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Abstract: In this pioneering approach to rust classification in plant leaves, deploy an exhaustive pre-processing pipeline to fortify the 

robustness of this dataset. The integration of Generative Adversarial Networks serves to augment the dataset, while a groundbreaking 

Modified Gaussian Smoothing technique is introduced to effectively mitigate noise and elevate image quality. Feature extraction is 

bolstered through Contrast Stretching, enhancing contrast, and color correction methods adeptly standardize color variations. Precision in 

disease-affected area identification is achieved through refined leaf localization using Region Proposal Networks (RPN) and this innovative 

Spatial Attention Mechanisms. Further optimization in Regions of Interest (ROI) identification is realized with an optimized dual attention 

YOLO and FeatExProNet combination, extracting key features encompassing shape, color, texture, statistics, and deep learning-based 

attributes. Feature selection employs a Hybrid Optimization Approach, synergizing Binary Sand Cat Swarm Optimization and Butterfly 

Optimization algorithms. The conclusive step incorporates a VarioFusionNet-based model, seamlessly amalgamating Vision Transformer, 

Google Net, Alex Net, DenseNet-121, ResNet-50, and Efficient Net to ensure unparalleled accuracy in leaf disease detection. This 

comprehensive methodology represents a remarkable leap forward in rust classification, offering a commitment to improved accuracy and 

robustness in the identification of plant leaf diseases. 

Keywords: Alex Net, DenseNet-121, Efficient Net, Generative Adversarial Networks, Google Net, Modified Gaussian Smoothing technique, 

Region Proposal Networks, ResNet-50, Vision Transformer, YOLO and FeatExProNet. 

1. Introduction 

Ensuring the accurate and timely detection of leaf diseases 

is paramount for effective plant health management. Our 

innovative approach integrates advanced detection methods 

to swiftly pinpoint and address issues, contributing to 

optimal plant well-being [1]. Notably, common apple leaf 

diseases, including Alternaria leaf spot, Brown spot, 

Mosaic, Grey spot, and Rust, pose significant threats to 

yield. The development of a precise and swift detector is 

imperative for the overall health of the industry [1]. 

Addressing the impact of tea leaf diseases on yield and 

quality, this research introduces a low-shot learning method 

for timely identification and control, enhancing disease spot 

segmentation through the extraction of color and texture 

features [2]. For precise apple leaf disease identification, a 

novel approach utilizes deep convolutional neural networks 

with a unique Alex Net-based architecture, involving the 

generation of abundant pathological images [3]. In contrast 

to traditional visual methods, optical sensors offer non-

invasive measurement of pathogen-induced plant 

physiology changes, proving valuable for disease detection, 

identification, and quantification across various scales [4]. 

The development of an automatic identification method for 

grape leaf diseases is urgent for maintaining grape yield. 

Taking inspiration from the success of deep learning, this 

research applies the methodology to grape disease 

identification [5]. 

Presenting a groundbreaking model for plant disease 

recognition through leaf image classification, this approach 

leverages deep convolutional networks [6]. Innovative 

training methods facilitate seamless real-world 

implementation. Additionally, an enhanced Faster R-CNN 

architecture, with adjusted CNN model parameters, is 

introduced for the automatic detection of leaf spot disease 

in sugar beet [7]. Enhancing cucumber leaf spot disease 

extraction in intricate backgrounds, a refined fuzzy C-means 

algorithm is introduced for improved accuracy [8]. In 

agricultural information, automated identification and 

diagnosis of maize leaf diseases are crucial. Enhanced 

Google Net and Cifar10 models in deep learning improve 

accuracy with fewer parameters [9]. Given their superior 

computational and accuracy capabilities, computer vision 

and deep learning are favoured for diverse fungal disease 

classifications. Here, we propose a Multilayer CNN for 

Mango leaves infected with Anthracnose [10]. 

Implementing deep convolutional-neural-network models 

for plant disease identification, replace standard convolution 

with depth-separable convolution, reducing parameters and 

computation costs significantly [11]. Enhancing plant 

disease identification, GPDCNN combines dilated 
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convolution with global pooling, increasing receptive fields 

without complexity, employing dilated convolution for 

spatial resolution, and integrating their merits [12]. 

Examined the capability of Sentinel-2 band settings in 

discerning CLR infection levels in leaves by aligning field 

spectra. Implemented random forest and PLS-DA 

algorithms with and without variable optimization [13]. 

Proposed a Deep Convolutional Neural Network for 

symptom-specific recognition of four cucumber diseases, 

incorporating data augmentation to mitigate overfitting [14]. 

Rice plant leaf images, depicting normal and diseased states, 

are directly acquired from the field. Pre-processing involves 

converting RGB to HSV, enabling background removal and 

segmentation using a clustering method [15]. 

To achieve a comprehensive advancement in leaf disease 

detection, this research 

proposes the following objectives: 

• To implement a modified Gaussian smoothing 

technique for noise reduction. 

• To integrate Region Proposal Networks (RPN) with 

spatial attention mechanisms for precise leaf 

localization. 

• To develop a FeatExProNet model to extract shape, 

color, texture, statistical, and deep learning-based 

features 

• To propose a hybrid optimization approach combining 

Binary Sand Cat Swarm Optimization and Butterfly 

Optimization algorithms for effective feature 

selection. 

• To formulate VarioFusionNet by integrating vision 

transformer, Google Net, Alex Net, DenseNet-121, 

ResNe-50, and Efficient Net for a robust leaf disease 

detection framework. 

This research is organized into distinct sections, 

commencing with a comprehensive introduction in Section 

1 and followed by an extensive literature review in Section 

2. Section 3 meticulously outlines the proposed 

methodology, while Section 4 encapsulates results and 

discussions. The conclusive section succinctly summarizes 

the research findings, offering a coherent closure to the 

research. 

2. Literature Review 

In 2018, Barbedo et al. [16] investigated the pivotal factors 

that influenced the design and efficacy of deep neural 

networks in plant pathology. A comprehensive analysis was 

undertaken, highlighting both advantages and limitations. 

The arguments were substantiated by literature studies and 

experiments utilizing an image database. Practical 

conclusions were drawn, aligning with realistic conditions. 

In 2020, Panigrahi et al. [17] centered on supervised 

machine learning techniques, such as Naive Bayes, Decision 

Tree, K-Nearest Neighbor, Support Vector Machine, and 

Random Forest, for detecting maize plant diseases from 

images. The classification methods were scrutinized and 

compared, revealing that the Random Forest algorithm 

achieved the highest accuracy at 79.23%. The trained 

models were designed for farmers to facilitate early disease 

detection and classification as a preventive measure. 

In 2019, Pantazi et al. [18] demonstrated an automated 

approach for identifying crop diseases in a range of leaf 

sample images from various crop species. Feature extraction 

employed Local Binary Patterns, and One Class 

Classification was applied for categorization. The 

methodology included a dedicated One Class Classifier for 

each plant health condition, covering healthy, downy 

mildew, powdery mildew, and black rot. 

In 2017, Singh et al. [19] underscored the benefits of 

automating plant disease detection, streamlining monitoring 

in extensive crop farms and facilitating early symptom 

identification. An image segmentation algorithm was 

introduced for automatic detection and classification of 

plant leaf diseases. A survey on diverse disease 

classification techniques was conducted, and the pivotal 

task of image segmentation for plant leaf disease detection 

was successfully executed using genetic algorithms. 

In 2021, Huitron et al. [20] featured the training and 

evaluation of four modern Convolutional Neural Network 

models for the classification of tomato leaf diseases. 

Utilizing a subset of 18,160 RGB images from the Plant 

Village dataset categorized into ten classes, transfer learning 

was applied. The selected models incorporated a depth-wise 

separable convolution architecture, ideal for low-power 

devices. Quantitative and qualitative evaluations were 

performed, employing quality metrics and saliency maps. 

In 2019, Dhingra et al. [21] utilized an innovative fuzzy set 

extended form of neutrosophic logic for segmentation, 

assessing regions of interest. The resultant neutrosophic 

image comprised three membership elements: true, false, 

and intermediate. Leveraging segmented regions, a novel 

feature subset incorporating texture, color, histogram, and 

disease sequence regions was evaluated for distinguishing 

between diseased and healthy leaves. Nine classifiers were 

employed to showcase the discriminatory power of 

combined features, with random forest emerging as the 

dominant technique. 

In 2019, Sibiya et al. [22] applied convolutional neural 

network principles to model an image recognition and 

classification network for identifying maize leaf diseases. 

Neuroph was employed to train the CNN network using 

images captured through a smartphone camera. A unique 

training approach and methodology were implemented, 

ensuring a rapid and practical system deployment. The 

developed model successfully recognized and classified 
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three distinct types of maize leaf diseases alongside healthy 

leaves. 

