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Abstract: This paper deals with uncertain portfolio selection under sensibility situations of the stock market. An investor can realize 

pessimistic, optimistic, or natural situations about the stock market. To acquire these conditions, a coherent uncertain fuzzy variable as an 

extension of the uncertain fuzzy variable is introduced. Here, the returns of the risky stocks are regarded as coherent uncertain fuzzy 

variables. First, we obtained coherent expected value, coherent semi-absolute deviation, and coherent skewness for coherent uncertain 

fuzzy variables and also reviewed some properties. Next, the coherent uncertain mean-semiabsolute deviation model and coherent uncertain 

mean-semiabsolute deviation-skewness model for coherent uncertain portfolio selection are presented by taking into account the bounds 

and cardinality constraints. To solve the proposed multi-objective optimization problem, a polynomial goal programming approach is 

suggested. In addition, a dominant numerical analysis of the proposed work and its comparison with existing works are presented. 

Keywords: Uncertain measure; coherent uncertain variable; coherent uncertain skewness; fuzzy portfolio selection 

1. Introduction 

Portfolio selection theory concerns the optimal allocation of 

capital budget to risky stocks as a smart way of investment. 

Portfolio selection theory began with a quantitative 

technique [1] (Markowitz’s mean-variance model), which 

was based on the concept that the objective of the 

investment is to achieve the maximum portfolio expected 

return with minimum portfolio risk. Markowitz's 

mathematical approach turned into a foundation of modern 

portfolio selection theory and became very famous as the 

mean-variance model. In Markowitz's mean-variance model 

returns on risky stocks were treated as random variables and 

the expected value of the random variable was used to 

describe the portfolio's expected return, and the variance of 

the random variable was used to quantify portfolio risk. 

Markowitz's model was based on the assumption that the 

future returns on stocks are correctly reflected from 

historical data. Markowitz's model was further improved 

and extended using probability theory. Though a large 

number of research works accepted probability theory as a 

powerful tool in portfolio selection theory, a lot of surveys 

and research works argued about the random nature of stock 

returns and the use of probability theory in portfolio 

selection theory because the stock market is in general 

unstable and is associated with ambiguities. Due to the 

continual occurrence of new stocks, the stock market is 

often affected by many non-probabilistic factors. In reality, 

sometimes historical returns of risky stocks have to rely on 

expert estimations. The fuzzy set theory [2-3] allows the 

inclusion of expert estimations in portfolio selection 

problems. The fuzzy theory was mainly developed into two 

categories: possibility theory and credibility theory, and 

portfolio selection problems were studied in both categories. 

With the introduction of fuzzy set theory, some scholars [4-

5] described stock returns as fuzzy variables instead of 

random variables and studied Markowitz's mean-variance 

model for fuzzy portfolio selection. Some scholars [6] 

argued about the asymmetry of stock returns, employed the 

fuzzy skewness to describe the asymmetry of fuzzy return, 

and extended mean-variance model into MVS model. Since 

then numerous research works have been presented to study 

MVS portfolio selection models in different scenarios such 

as MVS model [7] with interval number as a special fuzzy 

number, MVS model [8] with kurtosis and semi-kurtosis, 

MVS model [9] considering fuzzy turnover rate as a 

constraint, MVS model [10] with fuzzy cross-entropy to 

argue about the discriminant in future return and aspiration 

value of return, MVS model [11] by redefining fuzzy mean 

and variance, MVS model [12] applying fuzzy simulation 

for skewness, MVS model [13] adding new burg’s fuzzy 

entropy, MVS model [14] with trapezoidal fuzzy variable. 

Although variance is widely accepted as a risk measure, it 

has the limitation of no distinction between gains and losses. 

Therefore, one of the main research directions is to explore 

varieties of risk measures in portfolio selection theory. 

Besides variance, different kinds of risk measures such as 

semi-variance, absolute deviation, SAD, down-side risk 

measure, VaR, CVaR, entropy, semi-entropy, cross-

entropy, etc. were accepted in fuzzy portfolio selection 

theory. With semi-variance as a risk measure, numerous 

works were presented such as MSV model [15], MVS 

model [16] using the random fuzzy variable, MP model [17] 
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using a trapezoidal fuzzy variable with various constraints, 

investor's different behavior portfolio optimization model 

[18] based on LR fuzzy number, MP-MSVS model [19] 

considering the proportion entropy, portfolio performance 

evaluation based MP model [20] with some realistic 

constraints, MO model [21] based on DEA cross efficiency, 

MSVS model [22] using the trapezoidal fuzzy variable. 

Following the ideas of variance and semi-variance as risk 

measures, many author proposed absolute deviation and 

semi- absolute deviation, Var and CVaR, entropy and semi-

entropy as risk measures in fuzzy portfolio selection theory 

such as, single period model [23] with absolute deviation as 

a risk measure, MP model [24] with absolute deviation of 

trapezoidal fuzzy variable as a risk measure including 

cardinality constraints, MP model [25] with absolute 

deviation as a risk measure with entropy constraints, lower 

absolute deviation model [26] based on varying 

conservative-neutral-aggressive attitudes, MO model [27] 

using SAD of LR-fuzzy variable as a risk measure with 

skewness, MP model [28] with SAD as risk measure, 

portfolio optimization [29] using SAD of LR power fuzzy 

variable to quantify portfolio risk, performance evaluation 

model [30] using SAD as risk measure, portfolio 

optimization [31] using VaR as risk measure with particle 

swarm optimization algorithm, MCVaR model [32] with 

CVaR as a new risk measure, fuzzy portfolio selection [33] 

based on CVaR, DEA-based portfolio efficiency evaluation 

models [34] with VaR and CVaR as risk measures, random 

fuzzy portfolio model [35] considering VaR and CVaR as 

risk measures, MP-MO efficient portfolio selection [36] 

using CVaR as risk measures, mean-entropy-skewness 

portfolio model [37] using entropy as a risk measure, 

portfolio model [38] using entropy as a risk measure with 

multi-choice goal programming approach to solve 

optimization problem, mean-semi entropy portfolio model 

[39] with downside risk measure via semi-entropy, MO 

portfolio model [40] with semi-entropy as a risk measure. 

Although most of the research mentioned above works 

accepted the common assumption that stock returns are 

fuzzy variables, a paradox appears when fuzzy variables are 

employed to deal with subjective uncertainty. To overcome 

this limitation, Liu [41] proposed uncertain measures and 

further found uncertainty theory. Surrounding the subject, 

some research works on portfolio selection have been done 

considering stock returns are uncertain variables such as, 

mean-variance model [42] for uncertain portfolio 

optimization, concept of SAD [43] to measure downside 

risk was introduced, MSAD model [44] by considering the 

stock returns with interval expected returns as uncertain 

variables, mean-variance model [45] with the analytical 

solution, portfolio adjusting model [46] with uncertain 

SAD, uncertain mean-variance-skewness-kurtosis portfolio 

model [47] with a modified flower pollination algorithm 

provide to solve the optimization problem, diversified 

portfolio model [48] based on uncertain semi-variance with 

hybrid intelligent algorithm to solve the model, uncertain 

entropy portfolio model [49] with uncertain MO 

programming, mean-risk-skewness model [50], a MP 

uncertain portfolio problem [51] with bankruptcy constrain, 

uncertain portfolio problem [52] with an analytical solution, 

metal accounts based uncertain portfolio model [53] with 

realistic constraints, MP-MO uncertain portfolio model [54] 

with uncertain semi-entropy and skewness, optimistic 

value- variance-skewness uncertain model [55] with 

different risk preferences, risk index based uncertain model 

[56] with background risk, uncertain mean-variance-

entropy model [57] with liquidity and diversification degree 

of portfolio. 

