

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1108

Performance Analysis of Meta-Heuristic-Based Query Optimization

Algorithms for Large-scale Decision Support Systems

Anita Mohanty1*, Sambit Kumar Mishra2

Submitted: 28/01/2024 Revised: 06/03/2024 Accepted: 14/03/2024

Abstract: Database systems continue to be fascinated in the alluring quest of query optimisation, a field distinguished by continual heuristic

developments. Swift data access and analysis are of utmost importance in the dynamic world of Decision Support System (DSS) databases.

This research introduces a novel stochastic DSS query optimizer, expanding the capabilities of existing genetic approaches. The

Enumeration-based Query Optimizer (EBQO), Genetic-based Query Optimizer (GBQO), and the recently suggested Stochastic-based

Query Optimizer (SBQO) emerge as prominent candidates within the spectrum of query optimisation approaches. In comparison to EBQO

and GBQO, SBQO, a stochastic technique, exhibits superior relevance to query optimisation. Notably, SBQO surpasses its rivals in two

essential areas: runtime effectiveness and Total Costs Optimisation. This notable efficiency underlines how well stochastic strategies work

for obtaining the best results when it comes to query optimisation. The importance of stochastic approaches in improving query optimisation

efforts is highlighted by these results, opening up a path to more effective and favourable outcomes. This study provides a convincing

demonstration of the significant advantages that cutting-edge stochastic techniques, such as SBQO, may bring to the field of query

optimisation, a crucial component of effective database administration and decision support.

Keywords: Cost Analysis, Genetic Algorithm, Meta-heuristic Algorithms, Performance Evaluation, Query Optimization, Run-time

Analysis, Stochastic Approach.

1. Introduction

A database is an amalgamation of nearly linked data that is

put together in a way that meets the information needs of an

enterprise. It is a place where individuals can store and view

data that they can share with each other. It has information

about how it works and a complete account of it. In the past

few decades, computer technology has made giant leaps

forward. The way that many companies operate and handle

data has changed in a big way.

Additionally, there has been a big jump in the number of

people who use databases and the organizations that use

them. A database system is a group of programs that work

together to build, store, retrieve, and manage information in

the database. Before, the whole database was supposed to be

put on a computer machine and shared by everyone who

used the database. People knew this database management

method was called "centralized database management."

This method solved a lot of the problems that standard file-

based systems possessed, such as duplicate data, no sharing,

security issues, inconsistency, etc. Afterward, it was

seriously thought that putting the whole database on a single

site was one of the biggest problems with this method

because it slowed it down. Also, this method did not make

"Access Time" and "Response Time" faster as the size of

the database grew to significantly higher levels. In the

1980s, when database systems and computer networking

came together, a new name emerged: "distributed database

system." It was a significant change in the way computer

technology worked. The distributed database system fixed

some of the problems with standard database systems.

Query is a sentence or group of statements that do basic

database tasks like "read," "write," "delete," and "update"

correctly. It is an essential part of managing and getting info.

Most of the time, distributed queries are more complicated

than centralized queries. Online Transaction Processing

(OLTP) and Decision Support System (DSS) queries are

more spread queries. DSS question is spread out in the

world. In general, it is hard to do and takes longer to do.

With these queries, you can get info from both nearby and

faraway sites.

In contrast to OLTP searches, these queries usually deal

with a large amount of data. DSS searches use a lot of I/O,

processing and communication resources, and they can

cause a distributed database system's CPU or even memory

server to stop working suddenly. Also, the average running

time of a spread DSS query is hard to predict. DSS queries

work on relationships with sizes of mega bytes, giga bytes,

or even bigger. In the end, query optimization was the most

challenging problem for database sexperts. In recent years,

__

1Research Scholar(Comp.sc & Engg), Biju Patnaik University of

Technology, Rourkela ,Odisha; and
1 Department of MCA, Ajay Binay Institute of Technology, Cuttack

ORCID ID : 0009-0005-9220-379X
2 Department of Computer Sc.&Engg., Gandhi Institute for Education and

Technology, Baniatangi

ORCID ID : 0000-0002-5767-6787

* Corresponding Author Email: anitamohanty56@gmail.com

mailto:anitamohanty56@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1109

much attention has been paid to query efficiency in

distributed database systems. It is a way to figure out the

best way to run a query regarding Total Costs or Response

Time. If a query's processing plan isn't the best, it will either

use too many system resources or take too long to run. The

main goal of this study is to look at how well different

stochastic distributed DSS query optimizers work. The

outcomes are contrasted based on how long the distributed

DSS query took to run and how many system resources it

used. Here, a new stochastic query optimizer, namely, the

Stochastic-based Query Optimizer (SBQO) is suggested to

optimize distributed DSS queries. The results for SBQO are

compared to GBQO and EBQO algorithms for different set

of queries corresponding to performance factors like total

cost, run-time, and percentage of reduction in cost.

The paper is broken up into different parts. In Section 2 of

the paper, the linked work was talked about. In Section 3,

the problem statement is set out. Section 4 explains what

query optimization is all about. In Section 5, the designs of

different query optimizers along with proposed SBQO

algorithm is presented. In Section 6, we talked about the cost

coefficient method and how to set up an experiment along

with the discussion and the findings. In Section 7, the

conclusion has been made and future scope of the study is

discussed.

