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Abstract: Database systems continue to be fascinated in the alluring quest of query optimisation, a field distinguished by continual heuristic 

developments. Swift data access and analysis are of utmost importance in the dynamic world of Decision Support System (DSS) databases. 

This research introduces a novel stochastic DSS query optimizer, expanding the capabilities of existing genetic approaches. The 

Enumeration-based Query Optimizer (EBQO), Genetic-based Query Optimizer (GBQO), and the recently suggested Stochastic-based 

Query Optimizer (SBQO) emerge as prominent candidates within the spectrum of query optimisation approaches. In comparison to EBQO 

and GBQO, SBQO, a stochastic technique, exhibits superior relevance to query optimisation. Notably, SBQO surpasses its rivals in two 

essential areas: runtime effectiveness and Total Costs Optimisation. This notable efficiency underlines how well stochastic strategies work 

for obtaining the best results when it comes to query optimisation. The importance of stochastic approaches in improving query optimisation 

efforts is highlighted by these results, opening up a path to more effective and favourable outcomes. This study provides a convincing 

demonstration of the significant advantages that cutting-edge stochastic techniques, such as SBQO, may bring to the field of query 

optimisation, a crucial component of effective database administration and decision support. 

Keywords: Cost Analysis, Genetic Algorithm, Meta-heuristic Algorithms, Performance Evaluation, Query Optimization, Run-time 

Analysis, Stochastic Approach. 

1. Introduction 

A database is an amalgamation of nearly linked data that is 

put together in a way that meets the information needs of an 

enterprise. It is a place where individuals can store and view 

data that they can share with each other. It has information 

about how it works and a complete account of it. In the past 

few decades, computer technology has made giant leaps 

forward. The way that many companies operate and handle 

data has changed in a big way. 

Additionally, there has been a big jump in the number of 

people who use databases and the organizations that use 

them. A database system is a group of programs that work 

together to build, store, retrieve, and manage information in 

the database. Before, the whole database was supposed to be 

put on a computer machine and shared by everyone who 

used the database. People knew this database management 

method was called "centralized database management." 

This method solved a lot of the problems that standard file-

based systems possessed, such as duplicate data, no sharing, 

security issues, inconsistency, etc. Afterward, it was 

seriously thought that putting the whole database on a single 

site was one of the biggest problems with this method 

because it slowed it down. Also, this method did not make 

"Access Time" and "Response Time" faster as the size of 

the database grew to significantly higher levels. In the 

1980s, when database systems and computer networking 

came together, a new name emerged: "distributed database 

system." It was a significant change in the way computer 

technology worked. The distributed database system fixed 

some of the problems with standard database systems. 

Query is a sentence or group of statements that do basic 

database tasks like "read," "write," "delete," and "update" 

correctly. It is an essential part of managing and getting info. 

Most of the time, distributed queries are more complicated 

than centralized queries. Online Transaction Processing 

(OLTP) and Decision Support System (DSS) queries are 

more spread queries. DSS question is spread out in the 

world. In general, it is hard to do and takes longer to do. 

With these queries, you can get info from both nearby and 

faraway sites. 

In contrast to OLTP searches, these queries usually deal 

with a large amount of data. DSS searches use a lot of I/O, 

processing and communication resources, and they can 

cause a distributed database system's CPU or even memory 

server to stop working suddenly. Also, the average running 

time of a spread DSS query is hard to predict. DSS queries 

work on relationships with sizes of mega bytes, giga bytes, 

or even bigger. In the end, query optimization was the most 

challenging problem for database sexperts. In recent years, 
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much attention has been paid to query efficiency in 

distributed database systems. It is a way to figure out the 

best way to run a query regarding Total Costs or Response 

Time. If a query's processing plan isn't the best, it will either 

use too many system resources or take too long to run. The 

main goal of this study is to look at how well different 

stochastic distributed DSS query optimizers work. The 

outcomes are contrasted based on how long the distributed 

DSS query took to run and how many system resources it 

used. Here, a new stochastic query optimizer, namely, the 

Stochastic-based Query Optimizer (SBQO) is suggested to 

optimize distributed DSS queries. The results for SBQO are 

compared to GBQO and EBQO algorithms for different set 

of queries corresponding to performance factors like total 

cost, run-time, and percentage of reduction in cost. 

The paper is broken up into different parts. In Section 2 of 

the paper, the linked work was talked about. In Section 3, 

the problem statement is set out. Section 4 explains what 

query optimization is all about. In Section 5, the designs of 

different query optimizers along with proposed SBQO 

algorithm is presented. In Section 6, we talked about the cost 

coefficient method and how to set up an experiment along 

with the discussion and the findings. In Section 7, the 

conclusion has been made and future scope of the study is 

discussed. 

