

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 910

A Framework for Software Testing of Blockchain Based Applications

with Appropriate Tools

Smita Bansod*1, Lata Ragha2

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: Blockchain technology is becoming the preferred technology for various applications in the digital world notwithstanding it

being an emerging technology with a few grey areas relating to standards, best practices, and vulnerability to attacks. Due to the inherent

features of blockchain, there are serious challenges in deciding on an appropriate testing framework and selecting the tools for the rigorous

testing, validation, and verification of the software being developed for the evolving blockchain based applications to ensure glitch free

operations in a practical working environment. The software testing needs and parameters to be tested have been discussed in detail and a

testing framework has been proposed keeping in mind the special needs of blockchain based applications, such as smart contract testing,

type wise testing and layer wise testing. A study of the various testing tools available have been made and a comparison table presented to

identify an appropriate testing tool for specific applications.

Keywords: Blockchain Technology, Software Testing, Quality Assurance, Testing Framework, Automation tools.

1. Introduction

Ever since the introduction of Blockchain Technology in

2009 [1], this technology has been attracting attention and

today it is the most preferred technology for various

applications. However, hurdles like vulnerability to various

types of attacks come in the way of Blockchain becoming

the preeminent technology of the digital world.

International Standards like IEEE and NIST are yet to agree

on a single definition of Blockchain. While the business due

to Blockchain applications has been predicted (by Gartner)

to exceed $3.1 trillion by the year 2030, the applications

themselves are in preliminary stages of development, with

several issues and glitches relating to platforms, languages,

consensus mechanisms, etc., leading to attacks which will

result in collapse of the system and data loss. Paper [2]

discusses the details of various applications of Blockchain

technology and their vulnerability to attacks.

To facilitate the large-scale adoption of Blockchain based

applications, it is necessary to make these applications

robust with glitch free operation conforming to accepted

standards. There is a need for rigorous software testing

approach to protect, verify and validate the applications

based on blockchain technology. Similar to established

standards like Object-oriented Testing, Web based Testing,

Agile testing and so on to ensure quality of software, there

should be well defined framework for testing the software

of the various applications based on blockchain to ensure

quality. Being an evolving technology, there are serious

challenges in testing blockchain technology due to the

absence of established best practices, the generation of

appropriate test data and issues relating to scaling, security,

and performance.

“Quality" refers to the overall measure of how well a

software application or system meets its intended

requirements and performs its functions effectively and

reliably. Software quality is a complex concept which

defines Functionality, Reliability, Performance, Usability,

Security, Compatibility, Maintainability, Testability,

Scalability, Robustness, and Interoperability. The

systematic evaluation of these quality criteria is done

through software testing to identify and rectify the gaps and

resolve the issues. Numerous researchers are working to

arrive at an appropriate framework of software testing to

ensure glitch free operations of the applications based on

blockchain technology [3], [4]. The methodology, methods,

and techniques of such a systematic approach to software

testing will go a long way in resolving the quality issues

relating to security, performance, and smart contract.

The flow of the paper is explained in the following sections:

Section 2. General discussion on Software Testing and

Quality Assurance. Section 3. Brief explanation of

blockchain technology, development of applications and

special requirements of blockchain based applications /

software. Section 4. Discussion on the research work and

the limitations. Explore the use of Blockchain technology

for software testing and testing for blockchain based

software as a part of literature survey. Section 5. Challenges

in software testing for blockchain based applications.

Section 6. Proposed software testing framework specifically

for blockchain based applications which results in ease of

1 Faculty, Shah & Anchor Engineering College and Research Scholar,

Terna Engineering College, Mumbai University, Mumbai, MH, India

ORCID ID : 0000-0002-7057-9754
2 Fr. C. Rodrigues Institute of Technology, Vashi, Mumbai University,

Navi Mumbai, Maharashtra, India

ORCID ID : 0000-0002-6055-6671

* Corresponding Author Email: sakec.smitab@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 911

testing. Section 7. The software testing support tools - their

availability and selection for Blockchain based applications.

2. Software Testing and Quality Assurance

The goal of providing quality assured software is achieved

by (i) detecting and eliminating bugs, (ii) providing a

reliable system with minimum risk (iii) reducing

maintenance cost, and (iv) refining the process for future

testing. Also, the product should meet the requirements of

the intended application.

The figure 1 explains the basic software testing model which

must include the development software as per the

requirements, the bug model, testing methodology and

trained testers who are knowledgeable in the field of

software testing and the technology used [5].

Fig 1. Basic Software Testing Model

Once the operational requirements are firmed up, the testing

process should be taken up in close collaboration with the

software development team. The test management team has

to draw up a detailed testing plan taking into account the

testing process, details of test cases with specifications, the

test environment, the execution of test cases, monitoring

their assessment after execution, tracking the defects,

identifying the testing tools [6], and the test reporting before

arriving at the quality assurance of the product.

The software development goes through several stages after

the requirements are firmed up. The fault or bug detection is

a lengthy process shown by figure 2. Any deficiency in the

early phases like requirement gathering, analysis and design

phases must be identified and corrected early. Identifying

and fixing the faults after implementation will lead to high

rectification costs. ‘Fault in’ phase consists of requirement

gathering and analysis, designing and coding phases. Under

the ‘Fault out’ phase, action is taken to classify the detected

faults, assign priorities and resolve the faults as per the

assigned priority sequence.