In 2023, Wu et al. [23] centered on harnessing hyperspectral 

imaging with spectral features, vegetation indices, and 

textural features for early Gray Mold detection. 

Hyperspectral images were collected, processed, and 

competitive adaptive reweighted sampling selected optimal 

wavelengths. Machine learning models were developed 

using the selected features, ensuring effective recognition of 

Gray Mold. 

In 2019, Geetharamani et al. [24] proposed an innovative 

plant leaf disease identification model, relying on a Deep 

Convolutional Neural Network. The model underwent 

training with a diverse dataset containing 39 plant leaf 

classes and background images. Employing six data 

augmentation techniques, including image flipping and 

gamma correction, enhanced the model's performance, 

underscoring the efficacy of data augmentation in the 

training process. 

In 2017, Bajwa et al. [25] aimed to correlate leaf reflectance 

with crop disease conditions and identify discriminative 

wavebands. A microplot experiment gathered data, 

including 800 leaf spectra, chlorophyll content, and disease 

ratings for soybean cultivars under various disease 

treatments. Disease discrimination capability was assessed 

using vegetation indices, and wavebands were identified 

through stepwise linear discriminant analysis, logistic 

discriminant analysis, and linear correlation analysis. The 

findings were utilized to develop a classification function 

for identifying plant disease conditions. 

2.1 Problem Statement 

 

Table 1: Aim and limitations of the previous research 

Author Method Aim Limitation 

Dhingra et al. [21] • Innovated computer vision 

for precise leaf disease 

identification and 

classification. 

• Enhancing 

precision in leaf disease 

identification using 

innovative computer vision 

techniques. 

• The approach's 

effectiveness may be 

influenced by varied 

environmental conditions 

impacting image quality. 

Sibiya et al. [22] • Employed CNN 

for accurate maize leaf 

disease recognition and 

classification, 

distinguishing them from 

healthy leaves 

• Enhancing 

precision in maize leaf 

disease identification 

through advanced 

computational procedures. 

• The model's 

accuracy may vary under 

diverse environmental 

conditions and different 

stages of disease 

progression. 

Wu et al. [23] • Fused 

hyperspectral imaging, 

spectral features, vegetation 

indices for early strawberry 

disease. 

• Achieving early 

and precise strawberry leaf 

disease identification 

through advanced 

hyperspectral imaging 

techniques. 

• Sensitivity to 

environmental variations 

may affect the method's 

accuracy in different 

conditions. 

Bajwa et al. [25] • Monitored 

soybean diseases using leaf 

reflectance. 

• Achieving 

effective soybean disease 

monitoring through spectral 

analysis. 

• Susceptible to 

environmental factors 

impacting reflectance 

patterns and disease 

manifestations. 

3. Proposed Methodology 

The proposed methodology encompasses a structured 

approach for the meticulous execution of objectives, 

specifically tailored for comprehensive leaf disease 

detection. Initiating with the critical phase of pre-

processing, advanced techniques are applied to optimize 

dataset robustness. Generative Adversarial Networks are 

strategically utilized for image augmentation, enhancing the 

model's ability to generalize across diverse instances. 

Additionally, a novel Modified Gaussian Smoothing 

technique is proposed for noise reduction and improved 

image quality. Contrast Stretching is employed to enhance 

image contrast, facilitating improved feature extraction, 

while color correction methods standardize color variations 

across images. Moving forward, the methodology integrates 

advanced techniques for precise leaf localization in the 
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second step. The combination of Region Proposal Networks 

and proposed Spatial Attention Mechanisms ensures 

heightened accuracy in localizing disease-affected areas. 

The third step involves Region of Interest identification, 

wherein an Optimized dual attention YOLO model, 

supplemented by FeatExProNet, extracts a comprehensive 

set of features. These features encompass shape, color, 

texture, statistical characteristics, and deep learning-based 

features using Inception V3, ensuring a holistic 

representation of leaf characteristics. 

Subsequently, the fourth step employs a Hybrid 

Optimization Approach, unifying Binary Sand Cat Swarm 

Optimization and Butterfly Optimization algorithms for 

effective feature selection. This strategic selection optimizes 

the model's performance by focusing on the most 

informative features. The final step integrates a 

VarioFusionNet-based model for leaf disease detection, 

combining Vision Transformer, Google Net, Alex Net, 

DenseNet-121, ResNet-50, and Efficient Net architectures. 

The amalgamation of these advanced models ensures a 

synergistic approach, enhancing the overall accuracy and 

effectiveness of the leaf disease detection system. 

Validation on diverse datasets throughout the methodology 

guarantees the robustness and adaptability of the proposed 

approach across various scenarios and conditions. 

The methodology will encompass the execution of 

the outlined objectives is shown in Figure 1, starting with 

pre-processing techniques, followed by leaf localization, 

ROI identification, feature extraction, feature selection, 

architecture integration, and validation on diverse datasets. 

Each step will be meticulously executed, with a focus on 

leveraging advanced deep learning techniques. 

Step 1: Pre-processing: 

• Image Augmentation: Utilize Generative Adversarial 

Networks (GANs) to augment the dataset, enhancing 

model robustness. 

• Modified Gaussian Smoothing: Apply a modified 

Gaussian smoothing technique (proposed) for noise 

reduction and improved image quality. 

• Contrast Stretching: Enhance image contrast through 

contrast stretching, aiding in better feature extraction. 

• Color Correction: Implement color correction methods 

to standardize color variations across images. 

Step 2: Leaf Localization: 

• Region Proposal Networks (RPN) and Spatial 

Attention Mechanisms (proposed): Integrate RPN 

and spatial attention mechanisms to improve the 

accuracy of leaf localization, ensuring precise 

identification of disease-affected areas. 

Step 3: ROI identification: 

• Optimized dual attention YOLO  

FeatExProNet based Feature Extraction: 

• Shape: Extract features such as area, major and 

minor axis length, perimeter, and solidity. 

• Color: Utilize histogram-based features, capturing 

color distribution patterns. 

• Texture: Employ Tamura and Hara lick texture 

features for enhanced texture representation. 

• Statistical Features: Extract moments (mean, 

skewness, kurtosis) to capture statistical 

characteristics. 

• Deep Learning-based Features: Leverage Inception 

V3 for automatic and hierarchical feature 

extraction. 

Step 4: Feature Selection: 

• Hybrid Optimization Approach: Employ a hybrid 

optimization approach combining Binary Sand Cat 

Swarm Optimization and Butterfly Optimization 

algorithms for effective feature selection. 

Step 5: VarioFusionNet-based leaf disease detection: 

 Vision transformer, google Net, Alex Net, 

DenseNet-121, ResNe-50, EfficientNet. 

 

Fig 1: Overall flow diagram of the proposed model 
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3.1 Reprocessing 

In the preprocessing phase, diverse image augmentation 

techniques are employed, including Generative Adversarial 

Network integration for realistic data generation. Modified 

Gaussian Filtering enhances feature extraction, while 

contrast stretching boosts image clarity. Additionally, 

meticulous color correction techniques are applied, ensuring 

optimal input quality for subsequent analyses. 

3.1.1  Image augmentation 

Data augmentation for images involves creating varied 

versions of a dataset by manipulating pixel values in a 2-

dimensional array. Essentially, it transforms the numerical 

representation of images, providing a diverse set for 

improved model training. This process enhances the model's 

ability to perform and generalize well on a broader range of 

inputs. 

3.1.1.1 Generative Adversarial Network  

Generative Adversarial Networks [26] form a 

methodological class for modelling data distributions, 

employing a generator (G) to transform random uniform 

samples into the target distribution and a discriminator (D) 

to assess sample authenticity. Their joint training, following 

game-theoretic min-max principles, involves iterative 

refinement. While GANs excel in visual synthesis, 

challenges persist, including training difficulties and 

susceptibility to modal collapse. Ongoing research 

investigates enhancements such as conditional variables, 

improved training methods, and task-specific cost functions. 

Beyond image synthesis, GANs are now being explored in 

diverse domains like text-to-image synthesis and single-

image super-resolution. 

3.1.1.2 Modified Gaussian Filtering 

Widely adopted in image processing, Gaussian smoothing 

[27] stands out as a prevalent technique. Described by a 2D 

Gaussian function featuring a zero mean (μ) and a consistent 

standard deviation (σ), this method efficiently reduces noise 

and enhances image quality. The mathematical expression 

captures the distribution of pixel values, facilitating 

effective smoothing for diverse applications. 