2. Related Work 

Yao and Hevner are the ones who came up with query 

optimization. In the late 1970s, authors optimized queries 

using a heuristic with an exhaustive enumeration method. In 

the 1980s, different query optimization strategies were 

suggested by Ceri and Palagatti, Chen and Li, Yu and 

Chang, Peter Apers, Lam, and Martin, and other critical 

researchers. In 1995, Rho and March added more to the 

query optimization model. In the 21st century, researchers 

like Ahmat Cosar and Zehai Zhou used a method called 

"Genetic Algorithm" to improve the performance of spread 

queries [1, 5, 29]. In the past, most searches were optimized 

using "Exhaustive Enumeration" with some heuristics 

algorithms (such as Dynamic Programming, Branch and 

Bound, Greedy Algorithm, etc.). 

But this method wasn't suitable for big, complicated queries 

because it rarely came up with the best query placement plan 

in a set amount of time. For a complex question, it took 

minutes, hours, or even days to develop the best plan for 

running the query [6,7]. In randomized optimization 

methods, a set of random moves was used to find the best 

answer. 

Every search space answer was shown as a solution point. 

As an edge, a connection between two answer points was 

made by making random moves. The set of unexpected 

moves depends greatly on how the optimization problem is 

set up and the answers. Some examples of randomized 

optimization methods are "Iterative Improvements," 

"Simulated Annealing," "Random Sampling," etc. In recent 

years, evolutionary processes have been used to improve the 

performance of spread queries. The idea behind 

evolutionary techniques is that a group changes over time. 

Some of the essential things about evolutionary methods are 

that they can deal with imperfection, uncertainty, and only 

some of the truth to make things easy to understand, strong, 

cheap to solve, and more in line with reality. Some popular 

evolutionary methods are "Genetic Algorithms," "Swarm 

Intelligence," "Memetic Algorithms," "ACO," and so on [8–

11]. 

3. Problem Formulation 

An NP-Hard task is optimizing queries. Several heuristics 

have been implemented recently; these offer novel strategies 

for improving the query processing loop. We're still on the 

lookout for more optimal answers. Optimizing a query 

typically entails moving subqueries around, rearranging the 

query's structure, or effectively allocating sub-operations to 

various sites (operation site allocation). The distribution of 

places for operations is one of the most studied issues in 

distributed databases. As a result, the key objective of this 

study has been to delegate sub-operations to various 

locations of a distributed database network to optimize a 

search query. Gigabytes, petabytes, and more, decision 

support system queries interpret enormous amounts of data. 

This category of inquiries is exempt from the response time. 

However, a key issue is the system resources needed to run 

the query. To address the challenge of where to run 

distributed DSS queries, an optimizer has been developed. 

A 'SQL' based decision support system query is first broken 

down into relational algebra expressions (sub-operations) 

based on selection,' 'projection,' 'join,' and semi-join to find 

an ideal operation site allocation plan. By experimenting 

with different hybrids of operations and locations, these sub-

operations are then assigned to other places for execution. 

Each sub-operations cost is calculated by factoring in the 

size of the relation/fragment involved in the query, the site 

allotted, and the values of the input-output, processing, and 

communication costs coefficients. Figure 1 depicts the 

operation site allocation difficulty. 
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Fig 1. Proposed framework for query processing. 

In this work, we present an optimization of a DSS query that 

uses comprehensive sampling, chaotic, restricted stochastic, 

and entropy-based restricted stochastic methods. 

Additionally, the impact of data replication on the tuning of 

distributed queries has been studied. In addition, the 

relationship between the quantity of join operations and the 

'Total Costs' of the distributed DSS query is investigated. At 

long last, a statistical study of DSS query optimizer 

consistency has been completed. 

4. DSS Query Optimization 

Numerous operation site allocation plans to carry out the 

query are generated by the process known as query 

optimization. Selecting a more effective query execution 

plan that lowers the Total Costs of the distributed decision 

support system query is the goal of the operation site 

allocation problem. Typically, a software component known 

as a professional database management system uses a query 

optimizer to automate the query optimization process. Cost 

Model, Search Space, and Search Strategy are the three parts 

that make up a query optimizer [2,12]. The search space 

represents alternative query execution plans. Different 

execution plans generated by a query optimization approach 

are evaluated based on a query's 'Total Costs' to determine 

the best potential operation site allocation strategy. The cost 

model determines the 'Costs' for each query execution plan. 

A query's costs are calculated based on its operation and 

execution environment. Frequently, an 'objective function' 

or 'Costs Function' will be used to indicate the 'Costs' 

involved in a given situation. It is often built based on how 

long a query takes or how much system memory it 

consumes. The size and cardinality of relations, the number 

of blocks, and device input/output speeds all play significant 

roles. The job of the search strategy is to explore the search 

space and locate the optimal query execution plan [13]. 

5. Query Optimization using Meta-heuristic 

Approaches 

It is clear from previous research results that when using 

exhaustive enumeration approaches, scaling up NP-hard 

problems results in a situation that is almost intractable. 

