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Abstract: Due to their efficiency and higher disease detection accuracy than traditional methods, metaheuristic algorithms are prominent 

in healthcare data analysis. The Dragonfly Algorithm (DFA) uses wrapper feature selection to find illness categorization features. DFA 

was used to pick features and recognize skin illnesses using CNN, VGG19, and EfficientNet-B2 classifiers. The classifier's accuracy using 

a given set of features from the training dataset determined the Dragonflies' fitness value in each iteration. The experimental study showed 

DFA's precision and little loss. Two EfficientNet-B2 and VGG19-based CNN models were created in tandem to analyze performance. 

DermNet NZ and ISIC 2019 were used to train these models. Disease taxonomy helped the models classify. Both datasets classified all 

eight skin illnesses with an average accuracy of 88.5% and 0.0003 loss. This shows that Deep Learning can classify a wide range of skin 

conditions with near-human accuracy and reproducibility. These models can also help clinicians perform large-scale screenings utilizing 

clinical or dermoscopic images for real-time skin disease diagnosis, improving healthcare practices and patient outcomes. This work 

advances skin disease diagnostics and shows the medical potential of Deep learning. 
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1. Introduction 

The skin is the most sensitive and weak part of the human 

body, making it more susceptible to various external factors. 

Among these factors, sunburn caused by ultraviolet (UV) 

rays from the sun is a significant contributor to skin damage 

[1]. Additionally, the skin is exposed to various diseases 

caused by UV rays, fungal or viral infections, and pollution 

in the surrounding environment [2]. Skin diseases include a 

wide range of medical conditions that affect the skin's 

appearance, texture, and functionality. These conditions can 

vary in severity, from mild issues like acne or rashes to more 

serious diseases like psoriasis, eczema, or skin cancer. Skin 

diseases can affect people of all ages, races, and genders, 

and they can arise due to genetic factors, exposure to 

irritants or allergens, infections, hormonal imbalances, or 

autoimmune disorders. Skin diseases can manifest in 

various ways, such as redness, swelling, itching, dryness, 

scaling, blistering, or changes in skin color or texture. Early 

diagnosis and proper treatment of skin diseases are essential 

for maintaining healthy skin and preventing complications. 

Feature selection (FS) is a crucial pre-processing strategy 

that significantly enhances data mining techniques. By 

removing irrelevant and noisy data from the dataset, FS 

increases classification accuracy. There are two main FS 

techniques, filters and wrappers [3], which employ different 

assessment criteria. While wrapper techniques use a 

learning algorithm (e.g., classification) to assess the feature 

subset, filters rely on data-based methods (e.g., information 

gain) [4]. The goal of feature selection is to identify an 

optimal subset of features from a large pool while retaining 

important information. However, this process can be 

challenging as it involves a combinatorial explosion of 

potential subsets, making it computationally expensive. 

Early diagnosis of skin diseases is vital to prevent 

permanent scarring, disfigurement, and life-threatening 

conditions like skin cancer. Additionally, it helps to control 

the spread of infectious skin diseases such as bacterial or 

viral infections. Skin disease classification tools that employ 

machine learning methods have garnered significant 

attention for their promising results [5]. Combining these 

methods improves classifier prediction. Data mining, 

artificial intelligence, and meta-heuristic algorithms can be 

used to create an automated disease detection system [6]. 

Different types of sensors can improve data collecting but 

complicate predicting, decoding, and recognition [7]. Meta-

heuristic algorithms like Artificial Immune Systems, Grey 

Wolf Optimisation, Flower Pollination, Whale 

Optimisation, Chicken Swarm Optimisation, Lion 

Optimisation, Grasshopper Optimisation, Crow Search, and 

Social Spider Optimisation are crucial for feature extraction 

and selection, especially in disease diagnosis and early 

detection. [8]. The primary objective of this paper is to 

develop a skin disease image classifier that exhibits high 

accuracy in identifying various skin conditions based on 

images uploaded by users. The classifier will be integrated 

into a user-friendly website, allowing patients to upload skin 
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images and receive accurate diagnoses. In pursuit of this 

objective, the machine learning algorithm utilized in this 

paper will be designed to work with a comprehensive 

dataset of skin images obtained from the esteemed DermNet 

NZ Image Library and the renowned ISIC 2019 Challenge 

websites [9][10]. The specific goals of this study 

encompass: 

i. Develop an advanced skin disease image classifier using 

the Dragonfly Optimization Algorithm (DFA) for feature 

selection, addressing issues related to time complexity and 

random motion. 