According to the above-cited work stock returns can be 

modeled successfully by fuzzy variables or uncertain 

variables, but in today's era, stock markets are too complex 

and associated with various ambiguous factors. In practice 

investment decisions according to investor's different 

anticipations become more challenging, the uncertainty 

prevalent in any stock market drives the need for intelligent 

and flexible in-vestment strategies. In this direction, some 

works were presented such as those based on possibilistic 

measures [58] and those based on credibilistic measures 

[59-60]. These works are the motivation of sapidity to 

extend their work in uncertain theory. In this paper, we 

attempt to integrate the investor's attitudes mathematically 

in uncertain portfolio selection problems by defining the 

coherent uncertain variable as an extension of the uncertain 

variable. 

The rest of the paper is organized as follows: In section 2, 

we provide some preliminaries about uncertain variables. In 

section 3, we define the coherent uncertain variable and 

obtain the expected value, semi-absolute deviation, and 

skewness of the uncertain variable, also prove and discuss 

some properties. In section 4, we formulate various models 

for portfolio selection and provide a solution methodology. 

In section 5, we present a numerical illustration of the 

proposed model and provide a discussion about the results. 

In section 6, we present conclusions about the proposed 

work. 

2. Preliminaries 

Uncertain variables and their measures were defined by Liu 

[41] who developed the uncertain theory. Furthermore, Liu 

[61-62] refined and extended the uncertain theory. Some 

definitions and properties of uncertain theory are reviewed 

below: 

Definition 2.1. [41] Suppose that ℒ be a 𝜎 −algebra over a 

non-empty set Γ, each element Λ ∈ ℒ is called an event. The 

set function ℳ{Λ} defined on ℒ is called an uncertain 

measure if the following axioms hold: 
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Normality Axiom: ℳ{Γ} = 1, for the universal set Γ. 

Duality Axiom: ℳ{Λ} +ℳ{Λ𝑐} = 1, for any Λ ∈ ℒ. 

Subadditivity Axiom: given any sequence of events Λ1, 

Λ2, Λ3…, we have 

ℳ{⋃Λ𝑖

∞

𝑖=1

} ≤ ∑ℳ{Λ𝑖}

∞

𝑖=1

  

 The triplet (Γ, ℒ,ℳ) is called uncertainty space. Moreover, 

Liu [61] defined a product uncertain measure which 

produces the fourth axiom as follows:  

Product Axiom: Let (Γ𝑘 , ℒ𝑘 ,ℳ𝑘) be uncertain spaces for 

𝑘 = 1,2, … , 𝑛. Then, for the set function ℳ, we have 

ℳ{∏Λ𝑘

∞

𝑘=1

} =⋀ℳ𝑘{Λ𝑘}

∞

𝑘=1

 

where, Λ𝑘 are arbitrarily chosen events from ℒ𝑘, 𝑘 =

1,2, … , 𝑛, respectively. 

 

Theorem 2.1 [62] The uncertain measure ℳ is a monotonic 

increasing set function, i.e. for any events Λ1, Λ2 ∈ ℒ such 

that Λ1 ⊂ Λ2,  ℳ(Λ1) ⊂  ℳ(Λ2). 

 

Definition 2.2 [41] An uncertain variable ξ is a function 

from uncertainty space (Γ, ℒ,ℳ) to the set of real numbers 

such that for any Borel set 𝐵 of real numbers the set  

{𝜉 ∈ 𝐵} = {𝛾 ∈ Γ|𝜉(𝛾) ∈ 𝐵} is an event. 

 

Definition 2.3 [41] The uncertainty distribution of an 

uncertain variable ξ is a function Φ:ℛ → [0, 1] such that 

Φ(𝑡) = ℳ(𝜉 ≤ 𝑡) for any real number 𝑡. 

An uncertainty distribution Φ(𝑡) is said to be regular if it is 

a continuous and strictly increasing function with respect to 

𝑡 at which 0 < Φ(𝑡) < 1, and 

lim
𝑡→−∞

Φ(𝑡) = 0,    lim
𝑡→+∞

Φ(𝑡) = 1 

 

Definition 2.4 [41] Let 𝜉 be an uncertain variable, its 

expected value is defined as follows: 

𝐸(𝜉) = ∫ ℳ(𝜉 ≥ 𝑟)dr
∞

0

−∫ ℳ(𝜉 ≤ 𝑟)dr
𝟎

−∞

 

provided that at least one of the two integrals is finite. 

 

Definition 2.5 [43] Let 𝜉 be an uncertain variable with finite 

expected value E(x) = 𝑒, them its semi-absolute deviation 

is defined as follows: 

SAD(𝜉) = E[|(𝜉 − 𝑒)−|] 

where, (𝜉 − 𝑒)− = min(𝜉 − 𝑒, 0). 

 

Definition 2.6 [47] Let 𝜉 be an uncertain variable with finite 

expected value E(x) = 𝑒, them its skewness is defined as 

follows: 

SAD(𝜉) = E[(ξ − e)3] 

3. The Coherent Uncertain Variables 

Fuzzy portfolio selection models effectively stand out to 

deal with the uncertainty of the financial market. Fuzzy 

portfolio theory is founded upon fuzzy sets or fuzzy 

numbers. An uncertain variable is defined as a special case 

of the fuzzy set. To describe investors' different 

anticipations through an adaptive index k, we define the 

following coherent uncertain variables, which can be used 

to quantify stock returns with investors' different 

anticipations.  

Definition 3.1. An uncertain variable 𝜉 is called a coherent 

uncertain variable denoted by 𝜉𝑘 for an adaptive index 𝑘 >

0, if it can be characterized by a coherent uncertainty 

distribution which is function  Φk: ℛ → [0, 1] defined as 

follows: 

Φk(𝑟) = ℳ{𝜉𝑘 ≤ 𝑟} 

Definition 3.2. An uncertain variable 𝜉𝑘 is called coherent 

linear if it has a coherent uncertainty distribution  

Φk(𝑟) =

{
 
 

 
 0,             𝑖𝑓  𝑟 ≤ 𝑎,

(
𝑟 − 𝑎

𝑏 − 𝑎
)

1
𝑘
,    𝑖𝑓  𝑎 ≤ 𝑟 ≤ 𝑏,

1,           𝑖𝑓  𝑟 ≥ 𝑏.

 

𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟.  