However, by utilising stochastic techniques, this situation 

can be effectively resolved. The Genetic Algorithm (GA) 

stands out as a strong contender among these. The 

dimensions of the search space remain unrelated to the 

computational time needed to reach a solution inside the GA 

framework. Because of this inherent trait, the evolutionary 

technique is ideally suited for query optimisation in 

distributed computing environments [8, 14, 15, 10, 16]. 

The conceptual origins of the "Genetic Algorithm," 

sometimes known as "GA," can be traced to John Holland's 

groundbreaking work. These algorithms make up a group of 

search tactics that have been painstakingly designed to 

closely resemble the basic ideas behind evolution's natural 

biological process. The term "GA" derives its meaning from 

the profound analogies it makes to the complex field of 

genetics. In more technical terms, genetic algorithms 

function as stochastic methods capable of delivering 

solutions of excellent quality while preserving a low degree 

of temporal complexity. This is made possible by 

coordinating a population of several individual 

chromosomes, which iteratively evolve under clear 

selection criteria and ultimately reach a state that best fulfils 

the desired function. These algorithmic paradigms generate 

efficacy through the collective effort of solution 

populations, in contrast to conventional techniques that 

concentrate on solo solutions. A set of heuristic processes, 

including selection, crossover, and mutation, which are all 

coordinated to improve solution quality, serves as the 

foundation for this endeavour [16, 8]. 

The adaptability of "Genetic Algorithms" is demonstrated 

by the wide range of issue fields in which they can be 

applied. Their effectiveness has been maximised in 

numerous fields, including image processing, 

environmental sciences, time series analysis, task 

scheduling, bioinformatics, clustering, game theory, 

artificial intelligence, and aviation [17–22]. These 

algorithms fundamentally represent the search for superior 

solutions among a variety of potential options. The GA 

approach, as stated, departs from the typical style of 

operating from a single solution by starting its optimisation 

project with a group of solutions. Through random 

generation, this initial solution population is created. Each 

solution to a problem is represented in this method by a 

chromosome, which is an encoded string made up of binary 

bits or characters (genes). A fitness value that measures the 

effectiveness of the treatment is augmenting the 

chromosomal composition. The population is made up of 

the collection of chromosomes and their related fitness 
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ratings. This collection represents a certain generation at any 

given time. The fitness function, a crucial variable that 

crystallises the problem's optimisation objective, is at the 

heart of GA's effectiveness. 

A key component of GA's mechanism is the reproduction of 

children, which is accomplished by pairing chromosomes 

according to the magnitudes of their fitness. This 

relationship triggers a crossover operation, in which the 

genetic characteristics of both parent chromosomes 

combine to produce children with superior qualities. 

Following crossover, the genetic characteristics of the 

progeny are further altered, a transformation known as 

mutation. The created progeny can be given improved 

efficacy through mutation. Until the specified termination 

requirements are satisfied, the algorithm's iterative 

advancement continues [16, 23]. 

5.1. Enumeration-Based Query Optimization (EBQO) 

A deterministically driven strategy that conducts a thorough 

investigation of the solution space is the exhaustive 

enumeration approach. This approach ensures a thorough 

assessment of prospective solutions by methodically 

generating and examining all conceivable combinations 

inside the search space. Its conceptual framework's 

simplicity makes it easily understandable and 

implementable. However, it loses effectiveness when 

dealing with complex and wide-ranging issue domains of 

significant size. 

For instance, the Enumeration approach meticulously 

examines every possible arrangement of query execution 

plans when used to solve the complexity inherent in a DSS 

Operation Site Allocation problem. However, cases with 

significant problem dimensions or complex structures limit 

the applicability of the method. The Enumeration-based 

Query Optimizer (EBQO) was developed with the goal of 

resolving the aforementioned research challenge in a remote 

database environment. It is based on a set of discerning 

decision variables. The process underpinning the design of 

EBQO is informed by all of these decision variables, 

allowing for a thorough and organised approach to dealing 

with the complex intricacies of the distributed database 

landscape. 

5.2. Genetic-based Query Optimization (GBQO) 

A novel strategy known as the Genetic-based Query 

Optimizer (GBQO) has been meticulously developed to 

handle the complexities of the operation site allocation 

problem within distributed Decision Support System (DSS) 

queries, building on the theoretical framework established 

by Rho and March [14]. With a deliberately produced 

beginning population that is stochastic, the GBQO approach 

starts its optimisation trip. The development of a 

chromosome, the blueprint of which is intricately woven 

from factors including the total number of operations and 

the total number of sites implicated in the query scenario, is 

a key aspect of GBQO's design. It is noteworthy that the 

chromosome's architecture is so carefully designed that its 

length is one unit less than the total number of operations 

contained in a given query [14]. 

