithm. The 

analytically measured path loss is contrasted with the optimized path loss values of each model and error statics are used to assess 

each model’s performance. From the results, it can be deduced that the 5GCM LOS and NLOS model generates the mean square 

error and standard deviation with the lowest values. This model allows to improve the accuracy by 90.30%. The 5G heterogeneous 

network operators can improve the service quality at millimeter wave frequencies by employing 5GCM path loss model. 
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1. Introduction 

Due to the widespread adoption of virtual technology 

in everyday life, high speed internet access is no longer 

an option but rather a need. Therefore, it is essential that 

wireless subscribers receive high-quality service. 

Therefore, signal propagation models are necessary and 

beneficial for supplying wireless network users with a 

sufficient and high-quality signal level. Accurate path 

loss (PL) prediction is a key parameter for designing a 

wireless network and the prediction models are 

required to optimize system parameters. These 

optimized parameters will improve the quality of 

service (QOS), throughput, spectral efficiency, and 

coverage area [1-3]. Path loss is the degradation in 

signal strength when signals travel through wireless 

channels from the transmitter to the receiver (T-R). 

Path loss is unavoidable, Since the phenomena of 

electromagnetic propagation, such as diffraction, 

refraction, and scattering, can all be precisely described 

and characterized [4-6].  

 

Path loss models are important to precisely plan a 

wireless communication network. Several PL models 

have been developed and used to estimate the 

propagation loss in various frequency bands and 

various environments [7-10]. The PL model developed 

for a particular environment will not be suitable for 

another environment. There are numerous approaches 

employed in the literature to optimize empirical path 

loss models. In [11], the weighted least squares 

approach, genetic algorithm (GA), and hybrid GA were 

used to optimize the Cost-231 Hata model, with the 

hybrid model producing the lowest mean square error 

(MSE), root mean square error (RMSE), and PL.  

The PL of  Walfisch Ikegami model was estimated and 

compared using GA approach, particle swarm 

optimization (PSO), and grey wolf optimization 

(GWO) methods [12]. The GWO approach generated 

the lowest error statistics when comparing the GWO 

method against the GA and PSO algorithms. The least 

squares optimization method was utilized to identify 

the PL of empirical models such as Cost-231, ECC-33, 

and SUI models, revealing the Cost-231 model as the 

optimized PL model [13]. The Cost-231 model yielded 

the lowest PL and error statistics when compared to the 

other models. Partial derivative optimization method is 

employed to calculate the optimized PL in a wireless 

networks. Along with the PL, SINR, BER and total 

power consumption are estimated and compared with 

the machine learning based methods [14]. Authors 

observed that the proposed method achieves better PL 

compared to the machine learning based methods. In 

[15], authors proposed K-nearest neighbors and 

random forest algorithms to determine the PL and delay 

spread. The obtained PL values are compared with the 

Cost-231 and Okumura model path loss values, 

observed that the proposed models produces smaller 

RMSE.  
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Nowadays, wireless communication networks are 

expected to utilize millimeter wave (mmWave) 

frequency bands. The underutilized mmWave bands 

will improve the throughput, coverage capacity, 

spectral efficiency and quality of service [16-19]. 

Finding the best placement for 5G base stations (BS) 

requires careful consideration of PL model analysis at 

mmWave frequencies. Several mmWave propagation 

models have been developed by numerous engineers 

and researchers, including 5GCM, 3GPP, METIS, and 

mmMAGIC [20,21]. In this article, we focused on the 

optimization of mmWave PL model by minimizing the 

propagation loss. We estimated the mean, MSE, RMSE 

and standard deviation of error (SE) for all PL models. 

We observed that the 5GCM model generates less PL 

and error statistics in contrast to alternative PL models. 

The remainder of the paper is structured as follows. 

Section II discusses path loss models of an urban 

environment. In section III, a genetic algorithm is 

provided. Section IV presents the simulation results and 

error statistics, while Section V draws conclusions. 