The coherent uncertain linear variable is denoted by 

ℒ(𝑎, 𝑏)𝑘 , where a, b are real numbers with 𝑎 < 𝑏. We write 

𝜉𝑘~ℒ(𝑎, 𝑏)𝑘 . A coherent uncertainty distribution as an 

example of a typical coherent uncertain linear variable with 

different index 𝑘 is presented geometrically (see Fig. 1).  
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Fig. 1.  The coherent uncertain distribution of coherent 

uncertain linear variable ℒ(𝑎, 𝑏)𝑘 for k = 0.5, 1, 1.5 

Definition 3.3. An uncertain variable 𝜉𝑘 is called a coherent 

zigzag if it has a coherent uncertainty distribution  

Φk(𝑟) =

{
 
 

 
 0,             𝑖𝑓  𝑟 ≤ 𝑎,

(
𝑟 − 𝑎

𝑏 − 𝑎
)

1
𝑘
,    𝑖𝑓  𝑎 ≤ 𝑟 ≤ 𝑏,

1,           𝑖𝑓  𝑟 ≥ 𝑏.

 

𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑎𝑛 𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟.  

The coherent uncertain zigzag variable is denoted by ᵶ(a, b, 

c)k,  where 𝑎, 𝑏, 𝑐 are real numbers with 𝑎 <  𝑏 < 𝑐. We write 

ᵶ(a, b, c)k. A coherent uncertainty distribution as an example 

for a typical coherent uncertain zigzag variable with different 

index 𝑘 is presented geometrically (see Fig. 2). 

Fig. 2. The coherent uncertain distribution of coherent 

uncertain zigzag variable ᵶ(1, 2.5, 4) k for k = 0.5, 1, 1.5 

Remark 1: Investors can assume that stock returns are 

modeled either through coherent uncertain linear variables or 

through coherent uncertain zigzag variables. From Figures 1 

and 2, we observed that for 𝑘 > 1, a higher uncertainty will 

be associated, and the pessimism of investors will be 

substantiated. On the other hand for 𝑘 < 1, a lower 

uncertainty will be associated and investors will be 

optimistic. For the case 𝑘 = 1, investors will be neutral. This 

case will be the same as the uncertainty distribution for linear 

uncertain variables or zigzag uncertainty variables. 

Remark 2: Let 𝜉1,𝑘~ℒ(𝑎1, 𝑏1)𝑘, 𝜉2,𝑘~ℒ(𝑎2, 𝑏2)𝑘 be two 

coherent uncertain linear variables. Then, for 𝜆 > 0, addition 

and scalar multiplication can be defined as follows: 

𝜉1,𝑘 + 𝜉2,𝑘~ℒ(𝑎1 + 𝑎2, 𝑏1 + 𝑏2)𝑘  and  𝜆𝜉1,𝑘~ℒ(𝜆𝑎1, 𝜆𝑏1)𝑘 

which are also coherent uncertain linear variables. Similarly, 

we can define the addition and scalar multiplication for the 

coherent uncertain zigzag variable.  

3.1. Expected Value of Coherent Uncertain Variable 

Theorem 3.1. Let 𝜉𝑘~ℒ(𝑎, 𝑏)𝑘 be a coherent uncertain linear 

variable. Then its expected value is given by: 

𝐸𝑘(𝜉𝑘) =
𝑘𝑎 + 𝑏

𝑘 + 1
 

Theorem 3.2. Let 𝜉𝑘~ ᵶ(a, b, c)k  be a coherent uncertain 

zigzag variable. Then its expected value is given by: 

𝐸𝑘(𝜉𝑘) =
𝑘𝑎 + (𝑘 + 1)𝑏 + 𝑐

2(𝑘 + 1)
 

Remark 3: For an investor's extremely optimistic situation, 

i.e. letting 𝑘 → 0, we have for the coherent uncertain linear 

variable, the best expected possible returns: 𝐸𝑘(𝜉𝑘) = 𝑏, and 

for a coherent uncertain zigzag variable: 𝐸𝑘(𝜉𝑘) =
𝑏+𝑐

2
. On 

the other hand, for an investor's extremely pessimistic 

situation, i.e. letting  𝑘 → ∞, we have for coherent uncertain 

linear variable, the worst expected possible returns: 

𝐸𝑘(𝜉𝑘) = 𝑎, and for coherent uncertain zigzag variable: 

𝐸𝑘(𝜉𝑘) =
𝑎+𝑏

2
. Also, for the investor's neutral situation, i.e. 

at 𝑘 = 1, we have the expected returns for the coherent 

uncertain linear variable: 𝐸𝑘(𝜉𝑘) =
𝑎+𝑏

2
, which is consistent 

with the expected value of the linear uncertain variable as 

given by Liu and Qin [43] and for coherent uncertain zigzag 

variable: 𝐸𝑘(𝜉𝑘) =
𝑎+2𝑏+𝑐

4
, which is consistent with the 

expected value of the linear uncertain variable as given by 

Liu and Qin [43]. We can find that the interactions of 

coherent expected value and the underlying index k 

presented for four typical coherent uncertain zigzag variables 

(see Fig. 3). 

 

Fig. 3. The interactions of expected values 𝐸𝑘(𝜉𝑘) and the 

underlying index k for several coherent uncertain zigzag 

variables. 

Theorem 3.3. (a) Let  𝜉1,𝑘, 𝜉2,𝑘, … , 𝜉𝑛,𝑘  are returns on n risky 

stocks and all are coherent uncertain linear variables. Denote 

𝜉𝑖,𝑘~ℒ(𝑎𝑖 , 𝑏𝑖)𝑘 for 𝑖 = 1, 2, 3, … , 𝑛. Also suppose that 𝑥𝑖 be 

the allocation proportion to the 𝑖𝑡ℎ stock for 𝑖 = 1, 2, 3, … , 𝑛. 

Then, we have 

∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

~ℒ (∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

,∑𝑏𝑖𝑥𝑖

𝑛

𝑖=1

)

𝑘

 

and 
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     𝐸𝑘 (∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

) =∑(
𝑏𝑖 + 𝑘𝑎𝑖
𝑘 + 1

) 𝑥𝑖

𝑛

𝑖=1

 

(b) Let 𝜉1,𝑘, 𝜉2,𝑘 , … , 𝜉𝑛,𝑘  are returns on n risky stocks and all 

are coherent uncertain zigzag variables. Denote 

𝜉𝑖,𝑘~ᵶ(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)𝑘 for 𝑖 = 1, 2, 3, … , 𝑛. Also suppose that 𝑥𝑖 

be the allocation proportion to the 𝑖𝑡ℎ stock for 𝑖 =

1, 2, 3, … , 𝑛. Then, we have 

∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

~ᵶ(∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

,∑𝑏𝑖𝑥𝑖

𝑛

𝑖=1

,∑𝑐𝑖𝑥𝑖

𝑛

𝑖=1

)