It is important to emphasise the key assumption that guides 

the GBQO operating framework. This method offers a 

smooth link between well-established theoretical 

foundations and the practical requirements of distributed 

DSS query optimisation in the real world since it is strongly 

rooted in the ideas outlined by Rho and March [14]. A 

pseudo-code representation of the key operational 

sequences contained inside GBQO has been painstakingly 

developed to concretize this operational paradigm. This 

pseudo-code serves as a thorough manual, outlining the 

complex sequence of steps that make up the GBQO 

optimisation procedure. By doing this, it not only provides 

a thorough and organised understanding of the method but 

also serves as a springboard for further investigation and 

improvement in the field of distributed query optimisation 

strategies. 

5.3. Stochastic-based Query Optimization (SBQO) 

The earlier discussed GBQO technique, starts its 

optimisation strategy by creating an initial population using 

a stochastic process. At its core, it manages the distribution 

of sub-operations for a given DSS query within a distributed 

network context. The distinctive feature of GBQO's 

innovation is its chromosomal design, which is 

characterised by a carefully restrained expansion. 

According to this novel design idea, projection sub-

procedures must always be assigned to run on the same 

computing node as their related selection operations. The 

chromosomal design's strategic configuration results in a 

noticeable decrease in the "Processing Costs" connected 

with the query, which has the knock-on effect of lowering 

the "Total Costs" for the encompassing DSS inquiry. The 

unique character of the chromosomal design of GBQO 

resonates as a trailblazing departure from traditional genetic 

algorithm approaches. A paradigm shift may be seen in the 

instruction to closely align projection sub-procedures with 

the location of their parent selection operations. This 

customised design not only increases the overall 

optimisation efficacy but also adds a novel query 

optimisation strategy dimension. The addition of the 

essential genetic algorithm operators "Selection," 

"Crossover," and "Mutation" is a key aspect of GBQO's 

adaption. These operators undergo careful alteration to 

cooperatively resonate with the distinctive features of the 

chromosomal design. 

However, GBQO does not provide a 100% guarantee of 

obtaining the best solution, in accordance with the principles 

inherent in stochastic techniques. In contrast to the EBQO 

technique, the effectiveness of GBQO may not always result 
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in the highest quality solutions [24]. The inherent trade-offs 

present in the field of optimisation approaches are 

highlighted by this acknowledgement. A pseudo-code 

version of the proposed SBQO operational core has been 

meticulously developed to capture the nuances of the 

methodology as presented in Algorithm 1. This pseudo-code 

acts as a foundation for direction, illustrating the anticipated 

series of actions essential to the SBQO optimisation 

procedure. The pseudo-code also appears as a light, 

beckoning additional investigation and improvement within 

the field of query optimisation tactics in distributed systems, 

beyond its procedural explanation. 

Algorithm 1: Proposed SBQO Algorithm for Query 

Processing 

1. Input: Read DSS query, no. of base relations, 

fragments, no. of operations, I/O costs, Processing cost 

2. Output: Total cost, run-time, reduction rate of 

processing cost 

3. Initialize: 

4. 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ← Initial Population 

5. 𝐷𝑒𝑠𝑖𝑔𝑛𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 ← 𝐿𝑒𝑛𝑔𝑡ℎ = 1

< (𝑁𝑜. 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠) 

6. Compute: 

7. 
𝐻(𝑓) =

1

1 − 𝜃
∑ 𝑓𝑘 − 1

𝑛

𝑘=1

 

8. Perform crossover and mutation operation 

9. Assess fitness: 

10. 𝑇(𝐶𝑜𝑠𝑡𝐷𝑆𝑆) = 𝑇(𝐶𝑜𝑠𝑡𝐼/𝑂) + 𝑇(𝐶𝑜𝑠𝑡𝐶𝑃𝑈)

+ 𝑇(𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚) 

11. Continue till Maximum no. of generations 

12. Exit 

 

6. Experimentation and Results Analysis 

A carefully selected set of ad hoc queries has been 

developed in order to evaluate the effectiveness and 

performance of several query optimizers within a 

Distributed Decision Support System (DSS) framework. 

The TPCDS benchmark database, which is closely entwined 

with customer- and sales-related statistics, is the focus of 

these precisely crafted queries [30]. These questions are 

painstakingly expressed as relational algebraic expressions. 

The collection of queries has been carefully designed to 

include a range of join operations ranging from one to ten, 

providing an extensive spectrum for experimental study. 

The number of join operations can be changed for analytical 

diversification thanks to the clever construction of this 

query ensemble. The query set efficiently interacts with a 

collection of relational entities including Customer, Sales, 

Cust_Address, Marketing, Shipping, Webstore, Warehouse, 

Store, and Items when run inside the framework of a 

distributed database environment [30]. 

