

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1148

Efficient and Effective Architecture in Continual Learning Through

Various ResNets

Sachin Gaur1, Rahul Pandey2

Submitted: 25/01/2024 Revised: 03/03/2024 Accepted: 11/03/2024

Abstract: Continual learning stands as a crucial component in advancing artificial intelligence, yet it encounters a significant challenge

known as catastrophic forgetting. This phenomenon occurs when models lose previously acquired knowledge upon learning new tasks.

While some methods propose partial remedies, the impact of altering the model's architecture on this forgetting remains largely unexplored.

This study delves into Residual Networks (ResNets) to evaluate how modifications in depth, width, and connectivity influence the process

of continual learning. By introducing a simplified design tailored specifically for continual learning, this research seeks to compare its

efficiency against established ResNets. Through an in-depth exploration of the algorithm's configuration, the study aims to elucidate the

underlying rationale behind its design decisions. Furthermore, it evaluates the performance of the proposed model using a diverse set of

metrics, aiming to identify both strengths and areas for improvement. Ultimately, this research sheds light on how the architectural aspects

of a model impact its learning capabilities over time, with the ultimate goal of fostering the development of AI systems capable of

continuous learning without experiencing the detrimental effects of forgetting. Demonstrating accuracy levels ranging from 62.52% to

90.39% across various tasks, the proposed model showcases its effectiveness in real-world continual learning scenarios.

Keywords: Catastrophic forgetting, Continual learning, ESPN, Machine learning, ResNet

1. Introduction

In machine learning algorithms and human intelligence,

human intelligence can perform better in many tasks,

whereas most of the machine learning models are created

for one task, and by using the same models for multiple tasks,

their accuracy decreases significantly Silver et al.[1-2].

Continual learning or learning without forgetting aims to

build models that are capable of multitasking which are

never-ending sequences of tasks [3]. While in these models

that are capable of continual learning the main problem that

arises is catastrophic forgetting [4]in which when a model

tries to learn a new thing it significantly forgets the old

learnings from old tasks. Numerous research studies have

delved into the field of continuous learning, investigating

techniques such as parameter isolation and expansion-based

approaches. These methods primarily focus on algorithms

with a fixed architecture, aiming to enhance the adaptability

and long-term performance of artificial intelligence systems.

Parameter isolation techniques safeguard previously

acquired knowledge by isolating specific model parameters

while accommodating new information. Conversely,

expansion-based methods [5] seek to increase the model’s

capacity to assimilate new knowledge without disrupting

existing knowledge. Despite the diverse range of

approaches in continuous learning research, there remains a

need to explore dynamic architectures that seamlessly

evolve and adapt to changing tasks and environments. Such

advancements hold promise for addressing the challenges

posed by catastrophic forgetting, allowing AI systems to

continually learn and improve their performance over time.

There are various real-life use cases and decision-making

scenarios that support the advancement of continual

learning [6]. Most algorithmic approaches use the Resnet18

architecture model [7] because residual networks (ResNets)

redefine the layers by learning residual functions for the

input at each layer. Instead of directly learning the desired

transformation, ResNets focus on understanding the

differences (residuals) between the input and output. These

residual blocks incorporate skip connections, allowing the

network to learn identity mappings when necessary. The

Split CIFAR-100 and ImageNet [8-9] datasets are

commonly employed in research, and Split CIFAR-100 is

divided into 20 distinct, non-overlapping subsets. Each of

these subsets serves as a separate training or evaluation set,

allowing for more comprehensive analysis and

experimentation. Biological intelligence is still far superior

to ANN in multi-task learning. ANN models are created for

specific tasks only, but by increasing the domain of learning

tasks in ANN, we can efficiently use the resources and

flexibility comparable to human learning so that it can

perform in dynamic and unpredictable environments [10-

11]. Several alternative approaches, such as replay-based

methods and regularization techniques, leverage valuable

information from previously trained models. These methods

aim to mitigate issues like catastrophic forgetting when

learning new tasks. The proposed model, in contrast, builds

upon the ESPNET [12] algorithm, which represents an

1 B.T Kumaon Institute Of Technology Dwarahat, INDIA

ORCID ID : 0000-0002-7638-3875
2 B.T Kumaon Institute Of Technology Dwarahat, INDIA