𝑘

 

and   

𝐸𝑘 (∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

) =∑(
𝑘𝑎𝑖 + (𝑘 + 1)𝑏𝑖 + 𝑐𝑖

𝑘 + 1
) 𝑥𝑖

𝑛

𝑖=1

 

 

3.2. Semi-Absolute Deviation of Coherent Uncertain 

Variable 

Semi-absolute deviation is widely accepted as a risk measure 

for fuzzy returns. In this section, we obtain SAD of coherent 

linear uncertain variable and coherent zigzag uncertain 

variable, and review its some mathematical properties. In 

view of definition 2.5, the SAD of a coherent uncertain 

variable 𝜉𝑘 with finite expected value 𝐸𝑘(𝜉𝑘) = 𝑒𝑘 is defined 

as: 

𝑆𝐴𝐷𝑘(𝜉𝑘) = 𝐸𝑘[|(𝜉𝑘 − 𝑒𝑘)
−|] 

For simplicity, we write(𝜉𝑘 − 𝑒𝑘)
− = 𝑚𝑖𝑛(𝜉𝑘 − 𝑒𝑘 , 0), and 

(𝜉𝑘 − 𝑒𝑘)
+ = 𝑚𝑎𝑥(𝜉𝑘 − 𝑒𝑘, 0) 

Since |(𝜉𝑘 − 𝑒𝑘)
−| is a non-negative coherent uncertain 

variable, we also have  

𝑆𝐴𝐷𝑘(𝜉𝑘) = ∫ ℳ{|(𝜉𝑘 − 𝑒𝑘)
−|  ≥ 𝑟}𝑑𝑟

∞

0

 

                                       = ∫ ℳ{𝑒𝑘 − 𝜉𝑘  ≥ 𝑟}𝑑𝑟
∞

0

 

          = ∫ ℳ{𝜉𝑘 ≤ 𝑒𝑘 − 𝑟}𝑑𝑟
∞

0

 

                                       = ∫ Φ𝑘(𝑒𝑘 − 𝑟)𝑑𝑟
∞

0

 

This is useful relation to find the SAD. We just need coherent 

uncertainty distribution for the coherent uncertain variable 

𝑒𝑘 − 𝑟 to obtain coherent uncertain SAD. 

Theorem 3.4. Let 𝜉𝑘~ℒ(𝑎, 𝑏)𝑘 be a coherent uncertain linear 

variable. Then it’s SAD is given by: 

𝑆𝐴𝐷𝑘(𝜉𝑘) =
𝑘

(𝑘 + 1)
2𝑘+1
𝑘

(𝑏 − 𝑎) 

Theorem 3.5.  Let 𝜉𝑘~ ᵶ(a, b, c)k be a coherent uncertain 

zigzag variable. Then its semi-absolute deviation is given by: 

𝑆𝐴𝐷𝑘(𝜉𝑘)

=

{
 
 

 
 𝑘[(𝑘 + 2)(𝑏 − 𝑎) + (𝑐 − 𝑏)]

𝑘+1
𝑘

(2𝑘 + 2)
2𝑘+1
𝑘 (𝑏 − 𝑎)

1
𝑘

, 𝑖𝑓  (𝑐 − 𝑏) ≤ 𝑘(𝑏 − 𝑎)

[(2𝑘 + 1)(𝑐 − 𝑏) + 𝑘(𝑏 − 𝑎)]𝑘+1

(2𝑘 + 2)𝑘+2(𝑐 − 𝑏)𝑘
, 𝑖𝑓  (𝑐 − 𝑏) ≥ 𝑘(𝑏 − 𝑎)

 

 

Fig. 4. The interactions of semi-absolute deviation 

𝑆𝐴𝐷𝑘(𝜉𝑘) and the underlying index k for several coherent 

uncertain zigzag variables. 

Remark 4: We note that at 𝑘 = 1, the semi-absolute 

deviations of a coherent uncertain linear variable ℒ(𝑎, 𝑏)𝑘 

and of a coherent uncertain zigzag variable  ᵶ(a, b, c)k are 

changed respectively  as  

𝑆𝐴𝐷𝑘(𝜉𝑘) =
(𝑏 − 𝑎)

8
 

  and  

𝑆𝐴𝐷𝑘(𝜉𝑘)

=

{
 
 

 
 [3(𝑏 − 𝑎) + (𝑐 − 𝑏)]

2

64(𝑏 − 𝑎)
, 𝑖𝑓  (𝑐 − 𝑏) ≤ (𝑏 − 𝑎)

[3(𝑐 − 𝑏) + (𝑏 − 𝑎)]2

64(𝑐 − 𝑏)
, 𝑖𝑓  (𝑐 − 𝑏) ≥ (𝑏 − 𝑎)

 

which are consistent with semi-absolute deviations of the 

linear uncertain variable and uncertain zigzag variable 

respectively as given by Liu and Qin [43]. We can find that 

the interactions of coherent SAD and the underlying index k 

presented for four typical coherent uncertain zigzag variables 

(see Fig. 4), which suggests that for an investor's extremely 

optimistic situation, i.e. letting 𝑘 → 0, the coherent semi-

absolute deviations are slightly increasing. On the other 

hand, for an investor's extremely pessimistic situation, i.e. 

letting 𝑘 → ∞, we have the worst semi-absolute deviations. 

 

Remark 5: Let  𝜉1,𝑘, 𝜉2,𝑘, … , 𝜉𝑛,𝑘  are returns on n risky stocks 

and all are coherent uncertain linear variables. Denote by  

𝜉𝐼,𝑘~ℒ(𝑎𝐼 , 𝑏𝑖)𝑘 for 𝑖 = 1, 2, 3, … , 𝑛. Also suppose that 𝑥𝐼  be 

the allocation proportion to the  𝑖𝑡ℎ stock for 𝑖 =

1, 2, 3, … , 𝑛. Then, we can find the SAD of the sum  

∑ 𝜉𝑖,𝑘𝑥𝑖
𝑛
𝑖=1  as 

0.35

0.55

0.75

0.95

1.15

1.35

0 0.5 1 1.5 2

SA
D

k(
ξ k

)

index κ

ᵶ(1, 2.5, 4.5)κ ᵶ(2, 4, 6.5)κ
ᵶ(2.5, 5, 8)κ ᵶ(3.5, 6.5, 10)κ
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𝑆𝐴𝐷𝑘 (∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

)  =
𝑘

(𝑘 + 1)
2𝑘+1
𝑘

(∑(𝑏𝑖 − 𝑎𝑖)𝑥𝑖

𝑛

𝑖=1

) 

and, if  𝜉1,𝑘 , 𝜉2,𝑘, … , 𝜉𝑛,𝑘  are returns on n risky stocks and all 

are coherent uncertain zigzag variables  𝜉𝑖,𝑘~ᵶ(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)𝑘  

for 𝑖 = 1, 2, 3, … , 𝑛. Then, 

𝑆𝐴𝐷𝑘 (∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

)

=
𝑘[(𝑘 + 2)(∑ (𝑏𝑖 − 𝑎𝑖)𝑥𝑖

𝑛
𝑖=1 ) + (∑ (𝑐𝑖 − 𝑏𝑖)𝑥𝑖

𝑛
𝑖=1 )]