𝐺(𝑋, 𝑌) = exp⁡(−
𝑋2+𝑌2

2𝜎2
)                                                     

(1) 

In the context of the Gaussian function in Eq. (1), where 

𝑋⁡𝑎𝑛𝑑⁡𝑌 are variables, the standard deviation significantly 

influences its behavior. The distribution within 

±𝜎,±2𝜎, 𝑎𝑛𝑑⁡ ± 3𝜎 encompasses 68%, 95%, and 99.7% of 

values, respectively. Applied through convolution, the 2D 

Gaussian function acts as a point spread function, enhancing 

image quality. Practical implementation involves 

approximating the Gaussian function discretely, often 

neglecting values beyond ±3𝜎 due to their minimal impact, 

making the convolution kernel practically manageable. 

The Gaussian filter serves as a non-uniform low-pass filter, 

featuring kernel coefficients inversely proportional to 

distance from the center. The central point holds the highest 

value, and blurring intensity is determined by the peak 

width—higher sigma values result in wider peaks. To 

uphold the Gaussian nature, both kernel size and sigma must 

increase proportionally. Symmetric and directionally 

unbiased, the filter's coefficients are sigma-dependent. 

While computationally efficient due to its separable nature, 

the Gaussian kernel may not maintain the original image 

brightness during the filtering process. 

For efficient Gaussian function implementation, 

approximation involves fixing a set number of coefficients, 

often referred to as the kernel or mask. Optimal smoothing 

requires a larger sigma (𝜎), while an accurate representation 

of the function demands a larger kernel size. A 5 × 5 

Gaussian kernel, for instance, is derived by evaluating Eq. 

(1) across variable ranges of 𝑋⁡𝑎𝑛𝑑⁡𝑌 from [−2, 2]. This 

approach balances computational efficiency with the 

precision needed to capture the desired smoothing effect. 

For noise reduction and improved image quality, you can 

modify the Gaussian smoothing filter by incorporating a 

weighted average of neighbouring pixels. This modification 

enhances the filter's ability to reduce noise while preserving 

important image features. Here's an equation that includes a 

weighted sum of neighbouring pixels based on a parameter 

𝛼 

In this equation (2): 

𝐺(𝑋, 𝑌) =
1−𝛼

𝜋−𝜎2
⁡𝑒𝑥𝑝 (

−𝑋2+𝑌2

2∙𝜎2
) +

𝛼

𝜋(2∙𝜎)2
exp (

−𝑋2+𝑌2

2∙(2∙𝜎)2
)     

(2)                             

The first term represents the traditional Gaussian smoothing 

component. 

The second term introduces a weighted sum of neighbouring 

pixels with a larger standard deviation (here, 2 ∙ 𝜎). The 

parameter 𝛼 controls the contribution of this term, 

determining the balance between noise reduction and 

blurring. Adjusting 𝛼 allows you to fine-tune the trade-off 

between noise reduction and preserving image details. 

Higher 𝛼 values result in stronger noise reduction but may 

lead to more blurring. Experiment with different values of 𝛼 

to find the optimal balance for your specific image 

processing needs. 

3.1.1.3 Contrast stretching 

Insufficient illumination, limited dynamic range in image 

sensors, or misconfigured lens apertures during image 

acquisition can lead to low-contrast images. Contrast 

stretching [28] serves to expand the intensity range within 

an image, ensuring comprehensive coverage of the 
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recording medium or display device spectrum. The primary 

aim is to boost image contrast by amplifying darker regions 

and brightening brighter segments, rejuvenating the overall 

visual appeal of the image. 

𝑆 = {

𝐿 ∗ 𝑅⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡0 ≤ 𝑅 < 𝐴
𝑀 ∗ (𝑅 − 𝐴) + 𝑉⁡⁡⁡⁡⁡𝐴 ≤ 𝑅 < 𝐵

𝑁 ∗ (𝑅 − 𝐵) +𝑊⁡⁡⁡𝐵 ≤ 𝑅 < 𝑙 − 1
      (3)                                               

Incorporating slopes 𝐿⁡,𝑀⁡𝑎𝑛𝑑⁡𝑁 the contrast stretching 

transformation, evident in equation (3), selectively darkens 

dark gray levels (with slopes less than one) and brightens 

bright gray levels (with slopes greater than one). This 

strategic assignment, where 𝐼⁡𝑎𝑛𝑑⁡𝑁⁡𝑎𝑟𝑒⁡ < ⁡1 while 𝑀⁡ >

⁡1, effectively expands the dynamic range, enhancing the 

overall contrast of the modified image. 

3.1.1.4 Color correction 

Color correction is a crucial post-processing 

technique that involves adjusting the colors in an image to 

achieve a more accurate and visually appealing 

representation. By manipulating the color balance, 

saturation, and brightness, color correction aims to eliminate 

any unwanted color casts and ensure that the colors in the 

image appear true to life. This process is commonly used in 

photography, graphic design, and video production to 

enhance the overall visual quality and consistency of the 

content. Sophisticated algorithms and software tools are 

often employed to precisely adjust individual color channels 

and achieve optimal color accuracy. 

3.2 Leaf Localization 

Leaf localization is a pivotal task in plant image analysis, 

aiming to identify and delineate the boundaries of leaves 

within images. Employed in agriculture, ecology, and plant 

biology, this process plays a crucial role in assessing plant 

health, disease detection, and growth monitoring. Computer 

vision algorithms, often utilizing convolutional neural 

networks (CNNs) and image processing techniques, are 

applied to accurately locate and segment leaves from 

complex backgrounds. By isolating leaf regions, researchers 

and farmers gain valuable insights into plant conditions. 

Leaf localization facilitates automated plant phenotyping, 

aiding in precision agriculture and advancing our 

understanding of plant responses to environmental factors. 

3.2.1 Region Proposal Networks 

The Region Proposal Network [29] streamlines object 

detection by generating rectangular proposals accompanied 

by objectness scores. Implemented as a fully-convolutional 

network, it shares convolutional layers with a Fast R-CNN 

detector. Two models, Zeiler and Fergus with 5 shareable 

convolutional layers, and Simonyan and Zisserman with 13, 

are explored. To generate proposals, a compact network 

traverses the final shared convolutional layer's output, 

linking to an n × n spatial window of the input feature map, 

as depicted in Fig 2. Each window corresponds to a lower-

dimensional vector (256-d for ZF, 512-d for VGG), feeding 

into sibling fully-connected layers for box regression (reg) 

and box classification (cls). The architecture, with n = 3, 

employs shared fully-connected layers, realized through n × 

n conv followed by 1 × 1 conv layers for reg and cls. ReLUs 

enhance feature representation in the output of the n × n 

conv layer. 

 

Fig 2: RPN [29] 

3.2.2 Spatial Attention Mechanism (proposed) 

Effectively identifying changed and unchanged areas relies 

on discriminant feature representations. Traditional Fully 

Convolutional Networks (FCNs) often generate local 

features, but relying solely on these may result in 

misclassification, as indicated by numerous studies. To 

address this limitation and capture the broader context of 

local features, we propose the integration of a spatial 

attention module [30]. This module plays a crucial role in 

encoding contextual information from long ranges into local 

features, thereby enhancing and enriching the overall 

feature representations. By incorporating spatial attention, 

our model gains the ability to better discern subtle changes 

and maintain improved accuracy in distinguishing between 

different types of features. 

 

Fig 3: Spatial Attention Mechanism 

As depicted in Fig. 3, the feature tensor 𝑓𝜖ℝ𝑐×ℎ×𝑤 ⁡𝑤𝑖𝑡ℎ⁡𝑐 

representing the number of channels, ℎ⁡𝑎𝑛𝑑⁡𝑤 denoting the 

width and height, respectively, is derived from Siam-Conv. 

This feature is then fed into 3 convolutional layers sharing 
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the same structure, resulting in three new features: 

𝑓𝑎, 𝑓𝑏 , 𝑎𝑛𝑑⁡𝑓𝑐⁡ where {𝑓𝑎, 𝑓𝑏 , 𝑎𝑛𝑑⁡𝑓𝑐 ⁡} ∈ ℝ𝑐×ℎ×𝑤 .⁡⁡ Following 

this, 𝑓𝑎, 𝑎𝑛𝑑⁡𝑓𝑏 are reshaped to ℝ𝑐×𝑛 ,⁡where 𝑛 = ℎ ×

𝑤.Subsequently, a matrix multiplication is performed 

between the transpose of  𝑓𝑏⁡𝑎𝑛𝑑⁡𝑓𝑎, , yielding the spatial 

attention map 𝑓𝑠 ∈ ℝ𝑛×𝑛 through a softmax layer. 

𝑓𝑠𝐽𝐼 =
exp⁡(𝑓𝑎𝐼∙𝑓𝑏𝐽)

∑ exp⁡(𝑓𝑎𝐼∙𝑓𝑏𝐽)
𝑛
𝐼=1

                                                    

(4) 

𝑓𝑠𝐽𝐼   serves as a metric for evaluating the efficacy 

of the feature at position on the feature at position 𝐽. A 

higher value of 𝑓𝑠𝐽𝐼 ⁡  indicates a stronger connection 

between the two features. 