2. Related Work

Yao and Hevner are the ones who came up with query

optimization. In the late 1970s, authors optimized queries

using a heuristic with an exhaustive enumeration method. In

the 1980s, different query optimization strategies were

suggested by Ceri and Palagatti, Chen and Li, Yu and

Chang, Peter Apers, Lam, and Martin, and other critical

researchers. In 1995, Rho and March added more to the

query optimization model. In the 21st century, researchers

like Ahmat Cosar and Zehai Zhou used a method called

"Genetic Algorithm" to improve the performance of spread

queries [1, 5, 29]. In the past, most searches were optimized

using "Exhaustive Enumeration" with some heuristics

algorithms (such as Dynamic Programming, Branch and

Bound, Greedy Algorithm, etc.).

But this method wasn't suitable for big, complicated queries

because it rarely came up with the best query placement plan

in a set amount of time. For a complex question, it took

minutes, hours, or even days to develop the best plan for

running the query [6,7]. In randomized optimization

methods, a set of random moves was used to find the best

answer.

Every search space answer was shown as a solution point.

As an edge, a connection between two answer points was

made by making random moves. The set of unexpected

moves depends greatly on how the optimization problem is

set up and the answers. Some examples of randomized

optimization methods are "Iterative Improvements,"

"Simulated Annealing," "Random Sampling," etc. In recent

years, evolutionary processes have been used to improve the

performance of spread queries. The idea behind

evolutionary techniques is that a group changes over time.

Some of the essential things about evolutionary methods are

that they can deal with imperfection, uncertainty, and only

some of the truth to make things easy to understand, strong,

cheap to solve, and more in line with reality. Some popular

evolutionary methods are "Genetic Algorithms," "Swarm

Intelligence," "Memetic Algorithms," "ACO," and so on [8–

11].

3. Problem Formulation

An NP-Hard task is optimizing queries. Several heuristics

have been implemented recently; these offer novel strategies

for improving the query processing loop. We're still on the

lookout for more optimal answers. Optimizing a query

typically entails moving subqueries around, rearranging the

query's structure, or effectively allocating sub-operations to

various sites (operation site allocation). The distribution of

places for operations is one of the most studied issues in

distributed databases. As a result, the key objective of this

study has been to delegate sub-operations to various

locations of a distributed database network to optimize a

search query. Gigabytes, petabytes, and more, decision

support system queries interpret enormous amounts of data.

This category of inquiries is exempt from the response time.

However, a key issue is the system resources needed to run

the query. To address the challenge of where to run

distributed DSS queries, an optimizer has been developed.

A 'SQL' based decision support system query is first broken

down into relational algebra expressions (sub-operations)

based on selection,' 'projection,' 'join,' and semi-join to find

an ideal operation site allocation plan. By experimenting

with different hybrids of operations and locations, these sub-

operations are then assigned to other places for execution.

Each sub-operations cost is calculated by factoring in the

size of the relation/fragment involved in the query, the site

allotted, and the values of the input-output, processing, and

communication costs coefficients. Figure 1 depicts the

operation site allocation difficulty.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1110

Fig 1. Proposed framework for query processing.

In this work, we present an optimization of a DSS query that

uses comprehensive sampling, chaotic, restricted stochastic,

and entropy-based restricted stochastic methods.

Additionally, the impact of data replication on the tuning of

distributed queries has been studied. In addition, the

relationship between the quantity of join operations and the

'Total Costs' of the distributed DSS query is investigated. At

long last, a statistical study of DSS query optimizer

consistency has been completed.

4. DSS Query Optimization

Numerous operation site allocation plans to carry out the

query are generated by the process known as query

optimization. Selecting a more effective query execution

plan that lowers the Total Costs of the distributed decision

support system query is the goal of the operation site

allocation problem. Typically, a software component known

as a professional database management system uses a query

optimizer to automate the query optimization process. Cost

Model, Search Space, and Search Strategy are the three parts

that make up a query optimizer [2,12]. The search space

represents alternative query execution plans. Different

execution plans generated by a query optimization approach

are evaluated based on a query's 'Total Costs' to determine

the best potential operation site allocation strategy. The cost

model determines the 'Costs' for each query execution plan.

A query's costs are calculated based on its operation and

execution environment. Frequently, an 'objective function'

or 'Costs Function' will be used to indicate the 'Costs'

involved in a given situation. It is often built based on how

long a query takes or how much system memory it

consumes. The size and cardinality of relations, the number

of blocks, and device input/output speeds all play significant

roles. The job of the search strategy is to explore the search

space and locate the optimal query execution plan [13].

5. Query Optimization using Meta-heuristic

Approaches

It is clear from previous research results that when using

exhaustive enumeration approaches, scaling up NP-hard

problems results in a situation that is almost intractable.

However, by utilising stochastic techniques, this situation

can be effectively resolved. The Genetic Algorithm (GA)

stands out as a strong contender among these. The

dimensions of the search space remain unrelated to the

computational time needed to reach a solution inside the GA

framework. Because of this inherent trait, the evolutionary

technique is ideally suited for query optimisation in

distributed computing environments [8, 14, 15, 10, 16].

The conceptual origins of the "Genetic Algorithm,"

sometimes known as "GA," can be traced to John Holland's

groundbreaking work. These algorithms make up a group of

search tactics that have been painstakingly designed to

closely resemble the basic ideas behind evolution's natural

biological process. The term "GA" derives its meaning from

the profound analogies it makes to the complex field of

genetics. In more technical terms, genetic algorithms

function as stochastic methods capable of delivering

solutions of excellent quality while preserving a low degree

of temporal complexity. This is made possible by

coordinating a population of several individual

chromosomes, which iteratively evolve under clear

selection criteria and ultimately reach a state that best fulfils

the desired function. These algorithmic paradigms generate

efficacy through the collective effort of solution

populations, in contrast to conventional techniques that

concentrate on solo solutions. A set of heuristic processes,

including selection, crossover, and mutation, which are all

coordinated to improve solution quality, serves as the

foundation for this endeavour [16, 8].