𝑘+1
𝑘

(2𝑘 + 2)
2𝑘+1
𝑘 (∑ (𝑏𝑖 − 𝑎𝑖)𝑥𝑖

𝑛
𝑖=1 )

1
𝑘

 

Or  

 𝑆𝐴𝐷𝑘 (∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

)

=
[(2𝑘 + 1)(∑ (𝑐𝑖 − 𝑏𝑖)𝑥𝑖

𝑛
𝑖=1 ) + 𝑘(∑ (𝑏𝑖 − 𝑎𝑖)𝑥𝑖

𝑛
𝑖=1 )]𝑘+1

(2𝑘 + 2)𝑘+2(∑ (𝑐𝑖 − 𝑏𝑖)𝑥𝑖
𝑛
𝑖=1 )𝑘

 

 

3.3. Skewness of Coherent Uncertain Variable 

Fuzzy returns are generally asymmetry; skewness 

characterizes the asymmetry of returns. In this section, we 

obtain skewness of coherent linear uncertain variables and 

coherent zigzag uncertain variables and review some 

mathematical properties. In view of definition 2.6, the 

skewness of coherent uncertain variable 𝜉𝑘 with finite 

expected value 𝐸𝑘(𝜉𝑘) = 𝑒𝑘 is defined as 

𝑆𝑘(𝜉𝑘)  = 𝐸𝑘[(𝜉𝑘 − 𝑒𝑘)
3] 

   = ∫ ℳ{(𝜉𝑘 − 𝑒𝑘)
3 ≥ 𝑟}𝑑𝑟

∞

0

−∫ ℳ{(𝜉𝑘 − 𝑒𝑘)
3 ≤ 𝑟}𝑑𝑟

0

−∞

       

   = ∫ ℳ{𝜉𝑘 − 𝑒𝑘 ≥ √𝑟
3
}𝑑𝑟

∞

0

−∫ ℳ{𝜉𝑘 − 𝑒𝑘 ≤ √𝑟
3
}𝑑𝑟

0

−∞

 

   = 3∫ 𝑢2ℳ{𝜉𝑘 − 𝑒𝑘 ≥ 𝑢}𝑑𝑢
∞

0

− 3∫ 𝑢2ℳ{𝜉𝑘 − 𝑒𝑘 ≤ 𝑢}𝑑𝑢
0

−∞

   

   = 3∫ 𝑢2[1 − Φ𝑘(𝑒𝑘 + 𝑢)]𝑑𝑢
∞

0

− 3∫ 𝑢2Φ𝑘(𝑒𝑘 + 𝑢)𝑑𝑢
0

−∞

 

This is useful relation to find skewness. We just need to 

obtain coherent uncertainty distribution Φ𝑘(𝑒𝑘 + 𝑢) for the 

coherent uncertain variable 𝑒𝑘 + 𝑢 to coherent uncertain 

skewness. 

Theorem 3.6. Let 𝜉𝑘~ℒ(𝑎, 𝑏)𝑘  be a coherent uncertain 

linear variable. Then its skewness is given by: 

𝑆𝑘(𝜉𝑘) =
2𝑘3(𝑘 − 1)(𝑏 − 𝑎)3

(𝑘 + 1)3(2𝑘 + 1)(3𝑘 + 1)
 

 

Theorem 3.7. Let 𝜉𝑘~ ᵶ(a, b, c)k be a coherent uncertain 

zigzag variable. Then its skewness is given by: 

𝑆𝑘(𝜉𝑘) = 𝜎1(𝑏 − 𝑎)
3 + 𝜎2(𝑏 − 𝑎)

2(𝑐 − 𝑏)

+ 𝜎3(𝑏 − 𝑎)(𝑐 − 𝑏)
2 + 𝜎4(𝑐 − 𝑏)

3 

𝑤ℎ𝑒𝑟𝑒  𝜎1 =
3𝑘2

2(𝑘 + 1)2(2𝑘 + 1)
−

𝑘3

4(𝑘 + 1)3

−
3𝑘3

(𝑘 + 1)(𝑘 + 2)(𝑘 + 3)
, 

 𝜎2 =
3𝑘2

4(𝑘 + 1)3
−

3𝑘2

2(𝑘 + 1)2(2𝑘 + 1)
,  

𝜎3 =
3𝑘

2(𝑘 + 1)2(𝑘 + 2)
−

3𝑘

4(𝑘 + 1)3
, 

 𝜎4 =
3

(𝑘 + 1)(𝑘 + 2)(3𝑘 + 1)
−

3

2(𝑘 + 1)2(𝑘 + 2)

+
1

4(𝑘 + 1)3
 

 

Remark 6: We note that at 𝑘 = 1, the skewness of coherent 

uncertain linear variable ℒ(𝑎, 𝑏)𝑘 and of coherent uncertain 

zigzag variable ᵶ(a, b, c)k are changed respectively as 

𝑆𝑘(𝜉𝑘) = 0 

  And 

𝑆𝑘(𝜉𝑘) =
(𝑐 − 𝑎)2(𝑐 − 2𝑏 + 𝑎)

32
 

which are consistent with the skewness of the linear 

uncertain variable and uncertain zigzag variable respectively 

as given in [50]. We can find that coherent skewness is 

decreasing w.r.t. the underlying index 𝑘 from the interactions 

of the coherent skewness and the underlying index 𝑘 for the 

four typical coherent uncertain zigzag variables (see Fig. 5). 

For investor’s extremely optimistic situation, i.e. letting 𝑘 →

0, we have the best expected possible skewness. On the other 

hand, for an investor's extremely pessimistic situation, i.e. 

letting 𝑘 → ∞, we have the worst expected possible 

skewness.  
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Fig. 5. The interactions of skewness 𝑆𝑘(𝜉𝑘) and the 

underlying index k for several coherent uncertain zigzag 

variables. 

Remark 7: Let  𝜉1,𝑘, 𝜉2,𝑘, … , 𝜉𝑛,𝑘  are returns on n risky stocks 

and all are coherent uncertain linear variables. Denote by  

𝜉𝑖,𝑘~ℒ(𝑎𝑖 , 𝑏𝑖)𝑘 for 𝑖 = 1, 2, 3, … , 𝑛. Also suppose that 𝑥𝑖 be 

the allocation proportion to the  𝑖𝑡ℎ stock for 𝑖 =

1, 2, 3, … , 𝑛. Then, we can find the skewness of the sum  

∑ 𝜉𝑖,𝑘𝑥𝑖
𝑛
𝑖=1  as 

𝑆𝑘 (∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

) =
2𝑘3(𝑘 − 1)

(𝑘 + 1)3(2𝑘 + 1)(3𝑘 + 1)
(∑(𝑘𝑏𝑖

𝑛

𝑖=1

− 𝑎𝑖)𝑥𝑖)