Fig 2. Fault Detection Model

The detection of bugs/ faults must be done using a proper

methodology [7]. The software testing methodology is

based on the testing strategy which consists of test factors,

test phases and testing approaches. The strategies adopted

for Verification and Validation of software differ from each

other. Validation strategy is used to check whether the

developer has built the right product conforming to the

industry standards following the various testing milestones

at the unit, integration, functionality, system, acceptance,

and installation testing stages. Verification testing is the

process to check whether the developer has built the

software with the correct data to meet the requirements of

the client, validated through different steps for requirement

gathering, requirement specification, functional design

(high level), internal design (low level) and coding. Separate

tools are required for testing in Static and Dynamic modes.

In Static testing, the project is verified by review committee

members without execution. In Dynamic testing, the

software is tested by actual execution to detect faults using

white box testing or black box testing. Testing tools are tools

used for various activities to automate the testing process

like management of overall testing process, verification and

validation testing and generating reports for analysis. The

structure and the code are checked using white box testing

followed by black box testing with focus on input and

excepted results.

Based on the tests, all gaps and faults detected in the

software are fixed by the developer and then the software is

subjected to regression testing to verify that the fault

rectification patches do not affect the other modules in the

software. While managing the software testing process, the

aim is to test the high priority test cases ahead of the others

to improve the testing efficiency by minimizing the test

suite.

3. Blockchain Framework and Importance of

Testing

Blockchain is an emerging technology with features such as

immutability, sequential chain of cryptographic links in

distributed ledger architecture with validated blocks using

consensus algorithms. This technology is quite attractive for

secure applications in various domains. Blockchain

evolution goes through three phases: 1- Cryptocurrency, 2-

Ethereum with blockchain and 3- Applications development

in different areas/domains.

A system to prevent tampering with the timestamps of

digital documents using distributed computing was

introduced in the 1990’s paper [8]. The idea was to provide

a secure and tamper evident way of recording information.

Later, Satoshi Nakamoto created Bitcoin [1] and put

forward the concept of blockchain technology with

decentralized ledger maintained by anonymous consensus.

The bitcoin cryptocurrency was deployed in application

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 912

related to cash and first bitcoin transaction was recorded in

May 2010 for buying two pizzas in exchange of 10000

bitcoins. This was followed by various cryptocurrencies

which were introduced and digital payment system was

booming during the period 2012-13. Vitalik Buterin was the

pioneer who introduced the smart contract platform-based

application in the year 2013 when he was just 19 years of

age. The Hyperledger project launched in the year 2015 by

the Linux Foundation introduced the concept of

‘Permissioned blockchain’ network. This concept was the

turning point in the development of blockchain technology,

which opened the technology for various applications. After

2016, the blockchain technology was moving very fast on

its own with many researchers working to make it a fool

proof technology with rigorous testing strategy to make the

applications robust and glitch free. The timeline of the

blockchain technology is shown in figure 3.

Fig. 3. History of Blockchain Technology

Blockchain Architecture (shown in figure 4) is crucial to

understand the technology. A chain of blocks is formed by

connecting several validated blocks. Each block contains

block version, Root hash value, timestamp of validation,

difficulty level in n bits, Nonce as validation matching

value, Parent block hash value and various transactions hash

value. Blockchain network consists of various nodes which

are connected virtually with each other in a mesh

configration. The nodes have complete data of blockchain

based on their types. Basically, Full node has all the data of

blockchain while Light node has its own transaction related

information.

Fig. 4. Blockchain Architecture

Blockchain technology basically supports key features such

as Decentralization, Persistency, Transparency and

Auditability. These features should be verified at the testing

stages to give concrete support to the application and satisfy

the requirements.

The strategy for testing the two primary categories of

Blockchain – Public blockchain and Private blockchain –

should be tailored suitably to meet the requirements of each

category. In the case of a public blockchain, emphasis

should be placed on aspects such as network security,

vulnerabilities in smart contracts, and wallet security. On

the other hand, for a private blockchain, testing focus should

be directed towards component-level tests, smart contracts,

identity management, infrastructure security, and related

areas. Consortium blockchain is the third type, which is a

combination of both public and private blockchains. The

testing strategy for this category needs to be designed taking

into consideration the structured data which could be for

both private and public networks.

Blockchain blocks are validated by miners using calculation

algorithms i.e., consensus algorithms. The consensus

algorithms need to be thoroughly verified and validated at

the design stage itself to ensure that the applications will be

glitch free. There is a list of consensus algorithms available

and further research is continuing to improve the

performance and speed up the operations.

The block is validated by calculating the hash values of

complete block using nonce to satisfy n bits challenge. The

Merkle tree algorithm is used to calculate the transaction or

data hash value in block. The actual data needs to be stored

on some virtual decentralized data storage like IPFS or

Swarm and then connected to blockchain network using

hash values in blocks.

 The application development happens using platforms like

Ethereum, Hyperledger etc. If the platform is vulnerable,

then the application built on it is also vulnerable. Hence

selection of platform must be done carefully taking into

consideration the special requirements of each application.

The testing of smart contract must be done meticulously, as

this is the heart of the application. The history of blockchain

indicates that the earlier failures and attacks happened due

to lack of knowledge about smart contract writing, language

used and so on. The systematic study [9] discusses the

identified issues relating to smart contract and solutions for

the same. The validation and verification of smart contract

by experts at the testing stage should be done carefully and

on priority considering the real operation of the application.