After reshaping 𝑓𝑐⁡𝑡𝑜⁡ℝ𝑐×𝑛, perform matrix multiplication 

with 𝑓𝑠,⁡, yielding a result that is then reshaped to 

ℝ𝑐×ℎ×𝑤 .⁡Subsequently, the obtained result is multiplied by 

a scale parameter  

𝜂, followed by an elementwise summation operation with 

𝑓,⁡ resulting in the final output. This process ensures the 

incorporation of spatial attention information for enhanced 

feature representation. 

𝑓𝑠𝑎𝐽 = 𝜂∑ (𝑓𝑠𝐽𝐼𝑓𝑐𝐽) + 𝑓𝐽
𝑛
𝐼=1                                                     

(5) 

The parameter 𝜂⁡initiates at 0 and dynamically adjusts to 

assign increasing weights. According to Formula (5), the 

resulting feature 𝑓𝑠𝑎 at each position arises from a weighted 

sum that incorporates features from all positions and the 

original features. As a result, 𝑓𝑠𝑎 captures a global context 

perspective, selectively aggregating contexts guided by 

spatial attention maps. This method ensures that similar 

semantic features reinforce one another, promoting 

compactness and semantic consistency within the class. 

Consequently, the network excels in distinguishing between 

genuine changes and pseudo-changes, thereby enhancing 

accuracy and discriminative capacity. 

3.3. ROI Identification 

The process of Region of Interest identification is 

facilitated through a comprehensive approach involving an 

Optimized Dual Attention YOLO model, The Feature 

Extraction is carried out using the FeatExProNet 

framework, encompassing various feature categories. Shape 

features, including metrics like area, major and minor axis 

length, perimeter, and solidity, provide insights into the 

geometric attributes of identified regions. Color features, 

employing histogram-based techniques, capture nuanced 

color distribution patterns within the regions of interest. 

Texture representation is enhanced through the utilization of 

Tamura and Haralick texture features. Statistical 

characteristics are encapsulated by extracting moments such 

as mean, skewness, and kurtosis. Furthermore, deep 

learning-based features are harnessed, leveraging Inception 

V3 for automatic and hierarchical extraction, ensuring a 

comprehensive understanding of regions of interest that 

combines geometric, color, texture, statistical, and deep 

learning-based attributes for robust ROI identification. 

3.3.1 Optimized dual attention YOLO  

In the optimization process of the Dual-Attention YOLO 

model, the focus lies on refining the model's parameters and 

improving convergence through strategic adjustments in the 

learning rate. Initially, the model architecture consists of a 

backbone and a head, with data augmentation performed by 

Maxup before backbone feature extraction. The backbone 

incorporates the GhostNet bottleneck and convolution 

structure, followed by outputs to the Vision Transformer 

block and the Spatial Pyramid Pooling Fusion layer. The 

GhostNet module efficiently reduces redundant information 

through linear operations, achieving model compression. 

Detailed structures are elucidated. The Vision Transformer 

block enhances the global receptive field on feature maps, 

capturing richer semantic information and provides a 

comprehensive understanding of its structure and operation. 

The SPPF layer, a spatial pyramid pooling layer, facilitates 

multi-scale information fusion by transforming input 

features into specific-dimensional vector information. The 

specific SPPF structure is detailed in Figure 6, incorporating 

convolution, concatenation, and max pooling operations. 

Deviating from the YOLOv5's FPN and PAN structure, the 

head network employs down-sampling through convolution 

output feature maps to enhance the receptive field. The 

Convolution-BatchNorm-ReLU structure is utilized, 

followed by the BiFPN feature fusion structure. This fusion 

mechanism, fully extracts input information of varying sizes 

for optimal fusion operations. 

Augmenting multi-scale target recognition is attained 

through the CBAM channel spatial attention mechanism and 

the Vision Transformer block. The operational principle of 

the CBAM attention mechanism is elucidated. In the 

prediction phase, it is coupled with an enhanced K-Means 

algorithm for anchor clustering, contributing to improved 

accuracy and efficiency. Nine anchors of different sizes are 

obtained through clustering, with each group of three 

anchors of similar sizes classified together. Subsequently, 

predictions for large, medium, and small sizes are made, 

culminating in an improved K-Means anchor clustering 

process. 

To optimize the Dual-Attention YOLO model with the 

learning rate, it is imperative to experiment with learning 

rate values, schedules, and other hyperparameters. 

Continuous monitoring of training progress and 

performance metrics enables iterative adjustments for 

enhanced convergence and model efficacy. The interplay 

between the intricate components of the model ensures a 

refined and well-tuned Dual-Attention YOLO architecture 

[34]. 
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Fig 4: Optimized Dual Attention YOLO 

3.3.2 FeatExProNet based Feature Extraction: 

FeatExProNet employs a diverse Feature Extraction 

strategy encompassing various facets. Shape features, 

including area, major/minor axis length and perimeter offer 

geometric insights. Color analysis involves histogram-based 

features capturing distribution patterns. Texture 

representation is enhanced through Tamura and Haralick 

features. Statistical characteristics like mean, skewness, and 

kurtosis are extracted, and deep learning-based features 

leverage Inception V3 for automatic hierarchical extraction. 

3.3.2.1 Shape 

 Extract features such as area, major/minor axis length, 

perimeter and solidity. Shape feature extraction is a crucial 

aspect of image analysis that involves capturing geometric 

characteristics to characterize objects or regions of interest. 

This process typically includes extracting parameters such 

as area, major/minor axis length, perimeter, and solidity. 

These features provide valuable information about the form, 

structure, and spatial layout of objects within an image, 

enabling effective discrimination and recognition in various 

applications, from computer vision to pattern recognition 

and object detection. The extracted shape features play a 

pivotal role in understanding and distinguishing different 

objects or regions based on their geometric attributes. 

3.3.2.2 Area 

Area quantifies the extent of a two-dimensional surface, 

representing the space enclosed by the boundary of a plane 

figure. It denotes the count of unit squares required to cover 

the closed figure's surface. Measurement units for area 

include square centimetres (𝑐𝑚²) and square meters (𝑚²), 

offering a standardized means for expressing spatial 

coverage. 

3.3.2.3 Perimeter 

The perimeter of a shape is the complete distance around it, 

representing the total length if the shape were stretched 

linearly. It defines the boundary in a two-dimensional plane. 

Shapes with varying dimensions may share the same 

perimeter length, emphasizing how distinct shapes can 

exhibit equivalent perimeters based on their size and 

proportions. 

𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟 = 2(𝐿 + 𝐵)                           (6) 

Where L is the length and B is the breadth. 

3.3.2.4 Major and minor axis length 

The major axis of an ellipse extends between two points on 

the curve, covering the maximum distance and 

accommodating both foci. In contrast, the minor axis 

connects the two co-vertices of the ellipse. If these co-

vertices are positioned at (n,0) and (−n,0), the minor axis 

length equals 2n, emphasizing the geometric relationship 

within the ellipse. 

3.3.2.5 Solidity 

Solidity quantifies the relationship between the area of an 

object and the area of its convex hull. A solidity value of 1 

signifies a solid object, while a value below 1 suggests 

irregular boundaries or the presence of voids. It's a metric 

comparing a polygon's area to the square of its perimeter, 

providing insights into the object's structural integrity. 

3.3.2.6 Color 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 997–1019  |  1005 

 Utilize histogram-based features, capturing color 

distribution patterns. The extraction of histogram features 

initiates from the raw image data. These histograms undergo 

further processing to derive meta features, serving as input 

for the semantic mapper. The semantic mapper then 

transforms these meta features into semantic features. This 

methodology is outlined in the source publication titled "A 

Semantic Content-Based Retrieval Method for 

Histopathology Images." 

3.3.2.7 Texture 

 Employ Tamura and Haralick texture features for enhanced 

texture representation. Tamura texture features are a set of 

measures designed to capture various aspects of texture in 

an image. Coarseness, one of the Tamura features, gauges 

the size of the texture elements. Contrast assesses the 

intensity variation between neighbouring pixels, while 

Directionality characterizes the predominant direction of 

texture patterns. These features collectively provide a 

detailed and discriminative description of the textural 

properties within an image, facilitating tasks such as image 

analysis, classification, and recognition. 

Haralick texture features, derived from the gray-level co-

occurrence matrix, offer a comprehensive characterization 

of image texture. These features include measures such as 

energy, quantifying the uniformity of pixel intensities; 

entropy, representing image randomness; contrast, 

indicating the intensity variation between pixels; and 

homogeneity, reflecting the closeness of pixel pairs in 

intensity. Haralick texture features are valuable for texture 

analysis in image processing, aiding tasks such as pattern 

recognition, segmentation, and classification by capturing 

intricate details within the textural composition of an image. 