The adaptability of "Genetic Algorithms" is demonstrated

by the wide range of issue fields in which they can be

applied. Their effectiveness has been maximised in

numerous fields, including image processing,

environmental sciences, time series analysis, task

scheduling, bioinformatics, clustering, game theory,

artificial intelligence, and aviation [17–22]. These

algorithms fundamentally represent the search for superior

solutions among a variety of potential options. The GA

approach, as stated, departs from the typical style of

operating from a single solution by starting its optimisation

project with a group of solutions. Through random

generation, this initial solution population is created. Each

solution to a problem is represented in this method by a

chromosome, which is an encoded string made up of binary

bits or characters (genes). A fitness value that measures the

effectiveness of the treatment is augmenting the

chromosomal composition. The population is made up of

the collection of chromosomes and their related fitness

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1111

ratings. This collection represents a certain generation at any

given time. The fitness function, a crucial variable that

crystallises the problem's optimisation objective, is at the

heart of GA's effectiveness.

A key component of GA's mechanism is the reproduction of

children, which is accomplished by pairing chromosomes

according to the magnitudes of their fitness. This

relationship triggers a crossover operation, in which the

genetic characteristics of both parent chromosomes

combine to produce children with superior qualities.

Following crossover, the genetic characteristics of the

progeny are further altered, a transformation known as

mutation. The created progeny can be given improved

efficacy through mutation. Until the specified termination

requirements are satisfied, the algorithm's iterative

advancement continues [16, 23].

5.1. Enumeration-Based Query Optimization (EBQO)

A deterministically driven strategy that conducts a thorough

investigation of the solution space is the exhaustive

enumeration approach. This approach ensures a thorough

assessment of prospective solutions by methodically

generating and examining all conceivable combinations

inside the search space. Its conceptual framework's

simplicity makes it easily understandable and

implementable. However, it loses effectiveness when

dealing with complex and wide-ranging issue domains of

significant size.

For instance, the Enumeration approach meticulously

examines every possible arrangement of query execution

plans when used to solve the complexity inherent in a DSS

Operation Site Allocation problem. However, cases with

significant problem dimensions or complex structures limit

the applicability of the method. The Enumeration-based

Query Optimizer (EBQO) was developed with the goal of

resolving the aforementioned research challenge in a remote

database environment. It is based on a set of discerning

decision variables. The process underpinning the design of

EBQO is informed by all of these decision variables,

allowing for a thorough and organised approach to dealing

with the complex intricacies of the distributed database

landscape.

5.2. Genetic-based Query Optimization (GBQO)

A novel strategy known as the Genetic-based Query

Optimizer (GBQO) has been meticulously developed to

handle the complexities of the operation site allocation

problem within distributed Decision Support System (DSS)

queries, building on the theoretical framework established

by Rho and March [14]. With a deliberately produced

beginning population that is stochastic, the GBQO approach

starts its optimisation trip. The development of a

chromosome, the blueprint of which is intricately woven

from factors including the total number of operations and

the total number of sites implicated in the query scenario, is

a key aspect of GBQO's design. It is noteworthy that the

chromosome's architecture is so carefully designed that its

length is one unit less than the total number of operations

contained in a given query [14].

It is important to emphasise the key assumption that guides

the GBQO operating framework. This method offers a

smooth link between well-established theoretical

foundations and the practical requirements of distributed

DSS query optimisation in the real world since it is strongly

rooted in the ideas outlined by Rho and March [14]. A

pseudo-code representation of the key operational

sequences contained inside GBQO has been painstakingly

developed to concretize this operational paradigm. This

pseudo-code serves as a thorough manual, outlining the

complex sequence of steps that make up the GBQO

optimisation procedure. By doing this, it not only provides

a thorough and organised understanding of the method but

also serves as a springboard for further investigation and

improvement in the field of distributed query optimisation

strategies.

5.3. Stochastic-based Query Optimization (SBQO)

The earlier discussed GBQO technique, starts its

optimisation strategy by creating an initial population using

a stochastic process. At its core, it manages the distribution

of sub-operations for a given DSS query within a distributed

network context. The distinctive feature of GBQO's

innovation is its chromosomal design, which is

characterised by a carefully restrained expansion.

According to this novel design idea, projection sub-

procedures must always be assigned to run on the same

computing node as their related selection operations. The

chromosomal design's strategic configuration results in a

noticeable decrease in the "Processing Costs" connected

with the query, which has the knock-on effect of lowering

the "Total Costs" for the encompassing DSS inquiry. The

unique character of the chromosomal design of GBQO

resonates as a trailblazing departure from traditional genetic

algorithm approaches. A paradigm shift may be seen in the

instruction to closely align projection sub-procedures with

the location of their parent selection operations. This

customised design not only increases the overall

optimisation efficacy but also adds a novel query

optimisation strategy dimension. The addition of the

essential genetic algorithm operators "Selection,"

"Crossover," and "Mutation" is a key aspect of GBQO's

adaption. These operators undergo careful alteration to

cooperatively resonate with the distinctive features of the

chromosomal design.