Once the smart contract is deployed, making changes is

cumbersome and costly. In the past, attackers had found

vulnerable networks and caused huge losses through DAO

and other attacks.

4. Testing Frameworks for Blockchain Based

Software - Literature

The literature survey starts with a discussion on the testing

of software using Blockchain technology but later focusses

on the testing of software meant for applications based on

blockchain technology in Table 1. This paper proposes a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 913

framework for testing the software of blockchain based

applications with appropriate tools.

Blockchain technology is used to collaboratively test the

software developed for major projects in a secure way. The

management of the testing teams working on development

of large and elaborate software systems is a challenging

task. A collaborative system of software testing using

blockchain technology has been proposed in [10]. This

collaborative model resolves most of the hurdles posed by

integration issues of blockchain based software testing.

The Agile Plus framework was able to overcome the

deficiencies of the earlier software development projects

[11]. Software testing is performed through various layers

and all the transactional steps with data including smart

contract execution are stored in a private Ethereum

blockchain and IPFS respectively for ensuring that the

system remains tamper-proof with reduced risk of hacking.

The improvement in the engineering quality and testing

method of scrum based blockchain development projects is

discussed in paper [12]. The sustainable life support

provided by blockchain through sprints in the development

of BOS (Blockchain Oriented Software) is explained in

paper [13]. This has ensured customer satisfaction

throughout the life of the software.

Many researchers have introduced various tools and

frameworks for blockchain based testing. One of them is by

Kaya [14] , which facilitates quick formulation of test cases

for front-end behaviour and back-end logic. This tool

assures about the set the blockchain pre-states, and generate

readable analysis reports. It is basically used for automated

analysis and report generation of smart contract by

validation method. A few platforms are covered with the

help of this framework and research is on to enhance its

adoption.

Coverage of the applications through Test cases is an

important factor in testing of the software. As discussed

previously, smart contract is the heart of blockchain based

applications. By meticulous testing of the smart contract

implementation, the applications can be made more safe and

secure. Control Flow Graph (CFG) is used for data flow

testing with higher coverage of test cases by enhanced

Genetic Algorithm [15]. This framework is basically

consisting of the following three steps: CFG construction,

data flow analysis, and test-case generation. The framework

is efficiently generating high priority / quality test cases.

Also, there is improvement in performance, execution, and

iteration time of the random test cases.

Smart contract is combined with various other entities such

as User, Hackers, Transactions, Mining, Block and then

Registered contract. While verifying the smart contract and

behaviour of the model, all the related entities should be

verified simultaneously to check their interaction with the

smart contract. The formal verification model [16] verifies

the statements and logic of the contract and checks with

other entities for integration of the complete system for

proper testing and smooth working of the applications.

Smart contract verification, validation and testing using

public blockchain test network (like Ropston, Rinkeby),

Security analysis tools (Oyente, Securify), Emulators

(Hyperledger Calliper, Hardhat, Ganache), and Simulator

(Gauntlet) has been suggested in [17]. Further, analysis

must be carried out on smart contract by its well-known

vulnerabilities such as Smart contract source code,

application interaction with other code or smart contract and

blockchain system transactions and nodes creation

vulnerabilities. The detection of vulnerabilities of smart

contract and their comparison using different methods like

formal verification method, fuzzy testing method, stain

analysis method, symbol execution method, intermediate

representation method and deep learning method have been

discussed in [18].

Smart contract testing is conducted using Mutation testing

method named as SuMo (SOlidity MUtator) [19]. Analysis

of the Solidity Documentation and existing tools led to

eleven innovative mutation operators, with seven of them

specifically focusing on the distinctive features of Solidity.

This method is faster and is very effective in detecting test

cases efficiently.

Different researchers have focused on various factors.

Latency, throughput, response time are calculated and test

cases are designed using Ethereum test network [20]. The

performance of Hyperledger fabric blockchain framework is

analysed using the factors throughput, latency, and

scalability [21].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 914

5. Challenges in Blockchain Testing

Absence of Best Practices: One of the significant hurdles

in the Blockchain realm stems from a deficiency in skills or

experience in developing Blockchain applications.

Acquiring additional skills or grasping the best practices for

implementing Blockchain applications can be quite costly.

Deficiency in Blockchain Testing Tools: The crux of

successful Blockchain implementation lies in utilizing the

right tools, particularly when testing Blockchain-based

applications/products. Without the appropriate toolset, the

likelihood of failure increases. Effective testing of

Blockchain applications demands a diverse toolset, focusing

on Bitcoin and encompassing various Ethereum tools.

Lack of Standardization in Blockchain Testing: Beyond

technical proficiency, possessing legal expertise is crucial

for fostering Blockchain adoption. Limited awareness of the

complex blockchain concepts amongst the developers is the

major cause for the numerous issues in the Blockchain

space.

Suboptimal Test Strategy: Testing is often relegated to a

lesser role than programming, resulting in the development

of a Blockchain application environment with either

minimal or no dedicated testers for exploring and evaluating

Blockchain products. The suboptimal testing strategy leads

to inefficient testing of Blockchain applications, either

through repetitive testing or, in some cases, no testing at all.

Irreversibility of Transactions: Implementing Blockchain

without due diligence exposes organizations or users to high

asset risk, as Blockchain transactions are irreversible.