3.3.3 Statistical Features 

Extract moments (mean, skewness, kurtosis) to capture 

statistical characteristics. 

3.3.3.1 Mean 

Calculate the mean by dividing the sum of numbers in a set 

by the total count of values, yielding the average. This 

statistical measure offers a central point of reference, 

encapsulating the collective magnitude of the dataset and 

providing a representative value for analysis. 

𝑌̅ =
∑𝑌

𝑁
                                       (7) 

To compute the arithmetic, mean of a dataset 

shown in Eq. (7), sum all data values (𝑌) using the symbol 

∑ for summation. Divide the total by the number of values 

(𝑁), where ∑ denotes summation. This method provides a 

representative average of the dataset. 

3.3.3.2 Skewness 

Skewness serves as a gauge of asymmetry within a 

distribution or dataset, specifically indicating its departure 

from symmetry. A distribution is considered symmetric 

when its visual representation mirrors on both sides of the 

central point. Skewness, therefore, quantifies the degree to 

which the data deviates from this balanced, symmetrical 

arrangement. 

𝑠𝑘𝑒𝑤 =
∑ (𝑦𝐼−𝑦̅)

3/𝑛𝑛
𝐼=1

𝑆3
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8)⁡⁡⁡⁡⁡⁡

  

As per Eq. (8), Where mean value is defined as 𝑦̅; the 

standard deviation is denoted as 𝑆; and the number of data 

point is referred as 𝑛. 

3.3.3.3 Kurtosis 

Kurtosis functions as an indicator of the tail behavior of data 

concerning a normal distribution. It discerns whether the 

data exhibit heavier or lighter tails compared to a standard 

normal distribution. This metric provides valuable insights 

into the shape and characteristics of the distribution, 

offering information about the data's propensity for extreme 

values or outliers. 

𝑘𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
∑ (𝑦𝐼−𝑦̅)

4/𝑛𝑛
𝐼=1

𝑆4
 (9) 

As per Eq. (9), Where mean value is defined as 𝑦̅; the 

standard deviation is denoted as 𝑆; and the number of data 

point is referred as 𝑛. 

3.3.4 Deep Learning-based Features 

 Leverage Inception V3 for automatic and hierarchical 

feature extraction. 

3.3.4.1 Inception V3 

 Incorporating over 20 million parameters, the inception-V3 

model boasts a robust architecture crafted by a prominent 

hardware expert. Comprising symmetrical and 

asymmetrical blocks, it features diverse layers—

convolutional, average and max pooling, concatenations, 

dropouts, and fully connected layers. The consistent 

application of batch normalization enhances activation layer 

inputs. The classification process utilizes Softmax, ensuring 

efficient categorization. The model's complexity and 

effectiveness are underscored by the intricate interplay of 

these elements, contributing to its superior performance. 

Figure 5 provides a schematic diagram, offering a visual 

representation of the Inception-V3 model's architectural 

intricacies, showcasing its capacity to capture intricate 

features and patterns in diverse datasets. 
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Fig 5: Inception V3 architecture 

3.4 Feature Selection 

In the realm of feature selection, a novel strategy unfolds 

through a Hybrid Optimization Approach. This innovative 

method seamlessly integrates Binary Sand Cat Swarm 

Optimization and Butterfly Optimization algorithms. By 

synergizing these techniques, the approach enhances the 

efficiency of feature selection, ensuring a refined and 

effective feature subset for optimal model performance. 

3.4.1 Binary Sand Cat Swarm Optimization 

In the Sand Cat Search Optimization (SCSO) algorithm, the 

population comprises N sand cat individuals with D 

dimensions, forming an N × D matrix. The matrix, denoted 

as X(t), encapsulates the position vectors of sand cats in the 

search space at iteration t, representing the evolving 

solutions throughout the optimization process. 

The Sand Cat in SCSO possesses a sensitivity range (rg) for 

low-frequency noises from 2 kHz to 0 kHz. This sensitivity 

decreases linearly as the frequency diminishes. The 

calculation of rg captures the dynamic nature of the Sand 

Cat's auditory sensitivity, reflecting its responsiveness to 

varying frequency levels during the optimization process. 

𝑅𝐺 = 𝑆𝑚 − (
𝑆𝑚×𝑡

𝑇
)                              (10) 

Setting𝑆𝑚 as 2, the current iteration (𝑡) and maximum 

iterations (𝑇) influence the R parameter, determining the 

exploration-exploitation trade-off in SCSO. 

𝑟 = ((2 × 𝑅𝐺) × 𝑟𝑎𝑛𝑑(0,1)) − 𝑅𝐺                       

(11) 

Utilizing 𝑟𝑎𝑛𝑑(0, 1) to generate a random number, the 𝑅 

parameter in SCSO, defining sensitivity range for potential 

solutions, is computed accordingly. 

𝑅 = 𝑅𝐺 × 𝑟𝑎𝑛𝑑(0,1)                                    (12) 

The Sand Cat Search Optimization (SCSO) determines the 

next location based on R (-1 to 1). When |𝑟| ⁡≤ ⁡1, the 

approach prioritizes exploitation for precise prey hunting. 

Conversely, if |R| > 1, the algorithm emphasizes 

exploration, compelling sand cats to seek new food sources. 

The mathematical expression for prey attack (exploitation) 

in SCSO is detailed accordingly. 

𝑥𝑟𝑎𝑛𝑑 = |𝑟𝑎𝑛𝑑(0,1) × 𝑥𝑏𝑒𝑠𝑡 − 𝑥(𝑇)|⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13)⁡⁡                                     

𝑥(𝑡+1) = 𝑥𝑏𝑒𝑠𝑡 − 𝑟𝑎𝑛𝑑(0,1) ∗ 𝑥𝑟𝑎𝑛𝑑 ∗ cos⁡(𝜃)             (14)

                           

In this equation (13-14), 𝑥𝑟𝑎𝑛𝑑 ⁡computes the distance from 

the best position, Xbest, to the current position, 𝑥(𝑇), in 

iteration t. The resulting 𝑥(𝑡+1)signifies the updated position 

of the search agent, indicating the movement of the sand cat. 

Additionally, the circular sensitivity of sand cats directs 

movement through a random angle θ determined by roulette 

wheel selection Eq. (15-17). 

The exploration phase in SCSO is expressed as the 

mathematical formulation for searching prey, guiding the 

sand cat in exploration endeavours. 

𝐶𝑃 = 𝑓𝑙𝑜𝑜𝑟(𝑛 ∗ 𝑟𝑎𝑛𝑑(0,1) + 1)                                      

(15)                                      

𝑥𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑡) = 𝑥(𝑐𝑝, : )                                                    

(16) 

𝑥(𝑡+1) = 𝑅 × (𝑥𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑡) − 𝑟𝑎𝑛𝑑(0,1) × 𝑥(𝑡)) (17)                                 

𝑥𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑡) represents a randomly chosen 

candidate position in the exploration phase. 

In the realm of feature selection, envisioning each feature as 

a binary decision—either included or excluded in the final 

subset—translates into a binary vector of size D, where D 

signifies the total features. A value of 1 denotes inclusion, 
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while 0 signifies exclusion. SCSO operates in a continuous 

space, but the feature selection problem operates in a 

discrete space. To bridge this gap, transfer functions are 

employed to transform the continuous space into a discrete 

one, enabling the adaptation of the SCSO algorithm for 

feature selection. 

3.4.2 Butterfly Optimization 

The Butterfly Optimization Algorithm is a swarm-based 

metaheuristic that draws inspiration from the foraging and 

mating behaviour of butterflies. This innovative algorithm 

is grounded in three fundamental hypotheses, each 

contributing to the optimization process. 

Firstly, BOA posits that all butterflies emit fragrance and are 

naturally drawn to one another. This collective attraction 

forms the basis for the swarm's cohesion during 

optimization. Secondly, individual butterflies are assumed 

to move randomly or towards the butterfly emitting the most 

scent, mirroring the exploration-exploitation trade-off in the 

search space. This stochastic movement ensures a diverse 

exploration of the solution landscape. Lastly, BOA suggests 

that the stimulus intensity experienced by a butterfly is 

intricately linked to the fitness landscape. As butterflies 

traverse the search space, the changing fragrance levels act 

as indicators of the optimization landscape. 

The optimization process in BOA unfolds through two 

distinct phases: the local search phase and the global search 

phase. During the global search, butterflies navigate 

randomly when they do not detect the fragrance network. 