A sophisticated simulator was painstakingly created to 

unravel the intricacies involved in this work within the 

context of distributed DSS inquiries in order to meet the 

complex challenge of operation site allocation. This 

simulator was cleverly designed using the MATLAB 2008 

environment, painstakingly constructed without using the 

built-in "GA" (Genetic Algorithm) features, and thus 

encapsulates a uniquely customised approach. The 

population size for the GA has considered at size 50, number 

of generations at 50, crossover probability of 0.3, along with 

mutation probability of 0.02, respectively. This system's 

main goal is to ingest the complex parameters of a DSS 

query and then produce a wide variety of query execution 

strategies as an output. 

This simulator's functionality depends on a well chosen set 

of input parameters that have all been properly calibrated to 

coordinate the optimisation process for a DSS query. These 

include crucial elements like the number of base relations, 

the total number of operations, the number of projection and 

selection operations, the number and size of intermediate 

fragments, and the coefficients for estimating the cost of 

I/O, communication, and processing. Notably, the quantity 

of join operations also contributes significantly to this 

optimisation process. The simulator works to identify the 

best query allocation strategy through a complex 

optimisation procedure, effectively minimising the 

aggregate use of important computational resources like 

I/O, CPU processing, and communication. The system's 

ultimate result is this carefully chosen allocation design, 

which has been refined through painstaking optimisation. It 

is crucial to remember that all experimental iterations were 

conducted under a clear set of assumptions, as explained in 

other academic studies [13,14]. 

The calculations carried out for this study were based on the 

careful identification of data block requirements for certain 

queries. It's noteworthy that an 8 KB standard block size was 

proposed for each relation's dimensions. Relevantly, the 

dispersed aspect of the design was strengthened by the 

foundational base relation being randomly repeated across 

two different sites. A crucial aspect, the size of intermediate 

pieces, was carefully determined through the use of 

selectivity estimation approaches. The default 

proportionality between cost coefficients for input-output 

and communication efforts was set at the canonical ratio of 

1:1.6 in accordance with prevalent norms. Effective 

"Selection" and "Projection" activities were deftly agreed to 

only take place at the locations housing the relevant basis 

relations, ensuring the best locality-aware execution. In 

stark contrast, the strategic execution of 'Join' operations 

was given the flexibility to unfold at any point over the vast 

expanse of the distributed database network. 

A carefully crafted collection of dispersed queries was 

conceptualised for this inquiry, built on the foundation of 
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ad-hoc DSS inquiries. The core of these inquiries' themes is 

found in the realm of retrieval operations, more specifically 

in the complex environment of a distributed database 

system. These questions highlight the importance of the 

"Join" operation in the context of distributed database 

queries by combining it with selection, projection, and join 

procedures from the field of relational algebra. They also 

illustrate the philosophy of ad hoc analysis. The query 

collection was meticulously organised across several levels 

of join complexity to fully represent the gamut of join 

procedures. The investigation's next phase consisted of a 

series of meticulous tests carried out on this collection of 

dispersed DSS queries. 

The 'Costs Model' put forth by eminent researchers like Rho 

and March, Dougless and Cornell, Sevinc and Cosar 

[8,14,28] serves as the foundation upon which the costing 

dynamics are constructed. In terms of costing coefficients, 

the design manifests as a linear array of "Input-Output" 

costs, with the number of sites integrated in the distributed 

database architecture limiting its dimension. The idea of 

cost equivalence is upheld, with the ratio of 'Input-Output' 

costs coefficients to communication costs coefficients 

skillfully set at 1:1.6. This is done by leaning on the 

authoritative contributions of Rho and March, Sevinc and 

Cosar, and Ozsu and Valduries. The communication costs 

coefficients are noteworthy; they are painstakingly 

expressed as a square matrix, with the size of the matrix 

being methodically controlled by the number of sites 

interacting with the architecture. 

Additionally, a rigorous calibration of a 1:10 proportionality 

nexus between processing cost coefficients and input-output 

cost coefficients is made. The architecture of processing 

costs coefficients manifests as a linear array, akin to 'Input-

Output' costs coefficients. It's important to emphasise that 

this composite array provides a prototype that includes 

various costs coefficients relevant to a DSS query and is 

harmoniously positioned within a distributed database 

system made up of ten different sites. 

A systematic framework is established to ascertain the 

localised processing costs (referred to as 𝐶𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙) and 

communication costs (referred to as 𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚) associated 

with a given DSS query by using the meticulously created 

decision variables and the intricate cost coefficients 

described earlier. To clarify further, 𝑇(𝐶𝑜𝑠𝑡𝐼/𝑂) is for total 

input-output costs, whereas 𝑇(𝐶𝑜𝑠𝑡𝐶𝑃𝑈)  stands for total 

query processing costs. 