However, GBQO does not provide a 100% guarantee of

obtaining the best solution, in accordance with the principles

inherent in stochastic techniques. In contrast to the EBQO

technique, the effectiveness of GBQO may not always result

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1112

in the highest quality solutions [24]. The inherent trade-offs

present in the field of optimisation approaches are

highlighted by this acknowledgement. A pseudo-code

version of the proposed SBQO operational core has been

meticulously developed to capture the nuances of the

methodology as presented in Algorithm 1. This pseudo-code

acts as a foundation for direction, illustrating the anticipated

series of actions essential to the SBQO optimisation

procedure. The pseudo-code also appears as a light,

beckoning additional investigation and improvement within

the field of query optimisation tactics in distributed systems,

beyond its procedural explanation.

Algorithm 1: Proposed SBQO Algorithm for Query

Processing

1. Input: Read DSS query, no. of base relations,

fragments, no. of operations, I/O costs, Processing cost

2. Output: Total cost, run-time, reduction rate of

processing cost

3. Initialize:

4. 𝑅𝑎𝑛𝑑𝑜𝑚𝑙𝑦𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 ← Initial Population

5. 𝐷𝑒𝑠𝑖𝑔𝑛𝐶ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 ← 𝐿𝑒𝑛𝑔𝑡ℎ = 1

< (𝑁𝑜. 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠)

6. Compute:

7.
𝐻(𝑓) =

1

1 − 𝜃
∑ 𝑓𝑘 − 1

𝑛

𝑘=1

8. Perform crossover and mutation operation

9. Assess fitness:

10. 𝑇(𝐶𝑜𝑠𝑡𝐷𝑆𝑆) = 𝑇(𝐶𝑜𝑠𝑡𝐼/𝑂) + 𝑇(𝐶𝑜𝑠𝑡𝐶𝑃𝑈)

+ 𝑇(𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚)

11. Continue till Maximum no. of generations

12. Exit

6. Experimentation and Results Analysis

A carefully selected set of ad hoc queries has been

developed in order to evaluate the effectiveness and

performance of several query optimizers within a

Distributed Decision Support System (DSS) framework.

The TPCDS benchmark database, which is closely entwined

with customer- and sales-related statistics, is the focus of

these precisely crafted queries [30]. These questions are

painstakingly expressed as relational algebraic expressions.

The collection of queries has been carefully designed to

include a range of join operations ranging from one to ten,

providing an extensive spectrum for experimental study.

The number of join operations can be changed for analytical

diversification thanks to the clever construction of this

query ensemble. The query set efficiently interacts with a

collection of relational entities including Customer, Sales,

Cust_Address, Marketing, Shipping, Webstore, Warehouse,

Store, and Items when run inside the framework of a

distributed database environment [30].

A sophisticated simulator was painstakingly created to

unravel the intricacies involved in this work within the

context of distributed DSS inquiries in order to meet the

complex challenge of operation site allocation. This

simulator was cleverly designed using the MATLAB 2008

environment, painstakingly constructed without using the

built-in "GA" (Genetic Algorithm) features, and thus

encapsulates a uniquely customised approach. The

population size for the GA has considered at size 50, number

of generations at 50, crossover probability of 0.3, along with

mutation probability of 0.02, respectively. This system's

main goal is to ingest the complex parameters of a DSS

query and then produce a wide variety of query execution

strategies as an output.

This simulator's functionality depends on a well chosen set

of input parameters that have all been properly calibrated to

coordinate the optimisation process for a DSS query. These

include crucial elements like the number of base relations,

the total number of operations, the number of projection and

selection operations, the number and size of intermediate

fragments, and the coefficients for estimating the cost of

I/O, communication, and processing. Notably, the quantity

of join operations also contributes significantly to this

optimisation process. The simulator works to identify the

best query allocation strategy through a complex

optimisation procedure, effectively minimising the

aggregate use of important computational resources like

I/O, CPU processing, and communication. The system's

ultimate result is this carefully chosen allocation design,

which has been refined through painstaking optimisation. It

is crucial to remember that all experimental iterations were

conducted under a clear set of assumptions, as explained in

other academic studies [13,14].

The calculations carried out for this study were based on the

careful identification of data block requirements for certain

queries. It's noteworthy that an 8 KB standard block size was

proposed for each relation's dimensions. Relevantly, the

dispersed aspect of the design was strengthened by the

foundational base relation being randomly repeated across

two different sites. A crucial aspect, the size of intermediate

pieces, was carefully determined through the use of

selectivity estimation approaches. The default

proportionality between cost coefficients for input-output

and communication efforts was set at the canonical ratio of

1:1.6 in accordance with prevalent norms. Effective

"Selection" and "Projection" activities were deftly agreed to

only take place at the locations housing the relevant basis

relations, ensuring the best locality-aware execution. In

stark contrast, the strategic execution of 'Join' operations

was given the flexibility to unfold at any point over the vast

expanse of the distributed database network.

A carefully crafted collection of dispersed queries was

conceptualised for this inquiry, built on the foundation of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1113

ad-hoc DSS inquiries. The core of these inquiries' themes is

found in the realm of retrieval operations, more specifically

in the complex environment of a distributed database

system. These questions highlight the importance of the

"Join" operation in the context of distributed database

queries by combining it with selection, projection, and join

procedures from the field of relational algebra. They also

illustrate the philosophy of ad hoc analysis. The query

collection was meticulously organised across several levels

of join complexity to fully represent the gamut of join

procedures. The investigation's next phase consisted of a

series of meticulous tests carried out on this collection of

dispersed DSS queries.