2. Path Loss Models 

For precise design, comparison, and deployment of 

wireless networks, the use of wireless channel models 

becomes imperative to accurately and efficiently 

simulate signal propagation. The paper discusses the 

urban macro environment PL models currently utilized 

by various major organizations, namely: (i) 5GCM (5G 

channel model), (ii) 3GPP (3rd Generation Partnership 

Project), and (iii) METIS (mobile and wireless 

communication enablers for the twenty twenty 

information society) [20,21]. The PL of these models is 

dependent on the carrier frequency (f), the environment, 

and the transmitter-receiver range (R). Urban macro 

(UMa) environment under line of sight (LOS) and non 

line of sight (NLOS) scenarios are considered to 

estimate the PL and error statistics. The UMa PL 

models, PL, and their parameters, including distance, 

antenna heights, and shadow fading (σ), are listed in 

Table I.  

A. 5GCM Model  

The large-scale CI with respect to distance and ABG 

models are taken into consideration to calculate the PL 

in urban macro environment.  PL in the frequency range 

of   

6 GHz to 100 GHz is evaluated for these models in both 

LOS and NLOS scenarios. Table I presents the PL 

equations for the 5GCM model. 

B. 3GPP Model 

In this model, (R3D) is calculated based on the distance 

between transmitter and receiver  and  antenna heights 

ℎ1𝑎𝑛𝑑 ℎ2  and is given by  𝑅3𝐷 = √𝑅2 + (ℎ1 − ℎ2)2 

[19]. In 3GPP LOS scenario, PL is estimated based on 

break point distance dBP  and is estimated as [22-25] 

              𝑑𝐵𝑃 = 4ℎ1ℎ2𝑓 ∗ 109/𝑐              (1) 

                     ℎ1𝑒 = ℎ1 − 1.0 𝑚  

                ℎ2𝑒 = ℎ2 − 1.0 𝑚 

where c is the velocity of free space at 3 ∗ 108 m/s and 

h1e and h2e are the effective antenna heights. Utilizing 

a large-scale ABG model, the PL of an NLOS scenario 

is estimated [21]. 

 

 

     

 

Table 1. Urban Macro Path Loss Models 

Model PL (dB) σ (dB) Parameters 

5GCM LOS 𝑃𝐿 = 32.4 + 20𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) 4.1 6<f<100 GHz 

5GCM NLOS CI Model:  

𝑃𝐿 = 32.4 + 30𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) 

ABG Model: 

𝑃𝐿 = 19.2 + 34𝑙𝑜𝑔10(𝑅3𝐷) + 23𝑙𝑜𝑔10(𝑓) 

 

 

6.8 

 

6.5 

6<f<100 GHz 

 

3GPP LOS 
𝑃𝐿𝐿𝑂𝑆 = {

𝑃𝐿1,

𝑃𝐿2,
   

10 𝑚 ≤ 𝑅 ≤ 𝑑𝐵𝑃

𝑑𝐵𝑃 ≤ 𝑅 ≤ 5 𝐾𝑚
 

 

𝑃𝐿1 = 28 + 22𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) 

𝑃𝐿2 = 28 + 40𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) − 9𝑙𝑜𝑔10((𝑑𝐵𝑃)2

+ (ℎ1 − ℎ2)2) 

 

Where 𝑑𝐵𝑃 is given by eq (1) 

 

6 6<f<100 GHz 

1.5≤ ℎ2 <22.5 m 

ℎ1 = 25 𝑚 
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3GPP NLOS 𝑃𝐿 = max (𝑃𝐿𝐿𝑂𝑆 , 𝑃𝐿𝑁𝐿𝑂𝑆 ) 

𝑃𝐿𝑁𝐿𝑂𝑆 = 13.54 + 39.08𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) − 0.6(ℎ2

− 1.5) 

 