The sum of all input-output costs 𝑇(𝐶𝑜𝑠𝑡𝐼/𝑂)  and all 

processing costs 𝑇(𝐶𝑜𝑠𝑡𝐶𝑃𝑈)  related to the collection of 

selection, projection, and join operations that make up the 

query are combined to determine the localised processing 

costs. In more specific terms, the input-output cost 

coefficients (abbreviated as 𝐶𝑜𝑠𝑡𝐼/𝑂) associated with a 

given site are multiplied by the number of memory blocks 

accessed via a given base relation 𝑏, effectively reflecting 

the size of intermediate fragments, to determine the input-

output costs attributable to the selection operation. Parallel 

to this, the number of memory blocks that are either read 

from or written to by a certain base relation 𝑏 is multiplied 

by the processing cost coefficients (termed as 

𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈) associated to the chosen site to obtain the 

"Processing Costs." In conclusion, summative computations 

coordinate the fusion of individual contributions, which 

ultimately results in the determination of both the total 

input-output costs and the overall processing costs related to 

the current query. 

The area of join operations is where the dimension of 

communication expenses is most relevant. Through a series 

of carefully considered stages, as listed below, the 

quantification of communication costs related to a specific 

inquiry is painstakingly determined: 

1.) The communication costs from the relevant site 

hosting the left child of the "Join" operation are 

detected in the initial step of computation. The 

number of data blocks specified by the 'Left 

Fragment' component of the specific join 

operation is multiplied by these communication 

expenses after that. 

2.) The right child of the 'Join' operation is parallel-

calculated in a manner similar to the step before. 

In this case, the communication costs associated 

with the location of the join operation are 

accurately determined and then scaled by the 

number of data blocks assigned to the relevant join 

operation's right fragment segment. 

3.) The concluding phase entails a cumulative 

integration of the results obtained from the 

computations above. This summative procedure 

develops repeatedly in accordance with the total 

number of join operations woven into the current 

query's structure. 

These calculations carefully explain the complex physics 

underlying the estimation of communication costs in the 

context of join operations, encompassing the dynamic 

interactions between various query structure parts. 

A precise mathematical formulation that clearly separates 

the calculation of local processing costs and communication 

costs serves as the conceptual foundation for the proposed 

cost model. This phrase is carefully and precisely expanded 

upon in the next explication. 

𝐶𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 = ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑗)𝑗 +

∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑗)𝑗            

(1) 
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An exacting mathematical representation that is robust and 

precise is used to convey the complex quantification of 

communication costs (CMCT). The explanation that follows 

painstakingly expands on this mathematical formulation 

reveals the complex complexities that underlie the 

computation of communication costs within the boundaries 

of the specified research area. 

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 = ∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) ×

𝐿𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔 + ∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) ×

𝑅𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔                                                                                 (2) 

Where, 

- 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚= cost coefficient for 

communication 

- 𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛= Left previous operation 

- 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝= location of the join operation 

- 𝐿𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔= left previous fragment 

- 𝑅𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔= right previous fragment 

Thus, the total cost for the DSS can be obtained through the 

formulation below: 

𝑇(𝐶𝑜𝑠𝑡𝐷𝑆𝑆) = ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑗)𝑗 +

∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑗)𝑗 +

∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) × 𝐿𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔 +

∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) × 𝑅𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔         

(3) 

 

The approaches covered—GBQO, EBQO, and proposed 

SBQO—are each put through a variety of carefully planned 

experiments where the systematic alteration of genetic 

approach parameters is carried out. Variable parameters 

include things like population size, the number of 

generations, crossover rates, and mutation rates as discussed 

above. An optimal configuration, defined by the most 

advantageous "Total Costs" values, is discovered by the 

orchestration of genetic parameters, according to empirical 

research. This crucial realisation offers a solid basis for 

identifying the genetic parameter statistics that are thought 

to be most effective for achieving the desired results within 

the parameters of the aforementioned distributed database 

queries [20,21]. 

6.1. Result Analysis 

The stochastic DSS query optimizer is analysed and 

improved as part of this research, which follows the 

methodology stated in the reference [32]. A set of 

methodical experiments are meticulously carried out with 

the goal of optimising a selected group of distributed DSS 

queries. The overriding goal of these efforts is to reduce the 

demand on system resources, enabling the efficient 

execution of the optimised queries. 

The use of system resources in the context of a distributed 

DSS query falls into three categories: input-output, 

processing, and communication. The manifestation of 

"Total Costs," which is frequently used interchangeably 

with "Total Time," is the culmination of this comprehensive 

amalgamation of resource utilisation. This total indicator 

captures the overall use of the system resources required for 

the query's execution [13]. The enhancement of throughput 

within the stochastic query optimizer is the main emphasis 

of this study. 

The following essential aspects are in line with this crucial 

goal: 

1. Analysis of Several Meta-heuristic-based Query 

Optimizer: The EBQO, GBQO, and SBQO are just 

a few of the DSS query optimizers that will be 

carefully dissected and evaluated as part of this 

research. This analytical framework tries to break 

down the advantages and disadvantages of each 

optimizer, providing a thorough understanding of 

their effectiveness in relation to query 

optimisation. 