The 'Costs Model' put forth by eminent researchers like Rho

and March, Dougless and Cornell, Sevinc and Cosar

[8,14,28] serves as the foundation upon which the costing

dynamics are constructed. In terms of costing coefficients,

the design manifests as a linear array of "Input-Output"

costs, with the number of sites integrated in the distributed

database architecture limiting its dimension. The idea of

cost equivalence is upheld, with the ratio of 'Input-Output'

costs coefficients to communication costs coefficients

skillfully set at 1:1.6. This is done by leaning on the

authoritative contributions of Rho and March, Sevinc and

Cosar, and Ozsu and Valduries. The communication costs

coefficients are noteworthy; they are painstakingly

expressed as a square matrix, with the size of the matrix

being methodically controlled by the number of sites

interacting with the architecture.

Additionally, a rigorous calibration of a 1:10 proportionality

nexus between processing cost coefficients and input-output

cost coefficients is made. The architecture of processing

costs coefficients manifests as a linear array, akin to 'Input-

Output' costs coefficients. It's important to emphasise that

this composite array provides a prototype that includes

various costs coefficients relevant to a DSS query and is

harmoniously positioned within a distributed database

system made up of ten different sites.

A systematic framework is established to ascertain the

localised processing costs (referred to as 𝐶𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙) and

communication costs (referred to as 𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚) associated

with a given DSS query by using the meticulously created

decision variables and the intricate cost coefficients

described earlier. To clarify further, 𝑇(𝐶𝑜𝑠𝑡𝐼/𝑂) is for total

input-output costs, whereas 𝑇(𝐶𝑜𝑠𝑡𝐶𝑃𝑈) stands for total

query processing costs.

The sum of all input-output costs 𝑇(𝐶𝑜𝑠𝑡𝐼/𝑂) and all

processing costs 𝑇(𝐶𝑜𝑠𝑡𝐶𝑃𝑈) related to the collection of

selection, projection, and join operations that make up the

query are combined to determine the localised processing

costs. In more specific terms, the input-output cost

coefficients (abbreviated as 𝐶𝑜𝑠𝑡𝐼/𝑂) associated with a

given site are multiplied by the number of memory blocks

accessed via a given base relation 𝑏, effectively reflecting

the size of intermediate fragments, to determine the input-

output costs attributable to the selection operation. Parallel

to this, the number of memory blocks that are either read

from or written to by a certain base relation 𝑏 is multiplied

by the processing cost coefficients (termed as

𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈) associated to the chosen site to obtain the

"Processing Costs." In conclusion, summative computations

coordinate the fusion of individual contributions, which

ultimately results in the determination of both the total

input-output costs and the overall processing costs related to

the current query.

The area of join operations is where the dimension of

communication expenses is most relevant. Through a series

of carefully considered stages, as listed below, the

quantification of communication costs related to a specific

inquiry is painstakingly determined:

1.) The communication costs from the relevant site

hosting the left child of the "Join" operation are

detected in the initial step of computation. The

number of data blocks specified by the 'Left

Fragment' component of the specific join

operation is multiplied by these communication

expenses after that.

2.) The right child of the 'Join' operation is parallel-

calculated in a manner similar to the step before.

In this case, the communication costs associated

with the location of the join operation are

accurately determined and then scaled by the

number of data blocks assigned to the relevant join

operation's right fragment segment.

3.) The concluding phase entails a cumulative

integration of the results obtained from the

computations above. This summative procedure

develops repeatedly in accordance with the total

number of join operations woven into the current

query's structure.

These calculations carefully explain the complex physics

underlying the estimation of communication costs in the

context of join operations, encompassing the dynamic

interactions between various query structure parts.

A precise mathematical formulation that clearly separates

the calculation of local processing costs and communication

costs serves as the conceptual foundation for the proposed

cost model. This phrase is carefully and precisely expanded

upon in the next explication.

𝐶𝑜𝑠𝑡𝑙𝑜𝑐𝑎𝑙 = ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑗)𝑗 +

∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑗)𝑗

(1)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1114

An exacting mathematical representation that is robust and

precise is used to convey the complex quantification of

communication costs (CMCT). The explanation that follows

painstakingly expands on this mathematical formulation

reveals the complex complexities that underlie the

computation of communication costs within the boundaries

of the specified research area.

𝐶𝑜𝑠𝑡𝑐𝑜𝑚𝑚 = ∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) ×

𝐿𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔 + ∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) ×

𝑅𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔 (2)

Where,

- 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚= cost coefficient for

communication

- 𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛= Left previous operation

- 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝= location of the join operation

- 𝐿𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔= left previous fragment

- 𝑅𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔= right previous fragment

Thus, the total cost for the DSS can be obtained through the

formulation below:

𝑇(𝐶𝑜𝑠𝑡𝐷𝑆𝑆) = ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡𝐼/𝑂 × 𝛼𝑗)𝑗 +

∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑖)𝑖 + ∑ (𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝐶𝑃𝑈 × 𝛼𝑗)𝑗 +

∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) × 𝐿𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔 +

∑ 𝐶𝑜𝑠𝑡_𝐶𝑜𝑒𝑓𝑓𝑐𝑜𝑚𝑚𝑖 (𝐿𝑝𝑟𝑒𝑣_𝑗𝑜𝑖𝑛 , 𝑙𝑜𝑐𝑗𝑜𝑖𝑛_𝑜𝑝) × 𝑅𝑝𝑟𝑒𝑣_𝑓𝑟𝑎𝑔

(3)

The approaches covered—GBQO, EBQO, and proposed

SBQO—are each put through a variety of carefully planned

experiments where the systematic alteration of genetic

approach parameters is carried out. Variable parameters

include things like population size, the number of

generations, crossover rates, and mutation rates as discussed

above. An optimal configuration, defined by the most

advantageous "Total Costs" values, is discovered by the

orchestration of genetic parameters, according to empirical

research. This crucial realisation offers a solid basis for

identifying the genetic parameter statistics that are thought

to be most effective for achieving the desired results within

the parameters of the aforementioned distributed database

queries [20,21].