ii. Integrate the image classifier into a user-friendly 

platform, providing patients with convenient and affordable 

access to dermatological care. 

iii. Enhance the speed and accuracy of skin disease 

diagnosis for both dermatologists and patients, resulting in 

better treatment outcomes. 

2. Background and Related Work 

Recently, there has been a growing trend in the healthcare 

field to employ efficient and reliable metaheuristic 

algorithms for disease diagnosis. These algorithms have 

demonstrated superior performance compared to traditional 

methods, making them a preferred choice for feature 

selection and constructing classification models with fast 

training, improved accuracy, and reduced complexity. 

Among various medical conditions, skin diseases are of 

particular concern due to the skin's susceptibility to external 

factors like UV rays, fungal or viral infections, and 

pollution. Convolutional Neural Networks (CNNs) have 

emerged as powerful computer models, drawing inspiration 

from the biological visual cortex. They exhibit remarkable 

efficiency and accuracy in image classification tasks, and 

researchers have effectively utilized them for classifying 

diseases from medical images. An important focus of 

research efforts has been on selecting the most relevant 

features to enhance diagnostic accuracy and reduce noise in 

skin disease data. 

 In one study [11], a hybrid approach employing Chi-

Square, Information Gain, and Principal Component 

Analysis (PCA) for feature extraction was used to select a 

representative subset of features from skin disease datasets. 

Six base learners, including Gaussian Naïve Bayesian, K-

Nearest Neighbour, Decision Tree, Support Vector 

Machine, Random Forest, and Multilayer Perceptron, were 

employed to evaluate prediction performance. Additionally, 

Boosting, Bagging, and Stacking ensemble techniques were 

incorporated to enhance the model's performance further, 

demonstrating improved results compared to using the 

entire dataset.  

 In [12], the authors proposed a novel method that 

involved the application of six different data mining 

classification techniques and the integration of ensemble 

approaches like Bagging, AdaBoost, and Gradient Boosting 

to predict skin disease classes. To select the most important 

features, a feature importance method was employed, 

resulting in the identification of 15 significant features. A 

subset of the original dataset was then obtained for 

comparison with the ensemble approach. The results 

showed a notable increase in accuracy for dermatological 

prediction when compared to individual classifiers and even 

outperformed the feature selection subset method.  

 In [13], the authors used different feature selection 

algorithms, including PCA, Information Gain, and Chi-

square, on skin disease prediction using data mining 

techniques investigated. They carried out the classification 

task using Random Forest, C4.5 Decision Trees, and 

Functional Tree algorithms. While some of the feature 

selection algorithms demonstrated improvements in 

accuracy and sensitivity, the gains were relatively modest, 

typically around 1%. 

  In [14], the authors adopted the ensemble machine-

learning approach for the early prediction of skin cancer that 

incorporated an enhanced genetic algorithm technique. A 

Convolutional Neural Network (CNN) model, specifically 

ResNet-16, was utilized to extract features from the images 

automatically. An Enhanced Genetic Algorithm (EGA) was 

then applied for feature selection. The proposed model 

achieved higher accuracy and demonstrated effective 

performance when compared to other techniques, such as 

the Support Vector Machine (SVM).  

 In [15], the authors proposed dimensionality reduction 

and feature selection were integrated with ensemble 

learning methods and various classification techniques for 

disease prediction. The approach demonstrated promising 

results in the prediction of multiple medical diseases, 

highlighting its potential for versatile applications. 