6 0.5<f<100 GHz 

1.5≤ ℎ2 <22.5 m 

ℎ1 = 25 𝑚 

METIS LOS 
𝑃𝐿𝐿𝑂𝑆 = {

𝑃𝐿1,

𝑃𝐿2,
   

10 𝑚 ≤ 𝑅 ≤ 𝑑𝐵𝑃

𝑑𝐵𝑃 ≤ 𝑅 ≤ 5 𝐾𝑚
 

 

𝑃𝐿1 = 28 + 22𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) 

𝑃𝐿2 = 28 + 40𝑙𝑜𝑔10(𝑅3𝐷) + 20𝑙𝑜𝑔10(𝑓) − 9𝑙𝑜𝑔10((𝑑𝐵𝑃)2

+ (ℎ1 − ℎ2)2) 

 

Where 𝑑𝐵𝑃 is given by eq (1) 

 

4 0.45<f<100 GHz 

1.5≤ ℎ2 <22.5 m 

ℎ1 = 25 𝑚 

METIS NLOS 𝑃𝐿 = max (𝑃𝐿𝐿𝑂𝑆 , 𝑃𝐿𝑁𝐿𝑂𝑆 ) 

𝑃𝐿𝑁𝐿𝑂𝑆 = 161.94 − 7.1𝑙𝑜𝑔10(𝑤) + 7.5𝑙𝑜𝑔10(ℎ)

− (24.37 − 3.7 (
ℎ

ℎ1

)
2

) 𝑙𝑜𝑔10(ℎ1)

+ (43.42 − 3.1𝑙𝑜𝑔10(ℎ1))(𝑙𝑜𝑔10(𝑅3𝐷)

− 3) + 20𝑙𝑜𝑔10(𝑓) − 0.6(ℎ2) 

 

6 0.45<f<100 GHz 

1.5≤ ℎ2 <22.5 m 

ℎ1 = 25 𝑚 

w=20 m, 

h=20 m 

C. METIS Model 

LOS PL of METIS model depends on break point 

distance given in eq (1). NLOS PL is estimated based 

on the large scale ABG model. 

These existing PL models are used to optimize the path 

distance and to minimize the PL in an urban 

environment in LOS and NLOS scenarios. 

3. Genetic Algorithm 

Optimization is a process that is carried out repeatedly 

by comparing numerous solutions to achieve the best 

outcome, which will enhance the QOS, efficiency and 

coverage of a wireless communication system. This 

optimization approach includes various steps: (i) 

Initially identify the variable design parameters, (ii) 

Initiate the equality and inequality constraints, and (iii) 

Finally create a mathematical model to optimize the 

design problem [26].  

The two main categories of optimization 

methodologies are analytical approach and heuristic 

approach. Partial derivatives, a linear least squares 

model, a weighted least squares model, and other 

analytical approaches are some examples of the 

mathematical modelling utilized in an analytical 

approach to optimize design problems. The design 

problem is optimized using simulations and 

approximative techniques in the heuristic approach. 

GA, PSO, GWO, etc., are some examples of heuristic 

methods [11,12,27]. 

 In this paper, GA is considered to optimize the PL 

models in an urban macro environment. The process of 

natural selection serves as the basis for the genetic 

algorithm, which is an optimization technique. It uses 

the survival of the fittest concept and is a population 

based search method [28]. The genetic operators are 

applied repeatedly to the individual existing 

population’s, which creates new populations to 

enhance the system performance.  

In  genetic algorithm, the representation of 

chromosomes, selection, recombination, mutation, and 

fitness function evaluation are the primary components, 

which are shown in the GA flowchart in Fig. 1. Simple 

GA has been altered to become multi objective GA. 

Creating the optimal Pareto Front in the objective space 

is the primary goal of GA, aiming to maximize all 

fitness functions without negatively affecting any 

others [29,30].  

The step by step procedure of GA is summarised as 

follows:  

• Initially, a counter is initiated to generate the 

initial  

          population. 

• At each stage, the algorithm generates a series 

of new populations by utilizing the individuals 

that make up the present population.  