6.1. Result Analysis

The stochastic DSS query optimizer is analysed and

improved as part of this research, which follows the

methodology stated in the reference [32]. A set of

methodical experiments are meticulously carried out with

the goal of optimising a selected group of distributed DSS

queries. The overriding goal of these efforts is to reduce the

demand on system resources, enabling the efficient

execution of the optimised queries.

The use of system resources in the context of a distributed

DSS query falls into three categories: input-output,

processing, and communication. The manifestation of

"Total Costs," which is frequently used interchangeably

with "Total Time," is the culmination of this comprehensive

amalgamation of resource utilisation. This total indicator

captures the overall use of the system resources required for

the query's execution [13]. The enhancement of throughput

within the stochastic query optimizer is the main emphasis

of this study.

The following essential aspects are in line with this crucial

goal:

1. Analysis of Several Meta-heuristic-based Query

Optimizer: The EBQO, GBQO, and SBQO are just

a few of the DSS query optimizers that will be

carefully dissected and evaluated as part of this

research. This analytical framework tries to break

down the advantages and disadvantages of each

optimizer, providing a thorough understanding of

their effectiveness in relation to query

optimisation.

2. Impact of Data Replication Factor: The thorough

assessment of the impact of the data replication

factor on the complex procedure of DSS query

optimisation is an important aspect of this

investigation. This investigation dives into how

different amounts of data replication affect

optimisation dynamics, providing essential

insights into how replication and optimisation

results interact.

3. Statistical Analysis: The paper conducts a detailed

statistical investigation of the complex interaction

between the count of join operations and the

ensuing use of system resources required for the

execution of distributed DSS queries. This

investigation aims to identify the observable

dependencies and patterns that support this

important component of query optimisation.

This research approach emphasises a multifaceted project

that includes analysis, augmentation, and in-depth inquiry

and is centred in the area of distributed systems query

optimisation.

Figure 2 is a diagram that illustrates the various sets of

"Total Costs" for a selected group of distributed DSS

queries. The GBQO, EBQO, and proposed SBQO are the

three different approaches used to optimise queries.

Notably, the benchmark outcomes obtained using the

EBQO and GBQO approach are contrasted with the

proposed alternative. Beyond the numerical representation,

Figure 2 goes further to provide an assessment of the

solution quality in relation to the "Total Costs," placing the

outcomes in the context of the exhaustive enumeration

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1115

paradigm. Along with this, Figure 2 supports the claim by

emphasising the key findings from the investigation.

The statistics show a clear pattern: when compared to the

EBQO, solutions to the "Operation Site Allocation

Problem" in DSS queries that were realised using the SBQO

approach display a relative sub-optimality of about 20%.

The GBQO put forth by Sevinc and Cosar represents a

significant advancement because it raises the quality of

solutions as determined by "Total Costs" by up to 5% inside

the framework of SBQO. The results of the GBQO, which

is the subject of this analysis, reveal a 15% difference in

optimality when compared to the standard set by the EBQO.

The outcomes of the NBQO are incrementally improved by

about 3% as a result of the GBQO methodology's

optimisation efforts.

Interestingly, despite the release of the SBQO, which

steadily improves the quality of solutions obtained through

5%, the trajectory of refinement continues. As a result, the

results produced by SBQO are very similar to those realised

by EBQO. Therefore, the inclusion of the SBQO results in

a startling alignment of solution quality, as measured by

'Total Costs,' with the benchmark standard set by the EBQO

technique. Effectively reducing the gap, this optimisation

methodology produces results that are comparatively more

high-quality than those obtained by the EBQO.

Fig 2. Comparison of quality of solution in % for the

proposed SBQO algorithm with GBQO and EBQO

algorithms for different set of queries.

The runtime requirements necessary to provide an ideal

solution for the operation site allocation problem inherent to

DSS questions are illustrated in Figure 3 as an example. The

temporal demands imposed by various optimisation

strategies are methodically contrasted and contextualised in

this graphic representation. The conclusions drawn from

Figure 3 come together to form a unified illustration: the

EBQO technique is revealed to be a good fit for simple DSS

queries. This results from the finding that when faced with

more complex and large-scale DSS queries, the runtime for

EBQO demonstrates an exponential increase. The runtime

trajectories linked to GBQO and SBQO, on the other hand,

reveal a distinctive pattern, either maintaining a state of

essentially constant behaviour or demonstrating a

noticeably progressive rise. This empirical trend highlights

the scalability and robustness of these stochastic

evolutionary techniques, making them effective tools

regardless of the complexity of the query or the number of

join operations.

Figure 3 also reveals an unexpected finding: all stochastic

query optimizers' temporal profiles converge onto a single

trajectory. This convergence is a sign of a stable behaviour

where there are barely perceptible variations in their

individual runtime values. This uniformity emphasises how

stable and dependable these stochastic optimisation

techniques are. The primary takeaway from these findings

is that, while the EBQO approach is still applicable for basic

DSS queries, its viability decreases significantly as queries

become more sophisticated. Stochastic techniques, as

represented by GBQO and proposed SBQO, stand out as

strong competitors, continuously providing respectable

runtimes regardless of the complexity of the query or the

number of join operations involved. This empirical

investigation supports the idea that stochastic query

optimizers provide a flexible and reliable answer to a variety

of questions.

Fig 3. Comparison of runtime in seconds for proposed

SBQO algorithm along with GBQO and EBQO algorithms

for different set of queries.