ORCID ID : 0009-0002-5530-9729

* Corresponding Author Email: ersgaur1234@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1149

evolution beyond the earlier Packnet [13]. By incorporating

advancements from ESPNET, the proposed model enhances

its ability to handle continual learning scenarios effectively.

It has been found that continuous learning is similar to

learning in animals [14]. In response to the challenge of

unsupervised embedding learning, efficient similarity

measures between samples within a low-dimensional

embedding space [15] was proposed. This research's main

aim is to work on creating an architecture model that can

perform continual learning efficiently and effectively by

using the algorithm that is best suited for our architecture.

Our goal is to create an architecture that reduces

catastrophic forgetting without a decrease in the accuracy of

overall model performance. the research has tested the

proposed model against various other models and found that

the proposed model produces the best results among them.

To create such a model, we first need to understand the

important parameters that may affect the proposed model,

such as the width and depth of the model, and how they

affect the learning and retention rate.

2. Related Work

Various methods had been proposed to solve the problem of

catastrophic forgetting which can be categorized into three

groups regularization-based continual learning, which is

developed by a second-order Taylor approximation of the

loss function of individual tasks by Lopez-Paz et al.[16] and

Yin et al.[17]replay-based, which greatly affects the

performance of continual learning using experience replay

(ER) Buzzega et al. [18] and architecture, which shows how

the quadratic regularization technique plays an important

role in architecture to create a model suitable for continual

learning. James et al. [19]. Our main focus is to minimize

the problem of catastrophic forgetting with the help of the

architecture method using different sets of ResNets

networks. algorithmic work such as adding three fine-

grained classification tasks into a single ImageNet-trained

VGG-16 network and accomplishing accuracies near those

of individually trained networks for each task using the

Packnet algorithm Fernando et al. [20].

Super mask in superposition (SupSup) can provide better

results using gradient-based optimization to encounter an

unbent superposition of learned super masks, which

supports minimizing the resulting entropy Wortsman et al.

[21]. The method of continual learning uses memory-based

solutions such as rehearsal or pseudo-rehearsal. This

strategy involves storing prototype instances of past tasks in

episodic memory and replaying them during training to

prevent forgetting. Knowledge Distillation and Feature

Learning (ICARL) Rebuffi et al. [22] ICARL combines

knowledge distillation and feature learning by storing

examples closest to the feature mean of each class in fixed

memory and using distillation loss to mitigate forgetting.

Gradient Episodic Memory (GEM) and Average-GEM

(AGEM) Hou et al. [23] These methods employ an

inequality constraint via episodic memory to prevent

forgetting past tasks. Unified Classifier with a Cosine Linear

Layer Chaudhry et al. [24] and Wu et al. [25] proposes

learning a unified classifier using a cosine linear layer and

then progressively acquiring new knowledge. Sample-based

techniques utilize Pham et al. [26] samples to create an

additional validation set, enhancing model generalization.

Generative Models (Auto-encoder, VAE, GAN) (Bengio et

al., Kingma et al., Goodfellow et al.)[27, 28, 29] Generative

models are employed to replicate samples from past tasks.

By replaying generated data, these models prevent

forgetting (Wu et al., Shin et al., Ostapenko et al.) [30, 31,

32]. These methods collectively address both catastrophic

forgetting and retention, ensuring a more robust learning

process.

2.1. Algorithmic work

On the aspect of algorithms, various methods have been

proposed to reduce the problem of catastrophic forgetting.