2. Impact of Data Replication Factor: The thorough 

assessment of the impact of the data replication 

factor on the complex procedure of DSS query 

optimisation is an important aspect of this 

investigation. This investigation dives into how 

different amounts of data replication affect 

optimisation dynamics, providing essential 

insights into how replication and optimisation 

results interact. 

3. Statistical Analysis: The paper conducts a detailed 

statistical investigation of the complex interaction 

between the count of join operations and the 

ensuing use of system resources required for the 

execution of distributed DSS queries. This 

investigation aims to identify the observable 

dependencies and patterns that support this 

important component of query optimisation. 

This research approach emphasises a multifaceted project 

that includes analysis, augmentation, and in-depth inquiry 

and is centred in the area of distributed systems query 

optimisation. 

Figure 2 is a diagram that illustrates the various sets of 

"Total Costs" for a selected group of distributed DSS 

queries. The GBQO, EBQO, and proposed SBQO are the 

three different approaches used to optimise queries. 

Notably, the benchmark outcomes obtained using the 

EBQO and GBQO approach are contrasted with the 

proposed alternative. Beyond the numerical representation, 

Figure 2 goes further to provide an assessment of the 

solution quality in relation to the "Total Costs," placing the 

outcomes in the context of the exhaustive enumeration 
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paradigm. Along with this, Figure 2 supports the claim by 

emphasising the key findings from the investigation. 

The statistics show a clear pattern: when compared to the 

EBQO, solutions to the "Operation Site Allocation 

Problem" in DSS queries that were realised using the SBQO 

approach display a relative sub-optimality of about 20%. 

The GBQO put forth by Sevinc and Cosar represents a 

significant advancement because it raises the quality of 

solutions as determined by "Total Costs" by up to 5% inside 

the framework of SBQO. The results of the GBQO, which 

is the subject of this analysis, reveal a 15% difference in 

optimality when compared to the standard set by the EBQO. 

The outcomes of the NBQO are incrementally improved by 

about 3% as a result of the GBQO methodology's 

optimisation efforts. 

Interestingly, despite the release of the SBQO, which 

steadily improves the quality of solutions obtained through 

5%, the trajectory of refinement continues. As a result, the 

results produced by SBQO are very similar to those realised 

by EBQO. Therefore, the inclusion of the SBQO results in 

a startling alignment of solution quality, as measured by 

'Total Costs,' with the benchmark standard set by the EBQO 

technique. Effectively reducing the gap, this optimisation 

methodology produces results that are comparatively more 

high-quality than those obtained by the EBQO. 

 

Fig 2. Comparison of quality of solution in % for the 

proposed SBQO algorithm with GBQO and EBQO 

algorithms for different set of queries. 

The runtime requirements necessary to provide an ideal 

solution for the operation site allocation problem inherent to 

DSS questions are illustrated in Figure 3 as an example. The 

temporal demands imposed by various optimisation 

strategies are methodically contrasted and contextualised in 

this graphic representation. The conclusions drawn from 

Figure 3 come together to form a unified illustration: the 

EBQO technique is revealed to be a good fit for simple DSS 

queries. This results from the finding that when faced with 

more complex and large-scale DSS queries, the runtime for 

EBQO demonstrates an exponential increase. The runtime 

trajectories linked to GBQO and SBQO, on the other hand, 

reveal a distinctive pattern, either maintaining a state of 

essentially constant behaviour or demonstrating a 

noticeably progressive rise. This empirical trend highlights 

the scalability and robustness of these stochastic 

evolutionary techniques, making them effective tools 

regardless of the complexity of the query or the number of 

join operations. 

Figure 3 also reveals an unexpected finding: all stochastic 

query optimizers' temporal profiles converge onto a single 

trajectory. This convergence is a sign of a stable behaviour 

where there are barely perceptible variations in their 

individual runtime values. This uniformity emphasises how 

stable and dependable these stochastic optimisation 

techniques are. The primary takeaway from these findings 

is that, while the EBQO approach is still applicable for basic 

DSS queries, its viability decreases significantly as queries 

become more sophisticated. Stochastic techniques, as 

represented by GBQO and proposed SBQO, stand out as 

strong competitors, continuously providing respectable 

runtimes regardless of the complexity of the query or the 

number of join operations involved. This empirical 

investigation supports the idea that stochastic query 

optimizers provide a flexible and reliable answer to a variety 

of questions. 

 

Fig 3. Comparison of runtime in seconds for proposed 

SBQO algorithm along with GBQO and EBQO algorithms 

for different set of queries. 