The precise goal of a series of rigorously carried out

experiments was to investigate the impact of data replication

rates on the quantity of system resources required for the

smooth execution of distributed DSS queries. The

measurement of the 'Total Costs' associated to these

distributed DSS queries, which acts as a complete indicator

that includes resource use, is crucial to this endeavour. The

EBQO, GBQO, and the SBQO algorithms have all been

used in these research.

These experimental iterations' empirical findings have led

to some noteworthy revelations. As data replication rates

increase from 20% to 90%, a recognisable pattern starts to

show. Within the optimisation of the 'Total Costs' of

distributed DSS queries, a discernible improvement appears

in this trajectory. Through the use of GBQO and SBQO

optimisation approaches, the increase in replication rate

specifically catalysed reductions in "Total Costs" of 2%, and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1116

3.5% over a selected set of experimental DSS queries.

Figure 4, a visual explanation that depicts the influence of

increased replication factors on various stochastic DSS

query optimizers, provides a vivid illustration of this

empirical trajectory. The observed pattern supports the

claim that a SBQO produces the best results when queries

are optimised with a reliable 90% replication factor.

Therefore, these empirical findings highlight the

incremental optimisation potential resulting from increased

data replication rates and support the improved efficiency of

various stochastic DSS query optimizers. Additionally, this

empirical investigation highlights the SBQO's superior

performance when faced with large replication rates,

demonstrating its effectiveness in resource-constrained

circumstances.

Fig 4. Comparison of reduction in cost incurred in % for

proposed SBQO algorithm with GBQO and EBQO

algorithms for different set queries.

7. Conclusions and Future Work

The handling of substantial data volumes, frequently

spanning GigaBytes, PetaBytes, or even beyond, presents a

significant challenge in the domain of DSS queries. As a

result, the optimisation of DSS queries revolves around a

fundamental metric known as "Total Costs," a composite

amalgamation of various costs associated with query

processing in large databases. The main goal of this study is

to improve the performance of distributed DSS queries,

which leads to the creation of a model that is integrated into

the SBQO algorithm. This innovative approach aims to

speed up the creation of efficient allocation schemes for

query operations, ultimately speeding up the overall

optimisation process. To address the challenging "operation

site allocation problem" that arises with distributed DSS

queries, a specialised simulator is developed. This effort is

supported by a comprehensive empirical assessment, which

employs a variety of query optimisation approaches, such as

GBQO and EBQO, alongside the proposed SBQO

algorithm to carefully examine a number of ad-hoc DSS

queries in terms of their total costs, runtime outcomes, and

reduction in cost factor.

A careful investigation reveals some interesting findings. It

is noteworthy that when compared to the SBQO strategy,

both GBQO and EBQO display poor performance in

achieving optimal query execution plans. The development

of the SBQO approach, which substantially improves the

solution quality of GBQO and EBQO by margins of 4.61%

and 3.72%, respectively, effectively fills this gap.

Additionally, a novel twist is provided, including the idea of

entropy proposed by Havrda and Charvat into the stochastic

framework, to increase the effectiveness of stochastic query

optimizers. Empirical findings highlight the value of this

addition, which is supported by the improved performance

of the SBQO technique.

A significant element is the complex interaction between the

distributed database system's intrinsic replication feature

and the resulting "Total Costs" of DSS queries. Notably,

increasing the replication rate from 20% to 90%

significantly lowers "Total Costs" across several techniques,

respectively. A thorough statistical analysis further

highlights the strong association between the number of join

operations and the 'Total Costs' of DSS queries.

The implementation of targeted research initiatives aiming

at automating the transformation process is necessary for

further development in this field. This procedure involves

creating a query tree from a "SQL"-based query without

error as a prelude to starting the optimisation process. By

shortening the initial phases, this automation would

significantly improve the optimisation pipeline's

effectiveness and seamlessness. A careful analysis of

various selection strategies within the genetic approach

framework can be used to fine-tune the evolutionary

progression of the entropy-based stochastic DSS query

optimizer. By dissecting the sub tleties and dynamics of

various selection strategies, this analytical examination

hopes to improve the suggested model's ability to optimise.

An evaluation of the suggested approach in comparison to

previous nature-inspired evolutionary optimisation

strategies is necessary to show its uniqueness and

effectiveness. A thorough analysis of the advantages and

distinctive features of the entropy-based stochastic DSS

query optimizer can be carried out by placing the results in

the larger framework of evolutionary optimisation

techniques. Furthermore, a thorough investigation of the

complex interplay between data allocation and access

policies is necessary. For DSS query optimisation, this

dimension has significant ramifications. In order to fully

understand the complex repercussions of various data

allocation schemes and access policies, as well as their

resulting impact on optimisation outcomes, a systematic

analysis is essential.

Acknowledgements

The authors are thankful to the anonymous reviewers for

their valuable suggestions, which greatly assisted in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1117

improving the quality of the manuscript.

Author contributions

Sambit Kumar Mishra: Conceptualization, Methodology,

Software, Field study Anita Mohanty: Data curation,

Writing-Original draft preparation, Software, Validation.,

Field study, Visualization, Investigation, Writing-

Reviewing and Editing.

Conflicts of interest

The authors declare no conflicts of interest with the

publication of this article.

Reference

[1] Hevener AR, Yao SB. Query processing in distributed

database systems. IEEE Trans. Softw. Eng.

1979;5(3):177–87.

[2] Ceri S, Pelagatti G. Allocation of operations in

distributed database access. IEEE Trans. Comp.

1982;31(2):119–29.