Such as Apiece Synapse, which gathers task-appropriate

input over time and uses this report to rapidly store new

memories without ignoring old ones. This method

approaches the continual learning of classification tasks and

establishes that it reduces forgetting while preserving

computational efficiency Zenke et al.[33] Meta- techniques

of meta-learning and replay-based learning to optimize the

model in the aspects of transfer and interference Chaudhry

et al. [34] experience replay (MER) is a method that

combines the Even the tiniest memory or episodic memory

from the past increases the generalization of future tasks,

which increases the overall performance of the machine

learning model. Other algorithms help in adaptive learning,

in which learning rates are automatically adjusted and show

more yield in RBMs (Restricted Boltzmann Machines) Cho

et al. [35]. A task-based hard attention method has been

proposed that saves the information from the previous task

without affecting the learning of the current task Serra et al.

[36].

2.2. Architecture work

Various architectural methods are also proposed to solve the

problem of catastrophic forgetting, such as the expectation-

maximization (EM) method, which automatically selects the

appropriate transfer configuration and also optimizes the

network weights related to each task Lee et al. [37]. Network

quantization and pruning to learn binary masks that

piggyback on existing networks to deliver good

arrangements on a new task Mallya et al. [38]. Other

methods like this consist of two parts: neural structure

optimization and fine-tuning. By separating the structure

learning and the parameter estimation, this method can

perform better in many ways Li et al.[39]. By performing

iterative pruning and network retraining, we can pack

multiple tasks into a single network with the help of a packet

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1150

algorithm. Deep neural network architecture, which can

expand and adjust dynamically for lifelong learning, is a

great advancement in continual learning, but it is still less

accurate than other pre-trained models Yoon et al. [40].

3. Proposed Architectures

This paper will present a rigorous investigation of the

algorithm’s configuration and structure, performing an in-

depth exploration of the subtle details and complexities that

form the foundation of the proposed method. The paper will

focus on a thorough analysis of the various elements,

parameters, and decisions that have been deliberately

designed to enhance the efficiency and effectiveness of the

architecture. Moreover, it is crucial to not only explain the

technical aspects of the proposed structure but also reveal

the underlying principles and ideologies that have guided its

development. This comprehensive perspective will offer

insight into the extensive reasoning and considerations that

have influenced the creation of the paper's unique solution.

Furthermore, examining the diverse set of metrics that have

been selected for evaluating and comparing structure. These

metrics have been carefully chosen to provide a

multifaceted evaluation of our algorithm’s performance,

covering factors such as accuracy, precision, scalability, and

robustness. This paper's goal is to emphasize the thorough

and rigorous nature of our evaluation process through a

comprehensive analysis of these metrics. Finally, will

perform a deep-dive analysis of the results produced by our

algorithm. This analysis will go beyond mere numerical

values, probing into the identification of insights, trends,

and patterns within the data. This paper aims to interpret

these results in a way that not only showcases the strengths

of our structure but also identifies areas for potential

improvement and further optimization. Fig.1. illustrates the

operational framework outlined in this research. the

research uses the CIFAR100 dataset, which consists of

6,000 training images across 100 different classes. The

proposed method described in this study entails selecting 20

random classes to compose a single set, resulting in a total

of 20 distinct sets derived from the CIFAR100 dataset. By

incorporating weights from previous tasks, the proposed

architecture integrates them with the training of new tasks,

thereby harnessing the advantages of continual learning.

 Fig. 1. Working of Proposed Architecture

3.1. Setup

We evaluate our model on various metrics using the

CIFAR100 dataset. This study goal is to measure how our

model performs in terms of accuracy and hardware cost. the

research wants to show that the proposed model is both

efficient and effective.

3.2. Architecture Setup

The proposed architecture is the modification of

GemResnet18 in terms of width and depth and created

various versions of ResNet along with the algorithm of

ESPN. We name this networks as VResNet1, VResNet2,

VResNet3, VResNet4.