This phase facilitates broad exploration of the solution 

space. In contrast, the local search phase kicks in as 

butterflies converge towards the individual emitting the 

highest concentration of fragrance. This targeted movement 

intensifies exploration around promising regions, refining 

the search for optimal solutions. 

Mathematically, BOA employs a model that captures the 

dynamics of fragrance emission, movement, and stimulus 

intensity. This model facilitates the integration of global and 

local search strategies, enabling the algorithm to effectively 

address optimization problems. In essence, the Butterfly 

Optimization Algorithm stands out as a unique approach, 

leveraging the collective behavior of butterflies to inspire a 

powerful optimization technique that adeptly balances 

exploration and exploitation in search spaces. 

Butterfly fragrance correlates with the stimulus 

intensity, forming a function that reflects the dynamic 

interplay of their environmental interactions. 

𝐹𝐼 = 𝐶𝑖𝑎, 𝐼 = 1,2, … . 𝑛𝑝                              (18) 

In the mathematical model, butterfly fragrance (𝐹) is a 

function of sensory modality (𝐶), stimulus intensity (𝐼), 

power exponent (𝑎), and the number of butterflies (𝑛𝑝). The 

BOA model encapsulates the dynamic interplay of these 

factors during both global and local search phases, offering 

a comprehensive representation of how butterflies 

collectively explore and exploit the optimization landscape. 

𝑥𝐼
𝑇+1 = 𝑥𝐼

𝑇 + (𝑅2 × 𝑥𝑏𝑒𝑠𝑡
𝑇 − 𝑥𝐼

𝑇) × 𝐹𝐼                                 

(19) 

𝑥𝐼
𝑇+1 = 𝑥𝐼

𝑇 + (𝑅2 × 𝑥𝐽
𝑇 − 𝑥𝐾

𝑇) × 𝐹𝐼                                  (20)

                                                 

In the algorithm, the position of the 𝐼 − 𝑡ℎ butterfly during 

the 𝑇 − 𝑡ℎ iteration is denoted by 𝑥𝐼
𝑇. The global optimal 

individual is represented by 𝑥𝑏𝑒𝑠𝑡
𝑇 . Random number 𝑅 ∈

(0,1), alongside randomly selected individuals 𝑥𝐽
𝑇and 𝑥𝐾

𝑇 , 

influences the search. BOA employs two search strategies, 

controlled by a switching probability 𝑷, managing the 

dynamic transition between these approaches during the 

optimization process. 

3.5 VarioFusionNet-based leaf disease detection: 

In the realm of feature selection, a novel strategy unfolds 

through a Hybrid Optimization Approach. This innovative 

method seamlessly integrates Binary Sand Cat Swarm 

Optimization and Butterfly Optimization algorithms. By 

synergizing these techniques, the approach enhances the 

efficiency of feature selection, ensuring a refined and 

effective feature subset for optimal model performance. 

3.5.1 Vision Transformer 

The Vision Transformer exhibits advantages, avoiding 

saturation with increasing model depth and dataset size. Its 

capacity to process sequences of any length within memory 

constraints stands out. While convolutional neural networks 

like ResNet excel in small to medium image tasks, Vision 

Transformer introduces global self-attention on feature 

graphs, lacking some inductive bias present in CNNs. As 

data volume grows, Transformer's strengths become more 

apparent. In this study, Vision Transformer replaces 

segments of YOLOv5's network structure, demonstrating 

superior recognition performance, showcasing the potential 

synergy between Transformer architectures and object 

detection tasks. 

The Transformer-based pure encoder structure 

involves embedding a 1D vector in the sequence input, 

addressing challenges in capturing global characteristics. 

Preserving image position information is achieved through 

1D position embedding, learnable by a linear layer 𝑛. 

 However, executing global self-attention in entity 

objects leads to a significant 𝑂(𝑛^2𝑑) computational 

complexity for Transformer. Vision Transformer's encoder 

comprises two independent sub-layers: the MLP layer and 

the multi-head self-attention network. Each floor 𝑙 performs 

operations on input 𝑖𝐿−1𝜖⁡𝑅𝑙×𝑐 ,⁡, generating (𝑞, 𝑘, 𝑣) triples 

for subsequent self-attention processing. This architecture 

enhances the network's ability to capture intricate 

relationships in data. 
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𝑞 = 𝑖𝐿−1, 𝑘 = 𝑖𝐿−1𝑤𝐾 , 𝑣 = 𝑖𝐿−1𝑤𝑉                                  

(21) 

In the self-attention (SA) process, denoted by Figure 7b's 

yellow section, three weight vectors 𝑤𝑞, 𝑤𝐾 , 𝑤𝑉 correspond 

to linear mappings, with 𝑑 representing the feature vector's 

dimension. This process involves mapping input features to 

query (𝑞), key (𝑘), and value (𝑣) vectors, essential for 

capturing intricate relationships within the data through 

attention mechanisms. 

𝑠𝑎(𝑖𝐿−1) + 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(
𝑖𝐿−1𝑤𝑞(𝑧𝑤𝐾)

𝑡

√𝐷
)(𝑧𝐿−1𝑤𝑉)               (22)

                                

A multi-head mechanism is formed by connecting 𝑛 self-

attention modules in series. The output, denoted as 

𝑀𝑆𝐴(⁡𝑖𝐿−1),⁡ is a concatenation of the individual self-

attention module outputs. This concatenated output is 

transformed by a weight matrix 𝑤𝑜 ∈ 𝑅𝑚𝑑 × 𝑐⁡, where 𝑑⁡is 

𝑐/𝑚. The resulting output, along with a residual connection, 

serves as input for the MLP layer. 

3.5.2 GoogLeNet[32] 

The GoogLeNet network model aims to enhance network 

width through its prominent Inception structure, as depicted 

in Figure 1. This structure strategically employs 1x1 

convolutional kernels for dimensionality reduction, 

effectively reducing parameters and increasing network 

depth. The branching and merging architecture in Figure 6 

contribute to expanding the network width, thereby 

improving accuracy. Inception-v1, outlined in Table 1, 

delineates the network structure, detailing types, depth, 

pooling, fully connected layers (fc), and the softmax output 

layer for probability results. 

Fig 6: GoogLeNet Architecture 

Following Inception-v1, the GoogLeNet network has seen 

continuous refinement, leading to subsequent versions. 

Inception-v2 introduces batch normalization, Inception-v3 

substitutes two-dimensional convolution kernels with one-

dimensional counterparts, and Inception-v4 incorporates 

ideas from the residual network concept. This article adopts 

the Inception-v4 structure for its advanced features. The 

evolution of GoogLeNet signifies a commitment to refining 

architectures for optimal accuracy and performance in 

image recognition tasks, demonstrating the continuous 

advancements in deep learning network design and the 

ongoing quest for more efficient and effective models in the 

field. 

3.5.3 Alex Net 

AlexNet, detailed in [33], consists of five convolutional 

layers. The first four layers are succeeded by pooling layers, 

while the fifth integrates three fully-connected layers. Back-

propagation, using stochastic gradient descent, fine-tunes 

convolutional kernels to minimize the overall cost function. 

Sliding kernels in the convolutional layers operate on input 

feature maps, producing convolved feature maps. 

Additionally, pooling layers perform max or average 

pooling operations to aggregate information within 

neighbourhood windows. 

 Alex Net’s triumph is credited to key strategies like 

the ReLU non-linearity layer and dropout regularization. 

The ReLU function, expressed in Equation (23), accelerates 

training and prevents overfitting by acting as a half-wave 

rectifier. Dropout, prominently used in fully connected 

layers, acts as regularization by randomly zeroing some 

input or hidden neurons, alleviating co-adaptations. These 

combined tactics enhance Alex Net’s efficacy in image 

classification tasks. 

𝑓(𝑋) = max⁡(𝑋, 0)                                                

(23) 

The efficacy of transferring CNN parameters from 

natural imagery to HSR remote sensing datasets hinges on 

dataset similarities and category compatibility. Utilizing 

well-trained parameters from complex datasets like 

ImageNet, the pre-training mechanism ensures a robust start 

for AlexNet. This initialization is pivotal for subsequent 

HSR remote sensing scene classification, showcasing the 
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architecture's versatility. The pre-training transforms 

AlexNet into an end-to-end classification pipeline, 

streamlining HSR remote sensing imagery processing. Its 

adaptability underscores the model's efficiency in handling 

diverse data, affirming its role as a powerful tool for 

intricate tasks in high-resolution remote sensing 

applications. 

Fig 7: AlexNet Architecture 

3.5.4 DenseNet 121 

Within DenseNet architectures, layers form dense blocks, 

ensuring each layer incorporates inputs from all preceding 

layers. The 𝐿 − 𝑡ℎ layer receives input from all previous 

feature maps [𝑋0, 𝑋1, … . . , 𝑋𝐿−1], facilitating the creation of 

a comprehensive feature map that is then propagated to 

subsequent layers. This interconnected design enhances 

information flow and promotes feature reuse. 