[3] Chen Yan, Zhou Lin, Li Taoying, Yu Yinging. The

semi-join query optimization in distributed database

system. In: National Conference on Information

Technology and Computer Science. Atlantis Press;

2012. p. 606–9.

[4] Martin TP, Lam KH, Russel Judy I. An evaluation of

site selection algorithm for distributed query

processing. Comp. J. 1990;33(1):61–70.

[5] Apers Peter MG, Hevner Alan N, Yao Bing S.

Optimization algorithms for distributed queries. IEEE

Trans. Softw. Eng. 1983; SE-9.1:57–68.

[6] Ghaemi Reza, Fard Amin Milani, Tabatabaee Hamid,

Sadeghizadeh Mahdi. Evolutionary query

optimization for heterogeneous distributed database

systems. World Acad. Sci., Eng. Technol.2008;2:34–

40.

[7] Mor Jyoti, Kashyap Indu, Rathy RK. Analysis of query

optimization techniques in databases. Int. J. Comp.

Appl. 2012;47(15):5–9.

[8] Sevinc Ender, Cosar Ahmat. An evolutionary genetic

algorithm for optimization of distributed database

queries. Comp. J. 2011; 54:717–25.

[9] Kayvan Asghari, Ali Safari Mamaghani, Mohammad

Reza Meybodi, An evolutionary algorithm for query

optimization in database, in: Innovative Techniques in

Instruction, E-Learning, E-Assessment and Education,

2008, pp. 249–254.

[10] Chande Swati V, Sinha Madhvi. Genetic algorithm: a

versatile optimization tool. BVICAM’s Int. J. Inf.

Technol. 2008;1(1):7–12.

[11] Panicker Shina, Vijay Kumar TV. Distributed query

plan generation using multi-objective genetic

algorithms. World Scient. J.2014; 2014:1–17.

[12] Johann Christoph Fregtag, The Basic Principles of

Query Optimization in Relational Database

Management System, European Computer Industry

Research Centre Germany, Internal Report IR-KB-59,

1989, pp. 1–15.

[13] M. Tamer Ozsu, Valduries Patrick, Principles of

Distributed Database System, second ed., Pearson

Education (chap. 1–6).

[14] March, Rho ST. Allocating data and operations to

nodes in distributed database design. IEEE Trans.

Knowl. Data Eng. 1995; 7(2):305–17.

[15] Kumar TV, Singh V, Verma AK. Distributed query

processing plan generation using genetic algorithm.

Int. J. Comp. Theory Eng. 2011;3(1):38–45.

[16] Goldberg David E. Genetic Algorithm in Search,

Optimization & Learning. New Delhi: Pearson

Education; 1999 (chap. 1).

[17] Paulinas Mantas, Usˇinskas Andrius. A survey of

genetic algorithms applications for image

enhancement and segmentation. Inf. Technol. Control

2007;36(3):278–84.

[18] Carlos Alberto Gonzalez Pico, Roger L. Wainwright,

Dynamic scheduling of computer tasks using genetic

algorithms, in: Proceedings of the First IEEE

Conference on Evolutionary Computation IEEE

World Congress on Computational Intelligence,

Orlando, 1994, pp. 829–833.

[19] Omara Fatma A, Arafa Mona M. Genetic algorithm for

task scheduling problem. J. Paral. Distrib. Comput.

2010;70(1):13–22.

[20] Karegowda Asha Gowda, Manjunath AS, Jayaram

MA. Application of genetic algorithm optimized

neural network connection weights for medical

diagnosis of Pima Indians diabetes. Int. J. Soft

Comput. 2011;2(2):15–23.

[21] Hill Anthony M, Kang Sung-Mo. Genetic algorithm

based design optimization of CMOS VLSI circuits.

Lecture Notes in Computer Science 2005;866:545–55.

[22] Lienig J. A parallel genetic algorithm for performance-

driven VLSI routing. IEEE Trans. Evolution. Comput.

1997;1(1):29–39.

[23] Man KF, Tang KS, Kwong S. Genetic algorithms:

concept and applications. IEEE Trans. Indust.

Electron. 1996;43(5):519–34.

[24] Du Jun, Alhajj Reda, Barker Ken. Genetic Algorithm

based approach to database vertical partition. J. Intell.

Inf. Syst. 2006;26:167–83.

[25] Kapoor JN. Measures of Information and Their

Applications. Wiley Publishers; 1994.

[26] Zhou Rongxi, Cai Ru, Tong Guanqun. Applications of

entropy in finance: a review. Entropy

2013;15(11):4909–31.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1108–1118 | 1118

[27] Hien To, Kuorong Chiang, Cyrus Shahabi, Entropy-

based histogram for selectivity estimation, in: CIKM,

2013, pp. 19391948.

[28] Cornell Douglas W, Yu Philip S. On optimal site

assignment for relations in the distributed database

environment. IEEE Trans. Softw. Eng.

1989;15(8):1004–9.

[29] Pramanik Sakti, Vineyard David. Optimizing join

queries in distributed databases. IEEE Trans. Softw.

Eng. 1988;14(9): 1319–26.

[30] TPS-DS Benchmark Report, 2012

<www.tpc.org/tpcds/spec/tpcds_1.1.0.pdf> (accessed

on 25/04/2013).

[31] Sarjo, Kapila, Kumar Dinesh, Kanika. A genetic

algorithm with entropy based probabilistic

initialization and memory for automated rule mining.

Adv. Comp. Sci. Inf. Technol. Commun. Comp. Inf.

Sci. 2011;131:604–13.

[32] Drenick PE, Smith EJ. Stochastic query optimization

in distributed databases. ACM Trans. Database Syst.

1993;18(2): 262–88.