3

 

and, if  𝜉1,𝑘 , 𝜉2,𝑘, … , 𝜉𝑛,𝑘  are returns on n risky stocks and all 

are coherent uncertain zigzag variables  𝜉𝑖,𝑘~ᵶ(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)𝑘  

for 𝑖 = 1, 2, 3, … , 𝑛. Then, 

𝑆𝑘 (∑𝜉𝑖,𝑘𝑥𝑖

𝑛

𝑖=1

) = 𝜎1 (∑(𝑏𝑖 − 𝑎𝑖)𝑥𝑖

𝑛

𝑖=1

)

3

 

+𝜎2 (∑(𝑏𝑖 − 𝑎𝑖)𝑥𝑖

𝑛

𝑖=1

)

2

(∑(𝑐𝑖 − 𝑏𝑖)𝑥𝑖

𝑛

𝑖=1

) 

+𝜎3 (∑(𝑏𝑖 − 𝑎𝑖)𝑥𝑖

𝑛

𝑖=1

)(∑(𝑐𝑖 − 𝑏𝑖)𝑥𝑖

𝑛

𝑖=1

)

2

+ 𝜎4 (∑(𝑐𝑖 − 𝑏𝑖)𝑥𝑖

𝑛

𝑖=1

)

3

 

 

4. Models Formation with Coherent Uncertain 

Variable 

In this section, we describe the utility of coherent uncertain 

measures as described in section 3 to formulate the uncertain 

portfolio selection models. We formulate the CMSAD model 

and the coherent mean-semiabsolute deviation-skewness 

model using the coherent zigzag uncertain variable. Let us 

assume that an investor wishes to assay 𝑛 risky stocks for 

making an intelligent investment. Also, assume that the 

return rates of the risky stocks are coherent uncertain zigzag 

variables described as 𝜉𝑖,𝑘~ᵶ(𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖)𝑘  for 𝑖 =

1, 2, 3, … , 𝑛, where the adaptive index 𝑘  is used to model the 

investor’s sensibility situations about the stock market as 

explained in remark 1. Also suppose that 𝑥𝑖 be the allocation 

proportion to the  𝑖𝑡ℎ stock for 𝑖 = 1, 2, 3, … , 𝑛. Note that 

return on the portfolio (𝑥1, 𝑥2, … , 𝑥𝑛) will be the sum 

𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛, which is also a  coherent 

uncertain zigzag variable given by  

ᵶ (∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

,∑𝑏𝑖𝑥𝑖

𝑛

𝑖=1

,∑𝑐𝑖𝑥𝑖

𝑛

𝑖=1

)

𝑘

 

Assume firstly that investors are aware of the bearable risk 

of the portfolio and seek the portfolio return. Then, coherent 

expected mean of the portfolio 𝐸𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+

𝜉𝑛,𝑘𝑥𝑛) can be maximized under the following constraints: 

• The entire available budget must be invested, i.e.  

∑ 𝑥𝑖 = 1
𝑛
𝑖=1 . 

• The maximum fraction of the entire budget imposed as ui 

in a separate ith stock, i.e. 

𝑥𝑖 ≤ 𝑢𝑖𝑦𝑖 , ∀   𝑖 = 1,2, … , 𝑛. 

• The maximum fraction of the entire budget imposed as li 

in a separate ith stock, i.e. 

𝑥𝑖 ≥ 𝑙𝑖𝑦𝑖 , ∀   𝑖 = 1,2, … , 𝑛. 

• The variable yi takes value 1 if the ith stock is included 

in the portfolio and 0 otherwise, i.e. 

𝑦𝑖 ∈ {0, 1}, ∀   𝑖 = 1,2, … , 𝑛. 

• The minimum number of stocks held in the portfolio 

should be m out of n, i.e.   ∑ 𝑦𝑖 ≥ 𝑚
𝑛
𝑖=1 . 

• No short-selling of stocks: 0 ≤ 𝑥𝑖 ≤ 1, ∀   𝑖 =

1,2, … , 𝑛.      

Thus, taking the SAD of portfolio return as a portfolio risk 

the CMSAD model for portfolio selection can be described 

as: 

{
 
 
 
 

 
 
 
 
Max 𝐸𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛)                             

subject to:                                                    

SADk(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛) ≤ 𝜋; (𝑚𝑜𝑑𝑒𝑙 − 1)

            𝑥1 +  𝑥2 +⋯+   𝑥𝑛 = 1;                          
       𝑦1 +  𝑦2 +⋯+   𝑦𝑛 ≥ 𝑚;               

            𝑙𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖𝑦𝑖   , 𝑖 = 1,2, … , 𝑛;                
               0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛;                      

and                                                        
 𝑦𝑖 ∈ {0 , 1}, 𝑖 = 1,2, … , 𝑛.       

  

where π is the investor's bearable risk for the portfolio 

selection. The objective function for maximization can be 

easily obtained using the coherent expected value of the 

coherent uncertain zigzag variable by the theorem 3.3(b). 

The risk function may also be easily obtained using coherent 

semi-absolute deviations of coherent uncertain zigzag 

-8.8

1.2

11.2

21.2

0 0 . 5 1 1 . 5 2
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index κ
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ᵶ(2.5, 5, 8)κ
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variables as explained in remark 5. Investor's expectations 

can also be demonstrated by taking different indices k as 

explained in section 3. Similarly, assume secondly that 

investors are aware of the expected portfolio return and seek 

the portfolio risk. Then, coherent semi-absolute deviation of 

the portfolio return SADk(ξ1,kx1 + ξ2,kx2 +⋯+ ξn,kxn) can 

be minimized under the same constraints as:  

{
 
 
 
 

 
 
 
 
𝑀𝑖𝑛 𝑆𝐴𝐷𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛)                     

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                              

𝐸𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛) ≥ 𝜇;      (𝑚𝑜𝑑𝑒𝑙 − 2)

          𝑥1 +  𝑥2 +⋯+   𝑥𝑛 = 1;                      
       𝑦1 +  𝑦2 +⋯+   𝑦𝑛 ≥ 𝑚;                  

            𝑙𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖𝑦𝑖   , 𝑖 = 1,2, … , 𝑛;             
             0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛;                    

           𝑦𝑖 ∈ {0 , 1}, 𝑖 = 1,2, … , 𝑛.               
 

  

In general, portfolio returns are skewed. For some given 

specific values of expected return and risk of the portfolio, 

investors have a preference for higher skewness. Therefore, 

we present a coherent mean-semi absolute deviation-

skewness model for portfolio selection. Assume firstly that 

investors were aware of the expected portfolio return and 

bearable risk of the portfolio and seek the best portfolio 

skewness. Then, coherent skewness of the portfolio 

𝑆𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛) can be maximized under 

the same constraints as: 

 

{
 
 
 
 
 

 
 
 
 
 

𝑀𝑎𝑥 𝑆𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛)                          

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                               

𝐸𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛) ≥ 𝜇;                         

𝑆𝐴𝐷𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛) ≤ 𝜋;  (𝑚𝑜𝑑𝑒𝑙 − 3)

          𝑥1 +  𝑥2 +⋯+   𝑥𝑛 = 1;                    
       𝑦1 +  𝑦2 +⋯+   𝑦𝑛 ≥ 𝑚;                

           𝑙𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖𝑦𝑖   , 𝑖 = 1,2, … , 𝑛;                
       0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛;             

   𝑦𝑖 ∈  {0 , 1}, 𝑖 = 1,2, … , 𝑛.       
 