Establishing controls to prevent redundancy and ensure

additional safety poses a serious challenge.

Block and Chain Size: In addition to having standard

testing practices, tools, and protocols in place, it is crucial

to validate the block and chain size to avoid failure of

applications.

Performance and Load: Proper performance and load

testing in both the development phase and under different

network conditions will ensure glitch free operations in

actual live environment.

Table 1. Testing areas and their limitations

Reference

Paper

Focus

(Application/

Network/

Smart contract)

Testing for /

using

blockchain

Testing area Limitation

[10] Application Using Large and complex application integration The substantial costs associated with the

storage, computation, and setup of a blockchain
architecture.

[11] Application Using Improves security, traceability, communication,

coordination transparency, and improves mutual
trust between customer and developer.

User rating and review, translator for language

support, task distribution in developer team
also.

[12] Application Using Improve software quality, development efficiency,

leading to efficient project management O&M

services.

Missing practical approach between software

developers and project managers.

[13] Application Using With appropriate monitoring matrix, sustainability

is ensured.

Focus on supply chain sector only. Further

domains need to explore.

[14] Smart Contract For Ease the creation of test cases, offering a flexible
and convenient method for test engineers to

establish blockchain pre-states and generate

meaningful reports.

Do not support to variety of blockchain
platforms.

[15] Smart Contract For With smaller number of iterations and less

execution time, high coverage of the test cases is

generated.

Applying advanced fitness function, large and

complex smart contract cases can be tested.

[16] Smart Contract For Formal verification method using syntax, models,

and logic.

Do not support more advanced smart contract

syntax.

[17] Smart Contract and

network

For Comparison based on public test networks,

security analysis tools, blockchain emulators and

blockchain simulators are compared with the
support of smart contract.

The survey, no proposal for better solution to

overcome the limitation.

[18] Smart Contract For These are meant for smart contracts. For high

accuracy results the static and dynamic detection
methods are to be combined.

Combination of static and dynamic detection

methods will enable the detection of more
types of vulnerabilities of multi-version smart

contracts.

[19] Smart Contract For A reliable Solidity code is delivered and the fault
detection capabilities are improved with this Tool

for Ethereum blockchain.

Expanded SuMo with automatic regression
mutation are needed to identify the nature of

such patterns and to understand whether they

overlap with some existing operators.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 915

Consistency/Availability: In Blockchain applications,

achieving consistency in Bitcoin does not happen

simultaneously with availability and partition tolerance.

Transitioning to strong consistency often presents a myriad

of challenges.

Security: Proper security check at the testing stage will

reduce vulnerability of applications to attacks at the

network, user, and mining levels.

Time consumption for validity: Transaction and block

validation consume time because of consensus algorithm

complexity. New arrival of consensus algorithm testing and

report generation requires a lot of time to rectify fault in it.

Also, compatibility testing of consensus algorithm poses a

real challenge.

6. Proposed Blockchain Based Testing Framework

Figure 5 below shows the functional block schematic of the

proposed blockchain based software testing framework.

Fig. 5. Software Testing Framework

6.1. Initiation

Software Quality Assurance and Control team initiates the

testing process after fully understanding the requirements of

the application and the technology adopted.

6.1.1. Generate and Maintain Test Policies and

Standards

Team members contribute in policy making and the

manager takes the decision on the quality of the product.

Industry standards should be followed by the organization

while developing the software to assure the quality to

customers. The Quality aspect has to be kept in view

throughout the testing process and the policies and standards

should be maintained consistently.

6.1.2. High Level Test Phase Plan and Resource

Scheduling

General project data is collected from the customer and

software engineering team. This data is analyzed and a

master plan is drawn up for resources planning and

scheduling.

6.2. Test Planning

Testing plan is drawn up conforming to the master plan and

scheduling. Team members and the related managers

actively participate in the requirement design and coding

activities and collect the information. The testing team along

with SQA team draw up the high-level plan and decide the

major objectives to verify and validate the developed

software product.

6.2.1. Sympathetic/ understanding Blockchain

architecture

Blockchain architecture – platform, consensus, network,

languages used in the application should be thoroughly

understood to write and execute the test cases based on it.

6.2.2. High level planning

The high-level plan for testing objectives and resource

training scheduling should be decided. Also, the project

testing life cycle and milestones should be clearly identified.

6.2.3. Test Design

Detailed test design for the validation task involves aligning

the requirements or features with the specific test cases

intended for execution with the expected outcome using test

oracle. The best tools and environment for the execution of

the test cases have to be selected.

6.2.4. Detailed test case writing

In accordance with the initially opted standard, test cases

should be specified (e.g., IEEE recommended test

specification with components) in detail which should

include the purpose, the need, the requirement of special

environment, procedure for execution, inter-case

dependency, intra-case dependency, output specification,

etc.

6.2.5. Test Data Creation

Test cases execution and verification requires data in the

form of input as well as expected output. Input data are

generated using different technologies. One of these is

boundary value analysis which is a type of block box testing.

Test oracles are used to generate expected output data.

While designing test cases, all data should be generated, so

that the execution is simplified.

6.2.6. Environment setup

Test cases should be executed in a similar environment as

the application is expected to face in real time deployment.

As the Blockchain platform related testing environment is

cumbersome, adequate advance action is required to train

the testing team to work in the required environment.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 916

6.2.7. Consideration of Measurement and Matrices

While designing test cases, various measurements and

matrices required to identify the performance of each

component as well as the total application must be factored

into the testing process to ensure that nothing is left out.