𝑋𝐿 = ℎ𝐿([𝑋0, 𝑋1, … . . , 𝑋𝐿−1])                                       

(24) 

In the DenseNet architecture, [𝑋0, 𝑋1, … . . , 𝑋𝐿−1] 

consolidates previous feature maps for the 𝑙-th layer. 𝑋𝐿, the 

output of this layer, is generated by the composition 

function ℎ𝐿, involving batch normalization, ReLU 

activation, and convolution. Differentiating from methods 

like ResNet, DenseNet concatenates layers rather than 

combining past and future layers. This approach combats 

vanishing gradients by reusing features, effectively reducing 

parameters. DenseNet-121 features four dense blocks 

interspersed with transition layers employing down-

sampling through 1×1 convolution and 2×2 average 

pooling. Cross-layer connections in dense blocks enhance 

non-linearity through the utilization of ReLU activation. 

 The ReLU activation proposed for increased non-

linearity is defined succinctly. 

𝑅𝑒𝐿𝑈(𝑋) = 𝑀𝑎𝑥(0, 𝑋)                                       (25) 

The ultimate layer employs a fully connected layer 

with a softmax function for weather image class probability 

prediction, defined as follows: 

𝑆𝑚(𝑍)𝐼 =
𝑒𝑍𝐼

∑ 𝑒
𝑍𝐽𝐶

𝐽=1

⁡𝑓𝑜𝑟⁡𝐼 = 1,2… . 𝐶                                   

(26) 

In this context, the input vector 𝑍 =

(𝑍1, …… . . , 𝑍𝐶) ∈ ℝ𝐶 ⁡,⁡undergoes exponentiation for each 

𝑧𝑖, ensuring the output vector 𝑆𝑚(𝑍) sums to 1. 

3.5.5 ResNet 50 

Earning the ImageNet Large Scale Visual Recognition 

Challenge's top spot, the Residual Neural Network reshaped 

deep learning. It introduced a groundbreaking approach by 

incorporating residual connections between layers. This 

innovation involves the output of a layer being a 

convolution of its input and the input itself. This distinctive 

design mitigates loss, preserves knowledge gains, and 

significantly improves overall training performance. The 

Residual Neural Network's success stems from its ability to 

address the challenges of training deep networks, marking a 

paradigm shift in neural network architectures and 

establishing itself as a cornerstone in the evolution of deep 

learning. This unique architectural feature empowers 

ResNet to effectively tackle challenges in deep learning 

tasks. Fig 8., showcases a block diagram elucidating the 

distinctive architecture of the ResNet model [31], 

underlining its groundbreaking design in achieving superior 

performance in image recognition. 
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Fig 8: ResNet 50 Architecture 

3.5.6 EfficientNet 

Incorporating Mobile Inverted Bottleneck layers, 

EfficientNet combines depth-wise separable convolutions 

and inverted residual blocks for optimal efficiency. 

Performance is further heightened by integrating Squeeze-

and-Excitation optimization. The MBConv layer, drawing 

inspiration from MobileNetV2's inverted residual blocks, 

initiates with a depth-wise convolution. It is succeeded by a 

point-wise convolution for channel expansion and 

culminates with another 1x1 convolution for channel 

reduction. This fusion of techniques within EfficientNet 

underscores its sophisticated architecture, resulting in 

improved computational efficiency and robust model 

performance. This design balances efficiency and 

representational power. EfficientNet further incorporates 

SE blocks, leveraging global average pooling and fully 

connected layers to refine feature maps, emphasizing crucial 

information. The model offers variants like EfficientNet-

B0, B1, etc., each presenting a tailored balance between 

model size and accuracy for diverse user needs. 

 

Fig 9: VarioFusionNet architecture 

 

4. Result and Discussion 

In this research the following section elaborates the result 

and discussion of various leaf disease detection. 

4.1 Experimental Setup 

Implemented in the experimental setup, the proposed model 

undergoes evaluation Accurate and Timely Leaf Disease 

Detection and Management tool in MATLAB. Key 

performance metrics, including sensitivity, specificity, 

accuracy, precision, FPR, FNR, NPV, F-Measure, MCC, 

and Recall, are meticulously considered or the wheat, 

pepper and tomato leaf providing a thorough assessment of 

the model's efficacy and the images of leaf localization, pre-

processed and ROI are shown in Fig. 13-15. 

The performance analysis of the proposed VarioFusionNet 

model for wheat classification is presented in Table 2, 

alongside comparisons with other established models, 

including Google Net, ResNet50, Efficient Net, LSTM, and 

GRU. The proposed VarioFusionNet exhibits superior 

sensitivity at 0.9878, indicating a high ability to correctly 

identify wheat instances. Specificity is notably high at 

0.9939, demonstrating the model's ability to identify non-

wheat objects. The overall accuracy stands at 0.991, 

emphasizing the model's precision across both wheat and 

non-wheat classes. In terms of precision, the proposed 

VarioFusionNet achieves a commendable 0.987, 

highlighting its accuracy in correctly predicting wheat 

instances. The recall rate of 0.987 reflects the model's 

capability to capture a substantial portion of actual wheat 

instances. The recall, harmonizing precision and, F-Measure 

is at 0.987, affirming a balanced performance. Negative 

Predictive Value (NPV) is high at 0.9939, indicating the 
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model's ability in accurately identifying non-wheat 

instances. The False Positive Rate (FPR) is impressively 

low at 0.0061, signifying minimal instances where non-

wheat is misclassified as wheat. The False Negative Rate 

(FNR) is equally low at 0.0122, demonstrating rare cases of 

wheat being overlooked. The Matthews Correlation 

Coefficient (MCC) of 0.9817 attests to the overall strength 

of the proposed VarioFusionNet in wheat classification. 

Comparatively, GoogLeNet, ResNet50, EfficientNet, 

LSTM, and GRU exhibit respectable performances, yet the 

proposed VarioFusionNet emerges as a promising model, 

outperforming its counterparts across various key metrics. 

 

Table 2: Performance analysis of the proposed model for wheat 

Wheat Sensitivi

ty 

Specifici

ty 

Accura

cy 

Precisi

on 

Reca

ll 

FMeasu

re 

NPV FPR FNR MC

C 

Proposed 

VarioFusionNet 

0.9878 0.9939 0.991 0.987 0.987 0.987 0.993

9 

0.006

1 

0.012

2 

0.981

7 

GoogleNet 0.9755 0.9878 0.983 0.975 0.975

5 

0.975 0.987

8 

0.012

2 

0.024

5 

0.963

3 

ResNet50 0.9688 0.9844 0.979 0.968 0.968

8 

0.968 0.984

4 

0.015

6 

0.031

3 

0.953

1 

EfficientNet 0.9579 0.9789 0.971 0.957 0.957

9 

0.957 0.978

9 

0.021

1 

0.042

1 

0.936

8 

LSTM 0.9538 0.9769 0.969 0.953 0.953

8 

0.953 0.976

9 

0.023

1 

0.046

2 

0.930

7 

GRU 0.9497 0.9749 0.966 0.949 0.949

7 

0.949 0.974

9 

0.025

1 

0.050

3 

0.924

6 

Table 3 presents a comprehensive performance analysis of 

the proposed VarioFusionNet model for the classification of 

peppers, comparing its efficacy with other well-established 

models such as GoogLeNet, ResNet50, EfficientNet, 

LSTM, and GRU. The proposed VarioFusionNet 

demonstrates a notable sensitivity of 0.9832, indicative of 

its ability to effectively identify true positive instances of 

peppers. Its specificity is also high at 0.9848, showcasing 

proficiency in discerning non-pepper entities. The overall 

accuracy of 0.983 underscores the model's precision in 

classifying both pepper and non-pepper instances. The 

precision of the proposed VarioFusionNet is commendable 

at 0.989, highlighting its accuracy in correctly predicting 

instances of peppers. The recall rate, standing at 0.9832, 

signifies the model's capability to capture a significant 

proportion of actual pepper instances. The F-measure, a 

harmonic mean of precision and recall, is robust at 0.9865, 

attesting to the model's balanced performance. Negative 

Predictive Value (NPV) is high at 0.9749, indicating the 

model's efficacy in accurately identifying non-pepper 

instances. The False Positive Rate (FPR) is impressively 

low at 0.0152, suggesting minimal instances where non-

pepper entities are misclassified as peppers. The False 

Negative Rate (FNR) is similarly low at 0.0168, indicating 

rare cases where peppers are overlooked. The Matthews 

Correlation Coefficient (MCC) for the proposed 

VarioFusionNet is noteworthy at 0.9664, affirming the 

model's general resilience in the pepper classification. 