 

where 𝜇 and π are the investor's minimum return and 

bearable risk for the portfolio selection respectively. 

Assume secondly that the investor does not aware of the 

expected portfolio return, risk, and portfolio skewness, we 

need to optimize all three objective functions simultaneously 

with respect to the required constraints as:  

{
 
 
 
 
 

 
 
 
 
 

𝑀𝑎𝑥 𝑆𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛)                        

𝑀𝑎𝑥  𝐸𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛)                      

𝑀𝑖𝑛 𝑆𝐴𝐷𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛)    (𝑚𝑜𝑑𝑒𝑙 − 4) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                   
      𝑥1 +  𝑥2 +⋯+   𝑥𝑛 = 1;              
    𝑦1 +  𝑦2 +⋯+   𝑦𝑛 ≥ 𝑚;            
   𝑙𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖𝑦𝑖   , 𝑖 = 1,2, … , 𝑛;       
           0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛;           

   𝑦𝑖 ∈  {0 , 1}, 𝑖 = 1,2, … , 𝑛.
         

 

To solve this MO non-linear programming problem, we 

apply the optimal goal programming method. All the three 

objective functions corresponding to expected portfolio 

return, risk on portfolio return, and portfolio skewness can 

be solved separately with constraints to assign the optimal 

goal to the objective function. After solving these three 

problems and assigning optimal goals g1, g2, and g3 to the 

objective functions the multi-objective programming 

problem can be reformulated to a single objective 

programming problem as follows 

{
 
 
 
 
 

 
 
 
 
 

𝑀𝑖𝑛 𝑑1 + 𝑑2 + 𝑑3                                            
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:                                                  

𝐸𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛) + 𝑑1 = 𝑔1;                       

𝑆𝐴𝐷𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛) − 𝑑2 = 𝑔2;  (𝑚𝑜 − 5)

𝑆𝑘(𝜉1,𝑘𝑥1 + 𝜉2,𝑘𝑥2 +⋯+ 𝜉𝑛,𝑘𝑥𝑛)  + 𝑑3 = 𝑔3;                    

             𝑥1 +  𝑥2 +⋯+   𝑥𝑛 = 1;                       
       𝑦1 +  𝑦2 +⋯+   𝑦𝑛 ≥ 𝑚;                 

            𝑙𝑖𝑦𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑖𝑦𝑖   , 𝑖 = 1,2, … , 𝑛;                 
    0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑛;             

 𝑦𝑖 ∈  {0 , 1}, 𝑖 = 1,2, … , 𝑛.          
        

 

 

5. Experimental Illustration 

In this section, we illustrate an experiment to verify the 

validity of the proposed models. We present a real-life case 

study using 10 stocks listed in the Bombay Stock Exchange, 

India (www.bseindia.com). The randomly selected 10 

stocks are BAJAJ AUTO, HEG, HUBTOWN, JSW 

ENERGY, JSW STEEL, LUPIN, MARICO, NMDC, 

NTPC, ROLTA INDIA. To construct the coherent uncertain 

zigzag fuzzy historical returns of the stocks, we use the daily 

closing price of the stocks from April 1st, 2018 to April 30th, 

2021 (763 observations). We divide the entire observations 

into three equal parts for each stock and present the average 

of each part as coherent uncertain zigzag fuzzy numbers for 

all 10 stocks with an indication of investors' expectation k. 

The coherent uncertain zigzag fuzzy numbers of all 10 

stocks are presented in Table 1. 

Table 1. The coherent uncertain zigzag fuzzy returns 

of the stocks with adaptive index k. 

Stocks  Coherent uncertain 

zigzag returns 

BAJAJ AUTO (0.154, 0.317, 0.467)k 

HEG (-0.287, 0.826, 1.925)k 

HUBTOWN (-0.663, -0.086, 0.467)k 

JSW ENERGY (0.456, 0.628, 1.089)k 

JSW STEEL (0.929, 1.489, 2.368)k 

LUPIN (0.101, 0.28, 0.469)k 

MARICO (0.054, 0.151, 0.303)k 

NMDC (0.293, 0.513, 0.839)k 

NTPC (-0.336, -0.145, 0.11)k 

ROLTA INDIA (-0.676, -0.144, 0.266)k 

http://www.bseindia.com/
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Firstly, we present the computational results of the uncertain 

CMSAD portfolio selection model. Assume that investors 

are aware of the bearable portfolio risk and seek the best 

expected portfolio return. We solve the coherent uncertain 

mean-semi absolute deviation model (model 1) for portfolio 

selection with three different indices: k = 0.5, k = 1, k = 1.5. 

We solve model 1 for four different values of the investor's 

bearable risk level of the portfolio: 0.14, 0.16, 0.18, 0.20. 

We choose these risk levels carefully so that the optimal 

solution to the optimization problem must exist.  

Table 2. The summary of the optimum solution of the coherent uncertain mean-semi absolute deviation model 

(model 1) with optimal stock proportions, where μ is the obtained maximized expected portfolio return under the 

upper bound π of the portfolio risk. 

π k μ S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

0.14 0.5 2.2454 0.1968 0 0 0.2032 0.5 0 0 0.1 0 0 

 1 2.1896 0.1 0.1 0 0.3153 0.4847 0 0 0 0 0 

 1.5 2.0996 0.1 0.1 0 0.3002 0.4998 0 0 0 0 0 

0.16 0.5 2.4081 0.102 0.1 0 0.298 0.5 0 0 0 0 0 

 1 2.2748 0 0.1552 0 0.2448 0.5 0 0 0.1 0 0 

 1.5 2.1501 0 0.1845 0 0.2155 0.5 0 0 0.1 0 0 

0.18 0.5 2.5138 0 0.2083 0 0.1917 0.5 0 0 0.1 0 0 

 1 2.3001 0 0.2587 0 0.1413 0.5 0 0 0.1 0 0 

 1.5 2.1584 0 0.2804 0 0.1196 0.5 0 0 0.1 0 0 

0.20 0.5 2.5539 0 0.2873 0 0.1127 0.5 0 0 0.1 0 0 

 1 2.3102 0 0.3 0 0.1 0.5 0 0 0.1 0 0 

 1.5 2.1601 0 0.3 0 0.1 0.5 0 0 0.1 0 0 

To verify the impact of investors' different expectations, 

these risk levels remain the same for each index. Assume 

that the investor wants to invest whole wealth among at least 

4 best stocks out of 10 stocks i.e. we take m = 4. Also 

assume that the investor wants to impose the lower bound 

as 10% and upper bound as 50% for proportions of the 

stocks i.e. we take li = 0.1 and ui = 0.5 for i = 1, 2, …, 10. 