In [16], the authors focused on cluster algorithms for 

stratifying skin disorders. However, these cluster algorithms 

had drawbacks, including experimental noise and 

challenges in interpretation. To overcome these limitations, 

the study introduced a multi-objective particle swarm 

approach that integrated hybrid particle swarm and moth 

flame optimization to optimize cluster distance parameters 

for K-means clustering. This optimization resulted in 

improved accuracy and the ability to predict different 

classes in clustering. Overall, the application of 

metaheuristic algorithms and ensemble techniques has 

shown significant potential for skin disease prediction and 

other medical disease prediction tasks. These methods can 

revolutionize disease diagnosis and enhance healthcare 

outcomes by providing accurate and efficient classification 

models. 
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3. Proposed Model 

Figure 1 depicts the complete methodology and different 

stages, such as data preprocessing, feature extraction, and 

selection, which were employed in the study. By applying 

classification algorithms, we assessed the accuracy and loss 

of predictions for eight different skin disease classes. A 

comparative analysis was conducted to determine the most 

effective prediction approach. 

3.1. Dataset analysis 

The dataset utilized in this research comprises images 

sourced from the DermNet NZ Image Library and ISIC 

2019 Challenge. This dataset was curated specifically for 

the study of skin diseases and their classification. The 

dataset consists of eight distinct classes of skin diseases, 

namely Acne, Eczema, Actinic keratosis, benign keratosis, 

Melanoma, Psoriasis, Basal cell carcinoma, and Ringworm. 

In Table 1, we provide a summary of these datasets, 

including the total number of images, the categories of 

diseases, the count of labeled images, and the inclusion of 

binary segmentation masks. 

Table 1. Summary of publicly available skin lesion 

datasets 

Dataset Disease 

Category 

Image 

Number 

Labeled 

Images 

ISIC 2019 8 33,569 25,331 

DermNet 

NZ 

23 19,500 All 

3.2 Pre-processing 

In this study, the preprocessing stage comprises two phases. 

In the first phase, data balancing is performed for each class 

by aggregating the mean and median attribute values. This 

ensures that the data is evenly distributed among the classes. 

Subsequently, the balanced data is normalized using Z-score 

normalization, as described in equation (1). The 

normalization step is crucial for preventing overfitting 

issues in the classifier. 

𝑍 − 𝑠𝑐𝑜𝑟𝑒

=
𝑆𝑐𝑜𝑟𝑒 − 𝑀𝑒𝑎𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
                                        (1) 

Z-score normalization is a technique used to standardize 

multiple parameters onto the same scale. This process 

involves calculating the Z-score, which is a crucial 

statistical measure that allows data analysts to assess the 

probability of a score occurring within a normally 

distributed dataset. This allows for the comparison of scores 

from diverse datasets by converting them into the standard 

normal distribution. 

Dataset splitting. The dataset is split into three subsets: 

training, validation, and testing. The training set receives 

80% of the images in an 8:1:1 ratio. 

Data Augmentation. Data augmentation is another 

important step in this study, which involves applying 

various transformations to the images to increase the size 

and diversity of the dataset.  

 

 

 

Fig 1. Proposed work methodology 

However, to avoid excessive biases, data augmentation is 

restricted to generate a controlled number of augmented 

images, typically within the range of 200 to 400 images for 

each class. By augmenting the data, the researchers aim to 
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overcome bias issues and enhance the size of the dataset, 

allowing them to apply deep learning techniques more 

effectively. 

3.3 Feature Extraction and Selection 

The primary goal of feature extraction and selection in this 

study is to identify an optimal set of features that have strong 

discriminative capabilities, particularly for classifying skin 

lesion images. The researchers prefer utilizing expert 

knowledge and clinical experience to guide this process, as 

it can effectively and efficiently lead to the extraction and 

selection of relevant features. 

Dragonfly algorithm 

The Dragonfly algorithm mimics dragonfly swarm foraging 

and migration. Local movement and flight path mutations 

show the algorithm's exploitation phase as they form 

subgroups to pursue insects in different places. Dragonflies 

flying together over large distances resemble the algorithm's 

global exploration phase. Each dragonfly represents a 

search space solution and moves according to five 

behaviors: Separation (S), Alignment (A), Cohesion (C), 

Attraction to a food source (F), and Distraction from an 

adversary (E). Dragonflies avoid static barriers and other 

dragonflies with Separation behavior. Alignment behavior 

ensures dragonflies match their neighbors' velocities. The 

Cohesion behavior encourages dragonflies to travel towards 

the neighborhood center, promoting group cohesion. 