Width per group refers to the number of channels or feature

maps produced by each group of convolutional layers in a

neural network. In the context of ResNet and similar

architectures, the network is divided into groups, and each

group contains convolutional layers responsible for

extracting certain features from the input data. The width

per group specifies how many feature maps are generated

by each group of layers. For example, if a network has a

width per group of 20, it means that each group produces 20

feature maps or channels as output. The term "basic block

configuration" refers to how layers are organized within a

fundamental unit of a convolutional neural network, such as

ResNet. In this context, it specifies the number of

convolutional layers arranged within each block. For

instance, a configuration like (1, 4, 4, 1) implies that the

block comprises four convolutional layers, with fewer filters

in the first and last layers compared to those in between.

Similarly, configurations such as (2, 8, 8, 2) and (4, 1, 1, 4)

indicate variations in layer count and filter sizes within the

basic block. These arrangements influence the network's

ability to capture features at different levels of abstraction,

determining its complexity and capacity. VResNet1 has 20

widths per group and has basic blocks of (1,4,4,1).

VResNet2 has 80 widths per group and has basic blocks of

(2,8,8,2). VResNet3 has 80 widths per group and has basic

blocks of (2,1,1,2). VResNet4 has 80 widths per group and

has basic blocks of (4,1,1,4). GemResNet18 [29] has 20

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1151

widths per group and has a basic block of (2, 2, 2).

In Fig.2. the flowchart outlines the process of modifying the

GemResNet18 architecture and creating variants like

VResNet1-4 with adjusted width and depth. It then details

the steps for training using the ESPN algorithm, including

weight initialization, pre-training, pruning, and fine-tuning.

Hyperparameters such as dataset, batch size, optimizer, and

learning rate are specified, along with pruning iterations

and FLOPs values. Evaluation metrics like average

accuracy, learning accuracy, average loss, average

forgetting, and FLOP count are also defined. The

Flowchart starts with modifying the architecture, moves on

to setting up the algorithm, defining hyperparameters, and

finally

Fig.2.Flowchart of architecture

outlining evaluation metrics. Each step is clearly defined

and connected, guiding the process from architecture

modification to evaluating model performance.

3.3. Algorithmic Setups

The proposed models are trained using the ESPN algorithm.

This algorithm is particularly lauded for its ability to curtail

the number of floating-point operations (FLOPs), thereby

resulting in substantial time savings throughout the training

process. At the outset, the subnetwork is initialized with

zero tasks, indicating that all weights are set to zero as a

starting point. It adopts a task sequence T along with a

model weight w, with tasks incrementally added in sequence.

The primary objective is to pinpoint the most suitable sub-

network that achieves the dual goals of FLOP reduction and

sparsity enhancement without compromising the overall

performance of the model. To achieve this objective, the

study leverages a combination of joint channel and weight

pruning methodologies. This strategic approach not only

enhances the efficiency of the models but also ensures their

effectiveness across a diverse array of tasks and scenarios.

By integrating these pruning techniques into the training

process, the study aims to advance the capabilities of

continuous learning frameworks and pave the way for

further future innovations. The provided algorithm offers a

structured approach for continual learning tasks. It begins

by establishing task masks, denoted as M, to encapsulate the

parameters associated with each task in the learning

sequence. Additionally, a set of new weights, m_new, is

initialized, typically with a predefined value. Subsequently,

the algorithm iterates through the task sequence, performing

the following steps for each task: During the pre-training

phase, the model parameters are refined through iterative

updates to the task mask M. These updates involve

subtracting a fraction of the gradient of the loss function for

the model parameters, computed using the new weight set

m_new. At the onset of each task, a sub-network mask, m_t,

is initialized, often mirroring the weights of m_new.