The obtained optimum computational results of model 1 are 

presented in Table 2. From Table 2, we observe that at the 

portfolio risk level 0.14, the expected portfolio returns for k 

= 0.5 is higher than the expected portfolio returns for k = 1, 

also the expected portfolio returns for k = 1 is higher than 

the expected portfolio returns for k = 1.5 and similar results 

obtained for each level of portfolio risk. We solve model 1 

for more values of the portfolio risk level and obtain the 

efficient frontiers by the coherent uncertain expected mean 

and SAD with different indices k = 0.5, 1, 1.5, which are 

presented in Fig. 6.   

We see from Fig. 6 that under the same level of portfolio 

risk lower expected portfolio returns obtain with larger 

index k, which proves the significance of the proposed 

model. Therefore, different expectations of the investors can 

be demonstrated by the incorporation of the index k in the 

fuzzy portfolio selection under a coherent uncertain 

environment. Portfolio selection model 2 for coherent 

uncertain mean-semi absolute deviation model is similar to 

model 1, investors can solve model 2 if they are aware of 

the expected portfolio return and seek the minimum 

portfolio risk. Secondly, we present the computational 

results of the coherent uncertain mean-semi absolute 

deviation-skewness model for the fuzzy portfolio selection. 

We use the same data set as used for the coherent uncertain 

mean-semi absolute deviation model. Model 3 and model 4 

are very similar to model 1, hence we present the 

computational results of model 5 only. Assume that 

investors are not aware of the expected portfolio return, 

portfolio risk, and portfolio skewness and seek the best 

combination of objective function values, in that case, we 

solve model 5 for fuzzy portfolio selection. We solve model 

5 for portfolio selection with five different indices: k = 0.4, 

k = 0.8, k = 1, k = 1.2, k = 1.6. Assume that the investor 

wants to invest whole wealth among at least 4 best stocks 

out of 10 stocks i.e. we take m = 4. Also assume that the 

investor wants to impose the lower bound as 10% and upper 

bound as 50% for proportions of the stocks i.e. we take li = 

0.1 and ui = 0.5 for i = 1, 2, …, 10. To find the optimum 
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goals for the objective functions, we first solve individual 

objective functions separately subjective to all the required 

constraints. The obtained optimum goals for objective 

functions for various indices k are presented in Table 3.  

We use these goals for objective functions to solve model 5. 

The obtained optimum computational results of Model 5 are 

presented in Table 4. From Table 4 we observe that all the 

three objective functions are decreasing as indices k are 

increasing. Similarly, portfolio skewness is also decreasing 

as indices k are increased. 

 

Fig. 6. The efficient frontiers of model 1 using coherent 

uncertain zigzag variables with different indices k which 

embody the expectations of the investor 

We solve model 5 for more indices k and compare it with 

the obtained values of objective functions graphically. The 

intersection of portfolio expected return and underlying 

index k 

for model 5 is presented in Fig. 7, the intersection of the 

portfolio risk and underlying index k is presented in Fig. 8, 

and the intersection of the portfolio skewness and 

underlying index k is presented by the Fig. 9.  

 

Fig. 7. The interactions of portfolio expected return and the 

underlying index k for coherent uncertain mean-semi 

absolute deviation-skewness model (model 5). 

From these figures it is observed that the best combination 

of the objective function values can be founded for the index 

k less than 1. 

An investor can choose any value of index k according to 

his/her investment objectives. Therefore, different 

expectations of the investors can be demonstrated by the 

incorporation of the index k in the fuzzy portfolio selection 

under a coherent uncertain environment. 

 

Fig. 7. The interactions of portfolio expected return and the 

underlying index k for coherent uncertain mean-semi 

absolute deviation-skewness model (model 5). 

 

Fig. 8: The interactions of portfolio risk and the underlying 

index k for coherent uncertain mean-semi absolute 

deviation-skewness model (model 5). 
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Table 3. the summary of optimum goals for 

individual objective functions in the coherent 

uncertain mean-semi absolute deviation-skewness 

model (model 5) for various indices k. 

    k g1 g2 g3 

0.4 2.6319 0.0402 0.157

6 

0.8 2.3936 0.0382  

0.0474 

1 2.3102 0.0375  

0.0138 

1.2 2.242 0.037 0.002

7 

1.6 2.137 0.0367 -

0.0002 
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Fig. 9. The interactions of portfolio skewness and the 

underlying index k for coherent uncertain mean-semi 

absolute deviation-skewness model (model 5). 

6. Conclusions 

In the proposed work, we successfully coped with specific 

investors' expectations mathematically through the adaptive 

index. Also, we defined the coherent uncertain variable, and 

founded the coherent uncertain theory as an extension of the 

uncertain theory. The expected value, semi-absolute 

deviation, and skewness for the coherent uncertain variable 

were incorporated. Various properties  

of the expected value, semi-absolute deviation, and 

skewness of the coherent uncertain variable was discussed 

and proved. The coherent uncertain mean-semi absolute 

deviation model and coherent uncertain mean-semi absolute 

deviation-skewness model for fuzzy portfolio selection 

were formulated and illustrated numerically. In the case that 

the investors have neutral anticipations about the stock 

market these models reduce to the models presented by Liu 

and Qin [43] and Zhai et al. [50] respectively. The real data 

set of randomly selected 10 stocks was extracted as the 

coherent uncertain variable from the Indian premier market 

for the stock exchange to solve numerically the proposed 

models. Further, the obtained numerical results validate 

these models' application for investment in the case of 

sensibility situations of the stock market. 

 

Appendix 

MVS Mean-variance-skewness 

VaR Value-at-risk 

CVaR Conditional value-at-risk 

MSV Mean- semivariance 

MSVS Mean–semivariance–skewness 

DEA Data envelopment analysis  

MCVaR Mean-conditional value-at-risk 

MP Multi-period 

MO Multi-objective 

SAD Semi-absolute deviation 

MSAD Mean-semiabsolute deviation 

CMSAD Coherent mean-semi absolute deviation 
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Table 4: The summary of the optimum solution of the coherent uncertain mean-semi absolute deviation-skewness 

model (model 5) with optimal stock proportions and obtained expected portfolio return, risk, and skewness for 

various indices k. 

k d1 d2 d3 Portfolio 

return 

Portfolio 

risk 

Portfolio 

skewness 

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

0.

4 

0.614

2 

0.090

3 

0.121

4 

2.0177 0.1305 0.0362 0 0 0 0.441

1 

0.358

9 

0 0 0.

1 

0.

1 

0 

0.

8 

0.752

1 

0.061

6 

0.04 1.6415 0.0998 0.0074 0 0 0 0.5 0.235 0 0.165 0.

1 

0 0 

1 1.000

7 

0.042

6 

0.011

2 

1.3095 0.0801 0.0026 0 0 0 0.5 0.131

6 

0 0.268

4 

0.

1 

0 0 

1.
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1.106

9 

0.031

9 

0.001

8 

1.1351 0.0689 0.0009 0.

1 
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1.
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1.452
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0.013
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