The precise goal of a series of rigorously carried out 

experiments was to investigate the impact of data replication 

rates on the quantity of system resources required for the 

smooth execution of distributed DSS queries. The 

measurement of the 'Total Costs' associated to these 

distributed DSS queries, which acts as a complete indicator 

that includes resource use, is crucial to this endeavour. The 

EBQO, GBQO, and the SBQO algorithms have all been 

used in these research. 

These experimental iterations' empirical findings have led 

to some noteworthy revelations. As data replication rates 

increase from 20% to 90%, a recognisable pattern starts to 

show. Within the optimisation of the 'Total Costs' of 

distributed DSS queries, a discernible improvement appears 

in this trajectory. Through the use of GBQO and SBQO 

optimisation approaches, the increase in replication rate 

specifically catalysed reductions in "Total Costs" of 2%, and 
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3.5% over a selected set of experimental DSS queries. 

Figure 4, a visual explanation that depicts the influence of 

increased replication factors on various stochastic DSS 

query optimizers, provides a vivid illustration of this 

empirical trajectory. The observed pattern supports the 

claim that a SBQO produces the best results when queries 

are optimised with a reliable 90% replication factor. 

Therefore, these empirical findings highlight the 

incremental optimisation potential resulting from increased 

data replication rates and support the improved efficiency of 

various stochastic DSS query optimizers. Additionally, this 

empirical investigation highlights the SBQO's superior 

performance when faced with large replication rates, 

demonstrating its effectiveness in resource-constrained 

circumstances. 

 

Fig 4. Comparison of reduction in cost incurred in % for 

proposed SBQO algorithm with GBQO and EBQO 

algorithms for different set queries. 

7. Conclusions and Future Work 

The handling of substantial data volumes, frequently 

spanning GigaBytes, PetaBytes, or even beyond, presents a 

significant challenge in the domain of DSS queries. As a 

result, the optimisation of DSS queries revolves around a 

fundamental metric known as "Total Costs," a composite 

amalgamation of various costs associated with query 

processing in large databases. The main goal of this study is 

to improve the performance of distributed DSS queries, 

which leads to the creation of a model that is integrated into 

the SBQO algorithm. This innovative approach aims to 

speed up the creation of efficient allocation schemes for 

query operations, ultimately speeding up the overall 

optimisation process. To address the challenging "operation 

site allocation problem" that arises with distributed DSS 

queries, a specialised simulator is developed. This effort is 

supported by a comprehensive empirical assessment, which 

employs a variety of query optimisation approaches, such as 

GBQO and EBQO, alongside the proposed SBQO 

algorithm to carefully examine a number of ad-hoc DSS 

queries in terms of their total costs, runtime outcomes, and 

reduction in cost factor. 

A careful investigation reveals some interesting findings. It 

is noteworthy that when compared to the SBQO strategy, 

both GBQO and EBQO display poor performance in 

achieving optimal query execution plans. The development 

of the SBQO approach, which substantially improves the 

solution quality of GBQO and EBQO by margins of 4.61% 

and 3.72%, respectively, effectively fills this gap. 

Additionally, a novel twist is provided, including the idea of 

entropy proposed by Havrda and Charvat into the stochastic 

framework, to increase the effectiveness of stochastic query 

optimizers. Empirical findings highlight the value of this 

addition, which is supported by the improved performance 

of the SBQO technique. 

A significant element is the complex interaction between the 

distributed database system's intrinsic replication feature 

and the resulting "Total Costs" of DSS queries. Notably, 

increasing the replication rate from 20% to 90% 

significantly lowers "Total Costs" across several techniques, 

respectively. A thorough statistical analysis further 

highlights the strong association between the number of join 

operations and the 'Total Costs' of DSS queries. 

The implementation of targeted research initiatives aiming 

at automating the transformation process is necessary for 

further development in this field. This procedure involves 

creating a query tree from a "SQL"-based query without 

error as a prelude to starting the optimisation process. By 

shortening the initial phases, this automation would 

significantly improve the optimisation pipeline's 

effectiveness and seamlessness. A careful analysis of 

various selection strategies within the genetic approach 

framework can be used to fine-tune the evolutionary 

progression of the entropy-based stochastic DSS query 

optimizer. By dissecting the sub   tleties and dynamics of 

various selection strategies, this analytical examination 

hopes to improve the suggested model's ability to optimise. 

An evaluation of the suggested approach in comparison to 

previous nature-inspired evolutionary optimisation 

strategies is necessary to show its uniqueness and 

effectiveness. A thorough analysis of the advantages and 

distinctive features of the entropy-based stochastic DSS 

query optimizer can be carried out by placing the results in 

the larger framework of evolutionary optimisation 

techniques. Furthermore, a thorough investigation of the 

complex interplay between data allocation and access 

policies is necessary. For DSS query optimisation, this 

dimension has significant ramifications. In order to fully 

understand the complex repercussions of various data 

allocation schemes and access policies, as well as their 

resulting impact on optimisation outcomes, a systematic 

analysis is essential.  
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