6.3. Testing of Blockchain based System

Unlike testing of traditional applications, Blockchain based

applications need to be tested based on blockchain features,

interfacing with other software, platforms, networks,

components, types and layers of blockchain architecture.

Hence the testing is carried out in two parts: testing of types

and testing of layers.

6.3.1. Type wise testing

Functional Testing: Basic functionalities of the various

components of blockchain are examined. A new block can

be added only when the validity of the transaction is

confirmed. Assessing block size, chain size, verification of

a block before it is added are some of the examples of testing

Integration Testing: Given the involvement of multiple

components in a blockchain application, it is crucial to

conduct regular and thorough integration tests to confirm

the proper integration of all components.

Security Testing: Security testing is indispensable for

debugging blockchain applications, particularly in

environments where high levels of security are paramount,

such as in financial, government, or regulatory settings.

Performance Testing: The speed of blockchain applications

is a critical factor, and performance testing evaluates the

speed of executing the transactions within the network.

Node Testing: The consensus achieved among all the nodes

determines the sequence of adding and storing transactions.

The consensus protocol decides the strength of a blockchain.

Smart Contracts Testing: Smart contracts are software

modules on the blockchain that automatically execute

transactions. Testing smart contracts involves ensuring that

parties involved in transactions adhere to the specified rules.

API Testing: API testing evaluates the interaction of

applications within and outside the blockchain system.

Cycle Testing: It ensures the durability of a blockchain

throughout every transaction cycle, guaranteeing the orderly

storage of added transactions within the blockchain

network.

Interoperability Testing: If the system architecture includes

various platforms and other blockchain networks, then the

cross blockchain transactions must be tested using

interoperability testing.

Data Immutability Testing: It ensures that data cannot be

altered or deleted, once it is added to the blockchain.

Consistency and Atomicity Testing: It ensures that all the

changes are either applied or none will reflect on the

blockchain while transactions take place.

Fault Tolerance and Recovery Testing: In the event of

failures like node crash or network partition, the system

should recover immediately.

Regulatory Compliance Testing: It ensures that the

blockchain application complies with relevant regulations

and legal requirements.

Privacy Testing: It ensures that sensitive information is

appropriately protected [22].

Penetration Testing: This test identifies potential security

vulnerabilities which must be addressed.

Bug bounty: Development of 100% bug free software is not

possible. So, organizations encourage security researchers

and ethical hackers to use and report vulnerabilities in their

software by offering monetary rewards. It will be helpful to

organizations to enhance the security level of the software

by leveraging the skills of the global community of security

researchers.

Blockchain layered architecture and the related

vulnerabilities are mentioned in [23] which are helpful to

test against those vulnerabilities. Also [4] discusses about

layer wise vulnerabilities related to Smart Contract,

Performance, and Security of blockchain applications and

test automation using various tools.

6.3.2. Layer wise testing

Data layer: Data layer testing ensures that transaction data,

hash values and wallet data are properly encrypted with

appropriate cryptosystem to be quantum resistant and

consistent.

Network layer: Interconnectivity, authentication for users

and providers of network services in order to protect using

redundancy, availability, routing, etc, to be tested

thoroughly.

Consensus layer: Consensus algorithms are to be tested to

ensure to realise all the advantages.

Replicated state machine layer (Smart Contract and

transactions): User identity, transaction data

confidentiality, integrity, authentication, and availability

should be tested and validated using safe language, static/

dynamic analysis, formal verification, and audit.

Application layer: User interface, malware, application

developers, token issuer, regulatory requirements must be

tested for multi factor authentication, decentralized

authority, and application-level privacy preservation.

6.4. Test Report

After completion of the tests, the report is generated which

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 917

is a summary of all the tests cases executed with the

evaluation results. The report is useful for maintenance of

the system as well as to plan the test cases of similar kind of

blockchain based products.

6.4.1. Defect Tracking

On testing, if a failed status is indicated, the defect or gap

should be fixed according to its impact and severity level.

The side effects of fixed defect also need to be checked. In

case a defect is detected but could not be fixed, then that

particular defect has to be kept under observation

throughout the life of the software.

6.4.2. Test Report and Analysis

This provides a summary of the overall product like

component details, project dates, costs, task details, test

results, action taken and future scope. This report will form

the basis for the maintenance of the product and for future

actions.

6.4.3. Smart Contract testing reports

This is an important report for future blockchain based

projects and to consider evaluation measures and matrix for

future test planning. This report describes the details of

Smart contract, data, and rules for processing.

6.5. Test Measurement and Monitoring

In blockchain-based projects, various measurements and

metrics are used to assess and improve aspects like

performance, security, and throughput of the system.

Monitoring in a blockchain-based project refers to the

process of observing and analyzing various aspects of the

blockchain network and its associated components to ensure

its health, security, and optimal performance. Monitoring is

crucial for maintaining the integrity of the blockchain, and

ensuring that the network operates according to its design

objectives and requirements by identifying and rectifying

potential issues. Effective monitoring in a blockchain-based

project contributes to the overall reliability, security, and

performance of the network, ultimately enhancing the user

experience and trust in the system.

6.5.1. Key Measurement Parameters

Some of the key parameters that are measured in blockchain

systems are discussed below.