Dragonflies seek food (optimal solutions) and avoid threats 

(bad solutions) to survive. The weights associated with these 

five behaviors are initialized randomly for each dragonfly at 

the beginning of the algorithm.  

They are adaptively adjusted during the iterative process to 

ensure convergence to the global optima. As the 

optimization progresses, the radius and Euclidean distance 

between dragonfly neighbors increase, allowing for better 

exploration of the search space. The equations governing the 

five behaviors and the radius are used to steer the movement 

of the dragonflies and guide the optimization process toward 

finding the optimal solutions. 

𝑆𝑖 = − ∑(𝑋 − 𝑋𝑗)

𝑁

𝑗=1

                                         (2) 

𝐴𝑖 =
∑ ∆𝑋𝑗

𝑁
𝑗=1

𝑁
                                                   (3) 

𝐶𝑖 =
∑ 𝑋𝑗

𝑁
𝑗=1

𝑁
− 𝑋                                               (4) 

 

𝐹𝑖 = 𝑋+ − 𝑋                                                       (5) 

 

𝐸𝑖 = 𝑋− + 𝑋                                                       (6) 

 

𝑟 =
𝑢𝑏 − 𝑙𝑏

4
+ 2(𝑢𝑏 − 𝑙𝑏)

𝑛

𝑁𝑚𝑎𝑥

                   (7) 

 

In equations (2) to (6), the symbols Si, Ai, Ci, 

Fi, and Ei represent the magnitudes of the separation, 

alignment, cohesion, attraction to a food source, and 

distraction from enemy behavior, respectively, for the ith 

individual in the dragonfly swarm. The variables X represent 

the position and velocity of the current individual, while N 

represents the total number of neighboring individuals in the 

swarm. The symbols Xj and ΔXj indicate the position and 

velocity of the jth neighboring individual, and X+ and X− 

denote food source positions and natural enemies, 

respectively. In equation (8), the variables ub and lb 

represent the upper and lower limitations of the search 

space, respectively. The symbols n and Nmax represent the 

current iteration and the maximum number of iterations in 

the Dragonfly Algorithm (DA). During this implementation, 

the positions of the food source and natural enemies are 

determined based on the significance associated with the 

different behaviors. We consider the optimal position of 

each iteration as the position of the food source, while the 

worst position corresponds to the natural enemies. This 

reflects the influence of various behaviors on the movement 

of the dragonflies. 

The DA assumes that the overall behavior of the dragonflies 

is a combination of five behaviors: separation, alignment, 

cohesion, attraction to a food source, and distraction from 

an enemy. These behaviors guide the dragonflies in their 

movement and decision-making process. When the current 

individual in the dragonfly swarm has at least one 

neighboring dragonfly, its velocity and position are updated 

using specific equations. These equations ensure that the 

dragonfly aligns its movement with the nearby individuals 

and adjusts its position accordingly. This dynamic updating 

process helps the swarm converge towards promising 

regions in the search space and enhances the algorithm's 

capability for optimization and exploration. 

 

∆𝑋𝑡+1 = (𝑠𝑆𝑖 + 𝑎𝐴𝑖 + 𝑐𝐶𝑖 + 𝑓𝐹𝑖 + 𝑒𝐸𝑖) + 𝜔∆𝑋𝑡             (8) 

 

𝑋𝑡+1 = 𝑋𝑡 + ∆𝑋𝑡+1                                                                  (9) 

 

In the Dragonfly Algorithm, the weights assigned to the 

five behaviors are represented by s, a, c, f, and e. The inertia 

weight is denoted by ω, and the current iteration counter is 

represented by t. When there are no neighboring dragonflies 

around the current individual, it updates its position using 

the Levy Flight equation, as described in (10). The 
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incorporation of this Levy Flight equation enhances the 

randomness, chaotic behavior, and global search capability 

of the dragonflies, thereby contributing to their 

effectiveness in exploring the search space. This random 

walk strategy further improves the algorithm's ability to 

search for optimal solutions efficiently. 