Following this, the algorithm enters a loop for gradual

channel and weight pruning, persisting until both FLOPs

and weight sparsity constraints are met. Within this loop, the

task mask M undergoes updates via gradual channel and

weight pruning techniques. This entails subtracting a

portion of the gradient of the loss function from the model

parameters, computed using the intersection of the sub-

network mask m_t and the new weight set m_new. Once the

pruning constraints are satisfied, the algorithm proceeds to

fine-tune. Here, further updates to the task mask M are made

by subtracting a fraction of the gradient of the loss function

for the model parameters, computed using the intersection

of the sub-network mask m_t and the new weight set m_new.

Upon completing fine-tuning for each task, the task mask

set M is refreshed to include the current sub-network mask

m_t additionally, the new weight set m_new is adjusted by

removing parameters corresponding to the current sub-

network mask m_t.

Algorithm. Efficient Sparse PackNet (ESPN-1)

Require variables. Task Sequence = T, model weight=

M, step_size = N, pre-training, pruning, fine-tuning

duration; weight allocation parameter = @.

1. Set of task mask M

2. Set of new weight mnew=[p]

3. for t in T do:

 while pre-training do:

M = M – N *(∇LSt (θ) mnew)

End while

4. Initialize sub-network mask m_t=[p]

5. while FlOPs(1) & weight_sparsity(@) constraints not

satisfied do:

 Gradual channel & weight pruning: update m

 M = M – N *(∇LSt (θ) (m_t ∩ m_new))

 end while

6. while fine_tuning do:

 M = M – N*(∇LSt (θ) (mt ∩ m_new))

 end while

7. M=M ∪ {t: m_t}

8. m_new = m_new \ m_t

9. end for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1152

3.4. Hyperparameters

The proposed architecture trains different models on

hyperparameters and uses a dataset of Ciffar100, where the

proposed architecture uses the batch size 128 and Adam

optimizer with (β1, β2)=(0, 0.999) and a learning rate of

0.01 with 20 number epochs. The pruning iteration is a

matrix of [60, 150] with a Flops value of 0.2. With the

vanilla L2 loss regularization, we minimize the error in our

continual learning task [41].

3.5. Metrics

This research chose different types of metrics to prove the

accuracy of the experiments. This study defines the metrics

on two bases: (1) how well the proposed architecture

performs on learning, and (2) how well the proposed

architecture performs based on efficiency. For the former,

this research records the average accuracy, learning

accuracy, joint/multi-task accuracy, and also the average

forgetting of the model. We also take the average FLOPs

count.

Average Accuracy (0–100) is a metric that shows how well

a model or system performs on a set of X tasks based on

their validation accuracies. The higher the average accuracy,

the better the model or system. We can define some

variables as follows: X: The total number of tasks. a(i). The

validation accuracy of the i’th task. The formula can be

written as

𝑄 =
1

𝑋
⋅ ∑ 𝑎(𝑖)𝑋

i=0 (1)

Q is the “average validation accuracy.” It is the average of

the validation accuracies of all the tasks in the set. 1/X: This

term is used to get the average value. It divides the total sum

of the validation accuracies by the number of tasks, X. Σ(i=0

to X): This is a sum (sigma) symbol that tells us to add up

the following expression for all values of i from 0 to X. In

other words, we are adding up the validation accuracies of

all tasks, from the first one (i = 0) to the last one (i=X). a(i):

This is the validation accuracy of the i’th task. It shows how

well the model or system does on each task. To sum up, the

formula calculates the average validation accuracy of a

model or system across all X tasks by adding up the

validation accuracies of each task and then dividing by the

number of tasks, X. The result, Q, can be used as a measure

of the model’s average performance on the set of tasks, with

higher values indicating better average accuracy. This can

be a useful metric for evaluating the overall effectiveness of

a model across multiple tasks.