• Each member of the present population has 

their fitness value determined, and the raw 

fitness scores are transformed into a variety of 

useful values.  

• Those from the present population who have 

lower fitness values are moved to the next one. 
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A solution that is ideal is produced by these 

values.  

• The crossover and mutation genetic operators 

are applied to generate children from the 

parents. These children then replace the 

current population, forming the next 

generation.  

• The procedure is repeated for many 

generations and the best solution is identified 

as the individual with the smallest fitness 

value.  

• Finally, the objective function is optimized by 

minimizing the fitness value of individuals 

within the population.  

 

Fig.1: Flowchart of Genetic Algorithm 

Therefore, the genetic algorithm efficiently searches 

for and converges to a global minimum and maximum 

without the requirement of complex derivative 

computations.  

This optimization process utilized a GA package in 

MATLAB to achieve its goals. The parameters 

considered for optimization are the path difference, 

ranging from 1 to 150 m, and the operating frequency, 

ranging from 1 to 100 GHz. Therefore, we considered 

path difference and operating frequency as decision 

variables in GA. The objective function is determined 

as the minimization of path loss.  

GA tuning is used to optimize the urban PL models and 

to achieve the desired PL by adjusting population size, 

mutation rate and selection rate. We carried out several 

simulations to fine-tune the GA parameters with 

various combinations of population sizes, mutation 

rates, and selection rates. Based on the outcomes of 

these preliminary experiments, we observed that a 

population size of 100, a mutation rate of 2, and a 

selection rate of 1 yielded satisfactory results such as 

enhanced path loss. The optimization process is carried 

out for a maximum of 50 iterations. In this paper, we 

compared the traditional MATLAB coding approach 

with the GA approach for estimating PL in an urban 

environment. 

Initially the counter is initiated to create the initial 

population, later it is incremented. After, initiating the 

population, the mutation of the population is carried out 

and the mating has been performed using the crossover. 

This process is carried out until the optimize solution 

for the PL model to be achieved. The optimized and 

analytical solutions of each model are compared in this 

paper. The error statics, including MSE, RMSE, and SE, 

are computed using the optimized and analytically 

measured values of each path loss model. 

4. Results and Discussions 

In this article, macro cell PL models are investigated by 

comparing the analytically measured values and 

predicted values with genetic algorithm. The 

optimization toolbox in Matlab is used to implement 

the GA for the objective functions are specified in 

Table 1. Path loss is estimated and compared for the 

four standard models proposed [19] for the LOS and 

NLOS urban scenarios, which are shown in the Figs. 2-

5. These figures demonstrate that the GA produces 

significantly less path loss compared to the analytically 

measured values in both LOS and NLOS scenarios. 

Therefore, the optimization approach improves the 

performance of PL models.   

Error statistics like mean, MSE, RMSE and SE are used 

to measure the accuracy of the each PL model and to 

identify the optimized model for the urban macro 

environment. The analytically measured PL and 

predicted PL using GA for 5GCM model is noticed in 

Fig. 2.   

 

Fig. 2: Path loss comparison using 5GCM model 

The path loss estimated by 5GCM CI and ABG models 

optimized with GA has a better performance compared 

to the analytically measured 5GCM CI and ABG 

models in LOS and NLOS scenarios.  From this figure, 
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it is observed that the PL raises to a maximum value 

suddenly for a small path difference i.e., up to 1000 m 

then it raises slowly for the remaining distance i.e., the 

PL is more in the near field compared to the far field.  

In addition to the 5GCM model, the study also 

incorporates the 3GPP and METIS models to minimize 

the PL and to determine the optimized PL model for an 

urban macro setting. Fig. 3 and 4, shows the 

comparison of path loss estimated through analytical 

and optimization approaches of 3GPP and METIS 

models respectively. These figures distinctly reveal that 

the optimization approach enhanced the path loss 

compared to the analytical approach. The minimum, 

maximum, and mean PL of  5GCM, 3GPP and METIS 

models are listed in  Table 2.  