𝑋𝑡+1 = 𝑋𝑡 + 𝐿𝑒𝑣𝑦(𝑑)  

× 𝑋𝑡                                                  (10)        

In the context of the DA, the variable d represents the 

dimension of each individual dragonfly in the search space. 

𝐿𝑒𝑣𝑦(𝑥)

= 0.01 ×
𝑟1 × 𝜎

|𝑟2|
1

𝛽⁄
                                                    (11) 

𝜎

= (
Γ(1 + 𝛽) × 𝑠𝑖𝑛𝜋𝛽/2

Γ(1 + 𝛽/2) × 𝛽 × 2𝛽−1/2
)                                      (12) 

In the DA, the variables r1 and r2 are random numbers 

generated from a uniform distribution within the range [0, 

1]. Additionally, β is a constant that typically has a value of 

1.5. 

 

3.4 Classification algorithms 

VGG-19 Pretrained CNN Model 

Figure 2 depicts the VGG-19 model architecture with 19 

neural layers [17], and convolutional layers have various 

filter widths and pooling layers.  

 

Fig. 2: Architecture of the VGG-19 pretrained CNN model 

These layers extract hierarchical information from input 

images to help the model recognize patterns and 

representations. The model can classify complicated images 

because it uses many convolutional and pooling layers to 

capture patterns.VGG-19 downsamples feature maps using 

max-pooling layers. Downsampling reduces the 

computational complexity of the model and allows it to 

handle huge datasets efficiently. The VGG-19 model ends 

with 4096-unit fully connected (FC) layers and a softmax 

layer to classify skin diseases. The model was pre-trained 

on a huge image dataset to extract relevant features. Pre-

training saves computational time and resources by avoiding 

model retraining. By using a pre-trained CNN model, the 

investigators leveraged existing models that are already 

trained on large image datasets, eliminating the need to train 

the model from scratch, which saves time and resources. 

3.5 Architecture of VGG-19 Pretrained CNN Model. 

Figure 2 shows this study's pre-trained VGG-19 CNN model 

architecture. Layer after layer, convolutional layers with 

varied filter widths, and pooling layers that reduce layer 

volume are learned. After pooling and convolutional layers, 

a 4096-unit FC layer and softmax output layer are produced. 

The VGG-19 pretrained CNN model has trainable layers to 

improve accuracy and efficiency. The classification model 

has four convolutional layers with max-pooling processes. 

These four convolutional layers collect features from 

example images to diagnose the five types of psoriasis. 

EfficientNet overview.  

EfficientNet models scale convolutional neural network 

layers uniformly using a fixed ratio. This scaling method 

improves classification accuracy without changing hidden 

layer functions or surpassing system memory and 

computing capabilities.  

Traditional class activation map generation 

We enhanced the EfficientNet classification model to 

generate Class Activation Maps (CAMs).  

Figure 3 illustrates the two main sections of the model's 

architecture. The initial convolutional layers take data from 

the input image to generate a multi-channel feature model 

with a lower spatial dimension. Following fully connected 

classification layers, feature representations are classified. 

A Global Average Pooling (GAP) layer connects these two 

portions by averaging feature channel values to form a 

vector. Use the final fully connected layer's learnable 

parameters to weight the feature vector representation to 

determine each class's classification probability. Creating a 

Class Activation Map for a class bypasses the GAP layer. 

The feature extraction layer's output is directly generated by 

taking the Hadamard product of the fully connected layer's 

weight and the feature encoding. The output is upsampled 

to match the original image size, employing bilinear 

interpolation after normalizing the data to 0–255. This 

process ensures that the generated Class Activation Map 

highlights the regions in the image that are most relevant for 

making predictions about a specific class. 

ScoreCAM generation.  

This masked input image retains the most pertinent regions 

corresponding to the activation maps, thus highlighting the 

areas that significantly contribute to the model's predictions. 