Learning accuracy (0–100) is a metric that shows how well

a learner or system does on X tasks. It also reflects the

plasticity or adaptability of the learner or system. The higher

the learning accuracy, the better the learner or system. It is

calculated as

𝐿𝑄 =
1

𝑋
∗ ∑ 𝑋

i=0 𝑎(i,i) (2)

LQ, or “learner’s quality,” is a score or measure. It evaluates

the overall quality or performance of a learner or system

involved in X tasks; 1 / X is the term used to get the average

value. It divides the total sum of the accuracies by the

number of tasks, X. Σ(i=0 to X) is a sum (sigma) symbol

that tells us to add up the following expression for all values

of i from 0 to X. In other words, we are adding up the

accuracies of all tasks, from the first one (i = 0) to the last

one (i= X), where a(i, i) is the accuracy of the i’th task. It

shows how well each task is done. The formula calculates

the average accuracy or quality of a learner or system across

all X tasks by adding up the accuracies of each task and then

dividing by the number of tasks, X. The result, LQ, can be

used as a measure of how well the learner or system

performs on a set of tasks, with higher values indicating

better performance.

L2regularization=λ ∗ (|𝑤|)2 (3)

Average Loss (0 to 100): This metric shows how much error

or deviation a model or system has on a set of tasks. The

lower the loss function, the better the model or system. We

are using l2 regularization to reduce the error of the model.

Where λ (lambda) is the regularization parameter,

controlling the strength of regularization and w is the vector

of model weights.||w||^2 represents the squared L2 norm of

the weight vector.

Average Forgetting (-100 to 100) is metric shows how much

a model or system forgets its previous learning while

learning new tasks. (Loss on Task i: Best Previous Loss) N

represents the total number of tasks. Loss on Task i (L_i) is

how much error or deviation the model or system has on the

ith task. The Σ from i = 1 to N indicates that we need to add

up all tasks. The formula is defined as

𝐴𝐹 = (1 𝑁⁄) ∗ ∑ 𝑁
i=1 (𝐿𝑖 − BestPreviousLoss) (4)

Best Previous Loss is the lowest error or deviation observed

on any of the previous tasks from task 1 to task i-1. This

formula calculates the average forgetting by finding how

much worse (higher loss) the model or system does on each

task compared to its best performance (lowest loss) on any

earlier task. The result shows how much forgetting occurs

on average when learning new tasks.

3.6. Result and Analysis

The proposed architecture results from the average accuracy

of different models with 20 random tasks from the

CIFAR100 dataset. CIFAR-100 is a dataset of 60,000

colored images of size 32x32, each belonging to one of 100

fine-grained classes, such as ‘apple’,

‘Bee’, ‘rose’, ‘castle’, and so on. These classes are also

organized into 20 coarse-grained superclasses, creating a

hierarchical structure for the dataset. For instance, the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1153

superclass ‘fish’ includes the classes ‘aquarium fish’,

‘whale', 'shark’, and ‘ray’. CIFAR-100 is a difficult dataset

for image classification tasks, especially for models that aim

to identify a wide range of objects in natural scenes. This

study researched how well the architecture performs on

different tasks.

Table 1. Accuracy measures of all architecture compared

to different tasks

Table 1. Provides information about the number of tasks and

the corresponding accuracy scores for different versions of

the ResNet model, namely VResNet1, VResNet2,

VResNet3, and VResNet4. The "Number of Tasks" column

represents the random tasks that are taken from the dataset

of CIFAR100. In the subsequent columns, we have the

accuracy scores for each version of the ResNet model. For

instance, vResNet1 achieved a 72% accuracy score for task

7, VResNet2 81.99% score for task 9, and so on. These

accuracy scores indicate how well each version of the

ResNet model performed on the given tasks. The number of

tasks

Fig.3.Accuracy of VResNet1

could vary, and these accuracy scores provide valuable

insights into the models' performance, helping us

understand which version of ResNet may be more suitable

for the tasks at hand.

In Fig.3. The graph depicts the relationship between the

number of tasks (x-axis) and the accuracy of the vResNet1

model (y-axis).