Comparative analysis with GoogleNet, ResNet50, 

EfficientNet, LSTM, and GRU reveals that the proposed 

VarioFusionNet consistently outperforms its counterparts 

across various crucial metrics, emphasizing its promise in 

pepper classification. 

 

Table 3: Performance analysis of the proposed model- Peppers 

Peppers 
Sensitivi

ty 

Specifici

ty 

Accura

cy 

Precisi

on 

Reca

ll 

FMeasu

re 
NPV FPR FNR 

MC

C 

Proposed 

VarioFusionNet 
0.9832 0.9848 0.983 0.989 

0.983

2 
0.9865 

0.974

9 

0.015

2 

0.016

8 

0.966

4 

GoogleNet 0.9798 0.9747 0.977 0.983 
0.979

8 
0.9815 

0.969

8 

0.025

3 

0.020

2 

0.953

8 

ResNet50 0.9731 0.9646 0.969 0.976 
0.973

1 
0.9747 

0.959

8 

0.035

4 

0.026

9 

0.936

9 

EfficientNet 0.9697 0.9596 0.965 0.973 
0.969

7 
0.9713 

0.954

8 

0.040

4 

0.030

3 

0.928

5 
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LSTM 0.963 0.9495 0.957 0.966 0.963 0.9646 
0.944

7 

0.050

5 
0.037 

0.911

7 

GRU 0.953 0.9391 0.947 0.959 0.953 0.9562 
0.929

6 

0.060

9 
0.047 

0.890

6 

In the evaluation of the proposed VarioFusionNet model for 

tomato classification, Table 4 provides a comprehensive 

performance analysis alongside comparisons with 

established models such as Google Net, ResNet50, Efficient 

Net, LSTM, and GRU. The proposed VarioFusionNet 

demonstrates high sensitivity at 0.9522, indicating its 

effectiveness in identifying true positive instances of 

tomatoes. Specificity is notably strong at 0.9947, 

showcasing the model's ability to accurately distinguish 

non-tomato entities. The overall accuracy is impressive at 

0.9904, underscoring the model's precision in classifying 

both tomato and non-tomato instances. In terms of 

precision, the proposed VarioFusionNet achieves a 

commendable 0.9522, highlighting its accuracy in correctly 

predicting instances of tomatoes.  

With a recall rate of 0.9522, the model adeptly captures a 

substantial portion of actual tomato instances. The F-

measure, harmonizing precision and recall, remains robust 

at 0.9522, attesting to the model's balanced performance. 

Notably high Negative Predictive Value (NPV) at 0.9947 

showcases the model's proficiency in accurately identifying 

non-tomato instances. Impressively low False Positive Rate 

(FPR) at 0.0053 indicates rare misclassifications of non-

tomato entities as tomatoes. Equally low False Negative 

Rate (FNR) at 0.0478 suggests infrequent instances of 

overlooked tomatoes. The Matthews Correlation 

Coefficient (MCC) for VarioFusionNet is noteworthy at 

0.9469, confirming the model's overall robustness in tomato 

classification. Comparative analysis with Google Net, 

ResNet50, Efficient Net, LSTM, and GRU reveals that the 

proposed VarioFusionNet consistently outperforms its 

counterparts across various crucial metrics, emphasizing its 

promise in tomato classification. 

 

Table 4: Performance analysis of the proposed model-tomato 

Tomato 
Sensitivi

ty 

Specifici

ty 

Accura

cy 

Precisi

on 

Reca

ll 

FMeasu

re 
NPV FPR FNR 

MC

C 

Proposed 

VarioFusionNet 
0.9522 0.9947 0.9904 0.9522 

0.952

2 
0.9522 

0.994

7 

0.005

3 

0.047

8 

0.946

9 

GoogleNet 0.9132 0.9904 0.9826 0.9132 
0.913

2 
0.9132 

0.990

4 

0.009

6 

0.086

8 

0.903

5 

ResNet50 0.8682 0.9854 0.9736 0.8682 
0.868

2 
0.8682 

0.985

4 

0.014

6 

0.131

8 

0.853

6 

EfficientNet 0.8567 0.9841 0.9713 0.8567 
0.856

7 
0.8567 

0.984

1 

0.015

9 

0.143

3 

0.840

7 

LSTM 0.7983 0.9776 0.9597 0.7983 
0.798

3 
0.7983 

0.977

6 

0.022

4 

0.201

7 

0.775

8 

GRU 0.7811 0.9757 0.9562 0.7811 
0.781

1 
0.7811 

0.975

7 

0.024

3 

0.218

9 

0.756

7 
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(e) 

Fig 10: (a)- (e) Pictorial format of the performance metrics of the wheat leaf basis of the suggested model 
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Figure 10 (a) –(e) illustrates the graphical format of the performance metrics of the proposed with other 

comparable models in the observation of wheat leaf. It is clear that the proposed model recall, sensitivity, 

precision, specificity, accuracy, MCC, F-measure, and NPV value are high and at the same time the FPR and FNR 

value are low when compared to the other comparable models like Google Net, ResNet50, Efficient Net, LSTM 

and GRU, these are due to the apply of hybrid optimization model. 
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                                             (c)                                                      (d) 

 

(e) 
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Fig 11: (a)- (e) Pictorial format of the performance metrics of the pepper leaf basis of the proposed model 

In Figures 11 (a)–(e), the graphical representation of performance metrics for wheat leaf observation illustrates the superiority 

of the proposed model over comparable models like Google Net, ResNet50, Efficient Net, LSTM, and GRU. The proposed 

model exhibits high sensitivity, specificity, accuracy, precision, MCC, F-measure, recall, and NPV values, coupled with low 

False Positive Rate and False Negative Rate. This superior performance is attributed to the application of a hybrid 

optimization model. 
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                                            (c )                                             (d) 
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(e)   

Fig 12: (a)- (e) Pictorial format of the performance metrics of the tomato leaf basis of the proposed model 

 

In the depicted Figures 12 (a)–(e), the visual representation of performance metrics in wheat leaf observation underscores the 

superior performance of the proposed model compared to counterparts like Google Net, ResNet50, Efficient Net, LSTM, and 

GRU. The proposed model showcases elevated sensitivity, specificity, accuracy, precision, MCC, F-measure, recall, and 

NPV values, complemented by minimal False Positive Rate and False Negative Rate. This exceptional performance is 

credited to the integration of a hybrid optimization model. 

 
 

Fig 13: Pepper leaf localization, pre-processed and ROI image representation 

 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 997–1019  |  1017 

Fig 14: Tomato leaf localization, pre-processed and ROI image representation 

Fig 15: Wheat leaf localization, pre-processed and ROI image representation

5. Conclusion 

The methodology unfolds with a strategic execution of the 

outlined objectives, commencing with the application of 

advanced pre-processing techniques and concluding with 

the validation on diverse datasets. Each stage is 

meticulously designed, prioritizing the incorporation of 

sophisticated deep learning methodologies to ensure 

accuracy throughout the process. In the initial step of pre-

processing, the dataset is fortified through the utilization of 

Generative Adversarial Networks for image augmentation, 

elevating the model's robustness. A novel Modified 

Gaussian Smoothing technique is then applied for noise 

reduction and enhanced image quality, while Contrast 

Stretching is employed to optimize image contrast, 

facilitating superior feature extraction. Additionally, color 

correction methods are implemented to standardize color 

variations across the dataset. Moving to the leaf localization 

phase, the integration of Region Proposal Networks with 

proposed Spatial Attention Mechanisms significantly 

enhances the accuracy of leaf localization, ensuring precise 

identification of disease-affected areas. Subsequently, the 

Region of Interest identification step incorporates an 

optimized dual attention YOLO and FeatExProNet-based 

feature extraction. This involves capturing various features, 

such as shape (including area, major and minor axis length, 

perimeter,  and solidity), color (utilizing histogram-based 

features for color distribution patterns), texture (employing 

Tamura and Haralick texture features for enhanced texture 

representation), statistical features (extracting moments like 

mean, skewness, and kurtosis for statistical characteristics), 

and deep learning-based features (leveraging Inception V3 

for automatic and hierarchical feature extraction). The 

subsequent feature selection phase adopts a Hybrid 

Optimization Approach, combining Binary Sand Cat 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 997–1019  |  1018 

Swarm Optimization and Butterfly Optimization algorithms 

to effectively select the most pertinent features. The 

concluding step integrates a VarioFusionNet-based model, 

seamlessly combining Vision Transformer, Google Net, 

Alex Net, DenseNet-121, ResNet-50, and Efficient Net for 

leaf disease detection. This holistic approach ensures not 

only the integration of diverse architectures but also a 

commitment to accuracy at every stage of the methodology. 
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