The innovative approach adopted by ScoreCAM results in 

the generation of more accurate and informative CAMs, 

ultimately enhancing the interpretability of the neural 
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network's decisions. ScoreCAM avoids overestimating the 

importance of less crucial areas in the image, leading to a 

more reliable and localized representation of the regions that 

truly influence the model's predictions. This technique not 

only enhances the CAM generation process but also 

provides valuable insights into the neural network's inner 

workings, making it a valuable tool for researchers and 

practitioners in computer vision and image 

classification Mk as: 

𝑀𝑘 = 𝐴𝑘 ∗ 𝐼                                       (13) 

Where the k'th neural network layer is represented as, and 

the input image is denoted as I.  

 

 

 

 

 

Fig .3: Efficientnet-B2 (FC denotes the fully connected final layer) 

After applying the Hadamard multiplication to obtain the 

masked input, it is fed through the neural network. The final 

scores Sk are computed by softmax the output, indicating 

"activation map."   

The weighted total of all target class activations generates a 

single activation map analogous to the traditional CAM 

technique. 

𝐴𝑡𝑜𝑡 = ∑ 𝑆𝑘𝐴𝑘

𝐾

𝑘=1

                                                 (14) 

Ultimately, a pixel-wise ReLU is employed to process, 

effectively eliminating all negative values. These negative 

values indicate features that had no positive impact, 

allowing the model to focus solely on the relevant and 

influential features.’ 

4. Results and Discussion 

This study used Matlab R2019a, Windows 10 Professional 

Edition, an Intel (R) Core (TM) i5 CPU@2.30 GHz 

processor, 8 GB RAM, and a simulation platform. Python 

code was running on Google Colab to test the Dragonfly 

Algorithm and compare it to other approaches. 

 

Fig. 4: Examples of preprocessed images. 

The study presents a dragonfly-based wrapper feature 

selection strategy to improve accuracy with a smaller 

feature set. We tested this feature selection strategy on a set 

of well-known datasets from the data repository. The Keras 

API on TensorFlow and Python on Anaconda was used for 

modeling. Figure 4 shows filter-applied images following 

image preprocessing.  

Feature 

extraction 

Feature 

extraction 

Average 

pooling 
FC 

FC 
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(a) 

 

(b) 

Fig.5: Model 1 (Baseline CNN Model) before 

augmentation (a) CNN model loss versus epoch (b) CNN 

model accuracy score versus epoch 

Figure 5 (a) displays the CNN model's loss versus epoch 

before the augmentation process is applied to the datasets. 

This graph illustrates the model's performance at each 

epoch. As epochs rise, validation loss falls while training 

loss stays low. Comparing the two graphs shows that the 

training error stabilizes at test epoch 10. Figure 5 (b) 

illustrates the CNN model's accuracy score versus epoch 

before applying the augmentation process to the datasets. As 

the epoch number increases, the validation accuracy shows 

an upward trend while the training accuracy remains 

relatively low. By comparing both graphs side by side, it 

becomes apparent that, at test epoch = 20, the training 

accuracy score reaches 60%. In Figure 6 (a), the graph 

depicts the CNN model's loss versus epoch after the datasets 

undergo the augmentation process. This graph provides 

insights into the model's performance at each epoch. When 

analyzing both graphs together, we observe that the training 

error stabilizes at test epoch = 12, the training error 

stabilizes.  

 

 

(a) 

 

(b) 

Fig.6: Model 2 (Baseline CNN Model) after augmentation 

(a) CNN model loss versus epoch (b) CNN model accuracy 

score versus epoch 

Figure 6 (b) illustrates the CNN model's accuracy score 

versus epoch after applying the augmentation process to the 

datasets. As the epoch number increases, the validation 

accuracy shows an upward trend while the training accuracy 

remains relatively low. By comparing both graphs side by 

side, it becomes apparent that, at test epoch = 21, the training 

accuracy score reaches 68.5%. 

Figure 7 shows that the model's accuracy and loss values for 

both training and validation datasets fluctuate until the 15th 

epoch, demonstrating instability during the initial training. 