Throughput /Transactions Per Second (TPS): Higher TPS

values are desirable for scalable and efficient systems. This

metric measures the number of transactions processed by

the blockchain network in one second.

Latency / Transaction Confirmation Time: Lower

confirmation times are preferred for better user experience.

Time taken for a transaction to be confirmed and added to

the blockchain.

Scalability:

• Network Scalability: The network should be able to

handle increase in the number of nodes and transactions

without deterioration in performance.

• Vertical Scalability: Capacity of individual components

and nodes within the system are increased.

• Horizontal Scalability: Distribution of load which adding

more nodes should be assessed.

Security:

• Hash Power (applicable to Proof-of-Work): The

computational power contributed by miners to secure the

network.

• Consensus Algorithm Security: The security features

used (e.g., proof-of-work, proof-of-stake) should be

assessed.

Decentralization / Node Distribution: Examining how

nodes are distributed across the network to ensure a

decentralized and resilient system.

Interoperability / Cross-Chain Transactions: Measuring the

ability of the blockchain to interact with other blockchains,

facilitating interoperability should be assessed.

Smart Contract Execution / Gas Fees: In platforms like

Ethereum, gas fees are essential metrics to measure the cost

of executing smart contracts.

Governance / Participation Rate: The percentage of

stakeholders participating in governance decisions should

be factored.

Consensus Efficiency / Finality Time: The time taken for a

block to be considered irreversible should be measured.

Data Storage and Retrieval:

• Storage Costs: Evaluating the cost of storing data on the

blockchain.

• Data Retrieval Time: Measuring the time it takes to

access stored data.

Adoption Metrics:

• User Base: The number of users and entities who are

active participants of the network.

• DApp (Decentralized Application) Usage: Monitoring

the usage and popularity of decentralized applications built

on the blockchain.

Energy Efficiency / Energy Consumption: Particularly

relevant for proof-of-work blockchains, measuring the

environmental impact of mining activities.

6.5.2. Key Monitoring parameters

Some of the key monitoring parameters for blockchain

based systems are discussed below.

Node Health:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 918

• Monitoring the health of individual nodes in the

blockchain network is essential. This involves checking for

issues such as hardware failures, connectivity issues, and

software malfunctions.

• Node health monitoring helps ensure that all nodes are

operational, contributing to the consensus process, and

maintaining the integrity of the blockchain.

Consensus Mechanism: Monitoring the consensus

mechanism is critical for ensuring that the agreed-upon rules

for validating transactions are followed. This includes

monitoring the block creation process and confirming that

consensus is achieved among nodes.

Network Performance:

• The potential bottlenecks, latency issues, or network

congestion issues which have profound impact on the speed

and efficiency of transactions will come to light with this

testing.

• Analyzing network performance data can assist in

optimizing the blockchain's infrastructure to handle

increasing transaction volumes.

Security Monitoring:

• Continuous monitoring for potential security threats and

vulnerabilities is crucial. All suspicious and malicious

activities that may compromise the confidentiality,

integrity, or availability of the blockchain network will be

identified.

• Security monitoring may involve the use of intrusion

detection systems, audit logs, and other tools to detect and

plan mitigation.

Smart Contract Execution: If the blockchain project

involves smart contracts, monitoring their execution is vital.

This includes tracking the performance of smart contracts,

identifying any errors or vulnerabilities, and ensuring that

they operate as intended.

Transaction Monitoring: Monitoring transactions in real-

time helps ensure that they are processed correctly and

efficiently. This involves tracking transaction

confirmations, validating transaction inputs and outputs,

and identifying any irregularities or errors.

Resource Utilization: Monitoring the usage of Processor

and storage helps ensure that the blockchain nodes and

associated infrastructure have sufficient resources to operate

efficiently. This is particularly important in large and

decentralized networks.

Scalability Monitoring: As the blockchain network grows,

monitoring its scalability becomes crucial. This involves

assessing the network's ability to handle increased

transaction volumes and user activity.

Alerting and Notification: Implementing alerting systems

that notify administrators or relevant stakeholders in real-

time when predefined thresholds or anomalies are detected.

This allows for prompt responses to potential issues.

Compliance Monitoring: Ensuring compliance with

regulatory requirements and industry standards by

monitoring and documenting relevant activities within the

blockchain network.

7. Choice of Appropriate Blockchain Based Testing

Tools

Automation testing tools reduce the efforts of both static and

dynamic testing by reducing human involvement and errors.

Automated testing combined with regression testing leads to

reduced overall cost of software development. Blockchain

technology-based applications need some special testing

tools to verify and validate the system. Testing tools need to

be carefully selected based on the purpose, software testing

life cycle, tester skills/knowledge, affordability of that/those

tool. Table 2 provides a comparison of the various tools

available and this table could serve as a guide for the choice

of the tool based on the purpose, features, advantages, and

disadvantages.

8. Conclusion

Software testing is essential to assess the functionality of the

program and to check that the software is free from gaps,

bugs, and errors ready to deliver the expected outcome in a

live environment. Such testing of software for Blockchain

based applications imposes special requirements and the use

of appropriate tools for testing the various parameters

results in ensuring the quality of software at optimum cost.

Researchers are refining the various approaches to software

testing using sophisticated testing tools for blockchain based

applications to ensure glitch free operation for the benefit of

the users. Further, there are indications that in future it

would be possible to test software using blockchain

technology.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 919

Table 2. Comparison of Blockchain based software testing tools

Tool Purpose Features Advantages Disadvantages

Truffle Suite
[24]

This is a well-known
Ethereum development

and testing framework.