Fig. 3: Path loss comparison using 3GPP model 

 

Fig. 4: Path loss comparison using METIS model 

 

Optimized path loss of urban path loss models using CI 

and ABG models are shown in Fig. 5. From this figure, 

it is observed that the PL of LOS models is less than the 

PL of NLOS models because in NLOS scenario the 

propagation path is obstructed by buildings, trees, 

advertisement boards, etc., which will cause multipath 

fading. Therefore, the PL in NLOS scenario is more 

than the LOS scenario 

 

Fig. 5: Comparison of Urban path loss models 

the minimum, maximum, and mean PL of LOS and 

NLOS urban PL models are shown in Table. 2. From 

this table, it is identified that the minimum, maximum 

and mean path loss variation between analytically 

measured and optimization method are more than 35 

dB, 10 dB        and 15 dB respectively in all models.  It 

shows that the path loss is minimized by using the GA 

optimization approach. 5GCM NLOS CI model 

produces minimized path loss and more accuracy i.e., 

90.36% compared to 5GCM NLOS ABG model, 3GPP 

and METIS models. In LOS scenario, 5GCM model 

produces minimized PL and more accuracy of 89.79% 

compared to 3GPP and METIS models. Therefore, 

5GCM model is considered as an optimized PL model 

in LOS and NLOS urban environments. 

 

 

Table. 2: Performance measures of urban path loss models 

Path Loss 

Model 

Analytical 

Measurements 

PL (dB) 

Optimized 

Measurements 

PL (dB) 

Analytical 

PL (dB)     

GA 

PL (dB)  

Accuracy 

(%) 

Min Max Min Max Mean Mean 

5GCM LOS 76.41 156.2 37.95 145.28 146.23 131.65 89.79 

5GCM NLOS 

(CI) 

79.11 198.85 40.65 183.52 183.44 166.66 90.36 
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5GCM NLOS 

(ABG) 

71.6 207.30 27.36 189.75 189.75 170.66 89.37 

3GPP LOS 83.7 161.72 35.45 149.77 149.77 135.62 89.61 

3GPP NLOS 83.7 202.89 35.45 186.06 186.06 164.70 89.10 

METIS LOS 81.7 159.72 33.453 147.77 147.77 133.62 89.47 

METIS NLOS 81.7 202.92 3.45 186.09 186.09 164.65 89.08 

The error statistics like MSE, RMSE, and SE are 

measured and listed in Table 3. From this table it is 

identified that the least error statistics are produced by 

5GCM LOS and 5GCM NLOS (CI) model compared 

to other LOS and NLOS PL models. Therefore, the 

5GCM model is considered as an optimized PL model 

compared to other PL models in LOS and NLOS 

scenarios in an urban environment. Service providers 

can use this paradigm to improve the performance of 

their networks and to provide better signal coverage by 

reducing the path loss in an urban macro environment. 

Table 3. Error statistics of urban path loss models 

Path Loss Model MSE RMSE SE 

5GCM LOS 6.72 2.6 2.55 

5GCM NLOS (CI) 10.71 3.27 3.52 

5GCM NLOS (ABG) 13.89 3.27 4.00 

3GPP LOS 7.74 2.78 2.74 

3GPP NLOS 14.8 3.89 3.85 

METIS LOS 7.74 2.78 2.74 

METIS NLOS 14.9 3.86 3.9 

 

5. Conclusion 

The paper utilized the genetic algorithm to optimize 

small cell PL models to attain precise path loss. The 

optimized PL values generated by GA were then 

compared to the analytically measured path losses. 

According to the simulation outcomes, the 5GCM 

model exhibited the lowest PL and error statistics such 

as MSE, RMSE, and SE, indicating its effectiveness. 

As a result, the 5GCM model was selected as the 

optimized PL model for an urban macro-environment. 

We wish to use PSO and GWO techniques to estimate 

and compare the PL of urban micro environments in the 

future. 
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