After the 15th epoch, behavior changes, and training and 

validation values stabilize at the 16th. At the 18th epoch, the 

VGGNet19 loss function reaches its lowest value. The 

model's predictions are growing increasingly accurate, 

reducing the difference between projected and actual 

values.VGGNet19's best accuracy score is 44.5% at the 16th 

epoch. 
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Fig.7: Model 3 VGG19 

Figure 8 shows that training has a higher model accuracy 

value than validation after the 15th period. EfficientNetB2 

model loss is modest at 20 epochs, and accuracy is 88.5%. 

EfficientNetB2 model training ended after 21 accuracy and 

20 loss epochs. These epochs stopped training with equal 

model accuracy and model loss calculations. Model 

accuracy remained constant after 20 epochs. 

Performance of models on reduced after feature 

selection  

The findings reveal that clinical features have a more 

significant impact on achieving higher accuracy in disease 

prediction compared to histopathological features. Table 2 

presents the accuracy scores obtained from three methods, 

employing eight different classification algorithms on the 

reduced dataset after feature selection (FS). 

Table 2: Output of accuracy and execution time on the 

reduced dataset. 

 

Additionally, the results reveal that the accuracy achieved 

after FS surpasses the accuracy obtained without FS. The 

implementation of the EfficientNet-B2 model, integrated 

with the Dragonfly optimization algorithm for FS, exhibited 

the highest accuracy of 87.51% with a relatively short 

execution time of 13.24 seconds, outperforming the CNN 

and VGG19 models. Table 3 provides the values of 

performance indicators, including sensitivity and 

specificity, which were computed based on their respective 

formulas. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100%                                    (15) 

 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100%                                     (16) 

 

Moreover, the Sensitivity and specificity achieved after 

feature selection on the reduced dataset are higher compared 

to the values obtained without feature selection. Also, the 

EfficientNet-B2 model, utilizing the Dragonfly 

optimization algorithm for feature selection, demonstrated 

the highest accuracy of 90.12% and Specificity of 90.24%, 

outperforming the CNN and VGG19 models. 

Table 3: Output of Sensitivity and Specificity on the 

reduced dataset. 

 

Models 

Sensitivity (%) Specificity (%) 

Without 

feature 

selectio

n 

With 

feature 

selectio

n 

Without 

feature 

selectio

n 

With 

feature 

selection 

CNN 65.23 71.24 66.22 67.54 

VGG19 58.23 57.84 67.14 75.62 

Efficien

tNet-B2 

88.22 90.12 89.24 90.24 

5. Conclusion 

This paper introduces a novel wrapper feature selection 

strategy that leverages the Dragonfly optimization 

technique to create an optimal subset of features for accurate 

skin cancer classification. Throughout the iterative process, 

the dragonfly population is classified based on their fitness 

values, and individual positions are updated accordingly, 

guiding the algorithm's evolution. We conducted 

experiments using eight classes of skin diseases to assess the 

effectiveness of the Dragonfly Algorithm (DFA). In this 

study, two Convolutional Neural Network (CNN) models 

were developed based on the EfficientNet-B2 and VGG19 

architectures, with data augmentation applied to both 

labeled and unlabeled datasets. The proposed EfficientNet-

B2 classifier model demonstrated promising results, 

achieving an impressive 88.5% accuracy rate on the test set 

for identifying various skin diseases. Moreover, the 

approach can be extended to other skin disorders, and its 

integration with other DL approaches further enhances its 

capabilities. Additionally, future research can explore the 

application of this method to "Psoriasis Area and Severity 

 

Models 

Accuracy Time in sec 

Without 

feature 

selection 

With 

feature 

selectio

n 

Without 

feature 

selectio

n 

With 

feature 

selection 

CNN 66.25 71.24 66.32 52.31 

VGG19 55.41 57.84 98.74 78.64 

Efficien

tNet-B2 

87.51 89.55 23.51 13.24 
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Index" (PASI) scoring, expanding its utility in 

dermatological diagnostics and providing valuable insights 

into the severity assessment of psoriasis cases. The proposed 

approach shows promise for advancing the field of skin 

disease diagnosis and classification, paving the way for 

more efficient and accurate diagnostic tools in the future. 
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