* Testing and deployment
of Smart contract.

* Automated testing with

Mocha and Chai.
* Built-in support for

Ethereum Virtual Machine

(EVM).

* Comprehensive development and
testing framework.

* Supports Ethereum and other

blockchain networks.
* Integrated with Ganache, a personal

blockchain for testing.

* Simplifies smart contract
development with a built-in

deployment system.

* Limited support for non-
Ethereum blockchains.

* Can be complex for beginners.

Ganache [25]

Ganache is a personal

blockchain for Ethereum

that can be used to
deploy contracts, develop

DApps, and run tests.

* Local blockchain

environment.

* Gas tracking for
transactions.

* Quick development and

testing.

* Local, private Ethereum blockchain

for testing.

* Quick and easy to set up.
* Supports account management, gas

control, and snapshot features.

* Limited to Ethereum-based

projects.

* May not fully simulates the
behaviour of a public

blockchain.

Remix [26] Written in Solidity

language this is a open-

source web and desktop
application that helps in

smart contract

development,

* Integrated Solidity

compiler.

* Debugger for debugging
smart contracts.

* Gas estimation and

deployment tools.

* Has the ability to switch between

different networks with user-friendly

interface. Supports various plug-ins
and extensions.

* New developers will face a

steep learning curve to

understand decentralised
technologies and understand

smart contract.

* Some IDEs may be designed
for specific blockchain

platforms, limiting cross-

platform compatibility.

MythX [27] This helps in identifying

and fixing security
vulnerabilities in

Ethereum smart

contracts.

* Security analysis tools.

* Integration with various
development

environments.

* Continuous security
monitoring.

* Security analysis platform for

Ethereum smart contracts.
* Integrates with various development

environments and CI/CD pipelines.

* Provides in-depth security reports
and suggestions.

* Subscription-based pricing

model for advanced features.
* Some features may be more

suitable for professional

development teams.

Solhint [28] These are linters for

Solidity, the
programming language

for Ethereum smart

contracts to ensure code

quality and adherence to

best practices.

* Static code analysis for

Solidity.
* Customizable rules and

configurations.

* Linter for Solidity, the programming

language for Ethereum smart contracts.
* Helps identify and fix code quality

issues early in the development

process.

* Integrates with popular development

environments.

* Focuses on static analysis,

may not catch all runtime issues.
* Limited to Solidity-based

projects.

Hardhat [29] This has a built-in testing

framework suitable for

development phase. It
helps debug Ethereum

software.

* Extensible plugin system.

* Support for TypeScript.

* Scriptable tasks for
automation

* Flexible and extensible development

and testing environment.

* Supports Ethereum and other EVM-
compatible blockchains.

* Built-in functionality for smart

contract testing and deployment.

* Less documentation compared

to some other tools.

* Steeper learning curve for
beginners.

Hyperledger

Caliper [30]

This is a tool for

benchmarking

blockchain technologies.

* Benchmarking multiple

blockchain platforms.

* Configurable workloads.

* This is an open-source project

providing metrics for assessing

performance.
* Caliper supports multiple blockchain

platforms, including Hyperledger

Fabric, Sawtooth, and others.

* Configuring Caliper for

specific blockchain platforms

and scenarios can be complex,
especially for users who are not

familiar with the intricacies of

blockchain networks.
* While Caliper supports

multiple Hyperledger projects,

its primary focus is on

benchmarking Hyperledger

blockchains.

Cucumber [31] Cucumber is a tool for

running automated tests

written in a natural
language style. It is often

used for testing smart

contracts and
decentralized

applications.

* Behaviour-driven

development (BDD)

testing.
* Test scenarios written in

plain text.

* Behaviour-Driven Development

(BDD) tool for testing.

* Supports multiple programming
languages.

* Enhances collaboration between

developers and non-developers.

* Requires well-defined

specifications, which may be

challenging for blockchain
projects.

* May not be as specialized for

blockchain testing as other tools.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 920

Acknowledgements

We thank Mr. Ramani Iyer for his valuable discussions and

comments that greatly improved the manuscript.

Author contributions

Smita Bansod: Conceptualization, Methodology, Software,

Data curation, Writing-Original draft preparation,

Lata Ragha: Visualization, Investigation, Validation.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic

Cash System,” p. 9, 2008.

[2] S. Bansod and L. Ragha, “Blockchain Technology:

Applications and Research Challenges,” in 2020

International Conference for Emerging Technology

(INCET), Belgaum, India: IEEE, Jun. 2020, pp. 1–6.

doi: 10.1109/INCET49848.2020.9154065.

[3] Afsal Backer, “Blockchain testing.” [Online].

Available:

https://blog.testproject.io/2022/02/15/blockchain-

testing/

[4] C. Lal and D. Marijan, “Blockchain Testing:

Challenges, Techniques, and Research Directions.”

arXiv, Mar. 18, 2021. Accessed: Nov. 24, 2023.

[Online]. Available: http://arxiv.org/abs/2103.10074

[5] “ISO/IEC/IEEE International Standard - Software and

systems engineering --Software testing --Part

1:General concepts,” IEEE. doi:

10.1109/IEEESTD.2022.9698145.

[6] K. M. Mustafa, R. E. Al-Qutaish, and M. I. Muhairat,

“Classification of Software Testing Tools Based on the

Software Testing Methods,” in 2009 Second

International Conference on Computer and Electrical

Engineering, Dubai, UAE: IEEE, 2009, pp. 229–233.

doi: 10.1109/ICCEE.2009.9.

[7] Naresh Chauhan, Software testing : principles and

practices. Oxford University Press, 2010.

[8] S. Haber and W. S. Stornetta, “How to Time-Stamp a

Digital Document,” no. 3, pp. 99–111, doi:

https://doi.org/10.1007/BF00196791.

[9] D. Macrinici, C. Cartofeanu, and S. Gao, “Smart

contract applications within blockchain technology: A

systematic mapping study,” Telematics and

Informatics, vol. 35, no. 8, pp. 2337–2354, Dec. 2018,

doi: 10.1016/j.tele.2018.10.004.

[10] S. S. Yau and J. S. Patel, “A Blockchain-based Testing

Approach for Collaborative Software Development”.

[11] M. S. Farooq, Z. Kalim, J. N. Qureshi, S. Rasheed, and

A. Abid, “A Blockchain-Based Framework for

Distributed Agile Software Development,” vol. 10,

2022.

[12] K. Duan, J. M. Caballero, and X. Jing, “Scrum-based

development model:Improve the engineering quality

and testing method of blockchain projects,” 2023.

[13] A. Pinna, G. Baralla, M. Marchesi, and R. Tonelli,

“Raising Sustainability Awareness in Agile

Blockchain-Oriented Software Engineering”.

[14] Z. Wu et al., “Kaya: A Testing Framework for

Blockchain-based Decentralized Applications”.

[15] S. Ji, S. Zhu, P. Zhang, and H. Dong, “Test-Case

Generation for Data Flow Testing of Smart Contracts

Based on Improved Genetic Algorithm,” IEEE

TRANSACTIONS ON RELIABILITY, vol. 72, no. 1,

2023.

[16] Y. Murray and D. A. Anisi, “Survey of Formal

Verification Methods for Smart Contracts on

Blockchain”.

[17] C. Benabbou and O. Gurcan, “A Survey of

Verification, Validation and Testing Solutions for

Smart Contracts,” in 2021 Third International

Conference on Blockchain Computing and

Applications (BCCA), Tartu, Estonia: IEEE, Nov.

2021, pp. 57–64. doi:

10.1109/BCCA53669.2021.9657040.

[18] D. He, R. Wu, X. Li, S. Chan, and M. Guizani,

“Detection of Vulnerabilities of Blockchain Smart

Contracts,” IEEE Internet Things J., vol. 10, no. 14,

pp. 12178–12185, Jul. 2023, doi:

10.1109/JIOT.2023.3241544.

[19] M. Barboni, A. Morichetta, and A. Polini, “SuMo: A

mutation testing approach and tool for the Ethereum

blockchain,” Journal of Systems and Software, vol.

193, p. 111445, Nov. 2022, doi:

10.1016/j.jss.2022.111445.

[20] S. Bansod and L. Ragha, “A Quantum Resistant

Blockchain System for Privacy Protection of Patient

Records,” IJETT, vol. 71, no. 4, pp. 79–96, Apr. 2023,

doi: 10.14445/22315381/IJETT-V71I4P208.

[21] M. Kuzlu, M. Pipattanasomporn, L. Gurses, and S.

Rahman, “Performance Analysis of a Hyperledger

Fabric Blockchain Framework: Throughput, Latency

and Scalability,” in 2019 IEEE International

Conference on Blockchain (Blockchain), Atlanta, GA,

USA: IEEE, Jul. 2019, pp. 536–540. doi:

10.1109/Blockchain.2019.00003.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 910–921 | 921

[22] S. Kaushik and N. E. Madhoun, “Analysis of

Blockchain Security: Classic Attacks, Cybercrime and

Penetration Testing,” in 2023 Eighth International

Conference On Mobile And Secure Services

(MobiSecServ), Miami Beach, FL, USA: IEEE, Nov.

2023, pp. 1–6. doi:

10.1109/MobiSecServ58080.2023.10329210.

[23] S. Bansod and L. Ragha, “Challenges in making

blockchain privacy compliant for the digital world:

some measures,” Sādhanā, vol. 47, no. 3, p. 168, Aug.

2022, doi: 10.1007/s12046-022-01931-1.

[24] “TRUFFLE SUITE.” ConsenSys Software Inc., 2016.

[Online]. Available: https://trufflesuite.com/

[25] ConsenSys Software Inc., “GANACHE.” 2016.

[Online]. Available: https://trufflesuite.com/ganache/

[26] “REMIX.” Ethereum Foundation. [Online]. Available:

https://remix-project.org/

[27] “MYTHX.” ConsenSys Software Inc. [Online].

Available: https://mythx.io/

[28] “SOLHINT.” MIT. [Online]. Available:

https://protofire.github.io/solhint/

[29] “HARDHAT.” Nomic Foundation / Ehereum

Foundation, 2023. [Online]. Available:

https://hardhat.org/

[30] “HYPERLEDGER CALIPER.” The Linux

Foundation - Hyperledger Foundation, 2023. [Online].

Available:

https://www.hyperledger.org/projects/caliper

[31] “CUCUMBER.” SmartBear Software, 2023. [Online].

Available: https://cucumber.io/