The x-axis, labelled as "Task Number to be evaluated,"

represents the sequential order of tasks, starting from 0 and

going up to 19. Each point on the x-axis corresponds to a

specific task. The y-axis, labelled as "Accuracy," represents

the accuracy scores achieved by the VResNet1 model for

each task. The accuracy values are represented as

percentages. At the beginning, for task 0, the accuracy is

around 45.4%.The accuracy generally increases as we move

along the x-axis, reaching a peak of approximately 74.2%

around task 3.

There are some fluctuations in accuracy scores as we

progress through the tasks, but an overall increasing trend is

visible. Towards the end, the accuracy stabilizes at a level

around 68-69%. This graph provides a clear visual

representation of how the accuracy of the VResNet1 model

changes as it is evaluated on an increasing number of tasks.

It is evident that, in general, as more tasks are evaluated, the

model's accuracy tends to improve, although there may be

fluctuations along the way.

Fig.4.Accuracy of VResNet2

In Fig.4. The graph illustrates the relationship between the

Task

Numb

er

VResnet

1

Accurac

y

VResnet

2

Accurac

y

VResnet

3

Accuracy

VResnet4

Accuracy

1 45.4 57.6 59.4 57.4

2 68.2 73.8 72.8 71.2

3 66.0 72.0 73.4 73.6

4 74.1 76.4 79.4 70

5 70.6 72.4 81.6 83

6 67.6 82.6 83.2 85.6

7 66.2 67.4 72.8 78.0

8 72.0 70.4 80.6 60.2

9 68.4 79.4 72.4 71.2

10 59 82.0 85.0 82.2

11 66.8 69.4 76.0 79.6

12 71.8 69.0 78.2 65.8

13 60.6 71.0 41.2 77.8

14 59.2 72.0 68.4 70.0

15 39.2 50.2 44.8 39.6

16 60.8 54.6 58.8 63.2

17 57.4 60.0 57.6 49.0

18 59.4 66.0 61.8 63.4

19 48.6 42.2 47.2 79.0

20 69.0 90.4 77.0 80.8

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1154

number of tasks (x-axis) and the accuracy of the VResNet2

model (y-axis). The x-axis, labeled as "Task Number to be

evaluated," represents the sequence of tasks from 0 to 19,

indicating each task's order in evaluation. The y-axis,

labeled as "Accuracy," presents the accuracy scores attained

by the VResNet2 model for

Each corresponding task, represented as percentages.

Initially, for task 0, the accuracy stands at around 57.6%.

The accuracy consistently improves as we progress through

the tasks, reaching a peak of roughly 90.4% around task 19.

The VResNet2 model displays substantial accuracy gains

during the evaluation of tasks. While there might be minor

fluctuations along the way, the general trend shows a

notable increase in accuracy. This graph provides a visual

representation of how the accuracy of the VResNet2 model

evolves as it is evaluated across an increasing number of

tasks.

In Fig.5. The graph depicts the relationship between the

number of tasks (x-axis) and the accuracy of the VResNet3

model (y-axis). The x-axis, labeled as "Task Number to be

Evaluated," represents the sequence of tasks from 0 to 19,

indicating the order in which each task is evaluated. The y-

axis, labeled as "Accuracy," shows the accuracy scores

achieved by the VResNet3 model for each respective task,

represented as percentages. At the outset, for task 0, the

accuracy is approximately 59.4%.

Fig.5.Accuracy of VResNet3

The accuracy shows a consistent upward trend as the

number of evaluated tasks increases, with notable gains. The

model's performance steadily improves, reaching a peak of

about 85.0% around task 9. While there may be minor

fluctuations, the overall trend suggests that the VResNet3

model becomes more accurate as it is evaluated on

additional tasks.

This graph visually represents how the accuracy of the

vResNet3 model evolves as it is assessed across an

increasing number of tasks.

Fig.6.Accuracy of VResNet4

In Fig.6. the graph illustrates the relationship between the

number of tasks (x-axis) and the accuracy of the vResNet4

model (y-axis). The x-axis, labelled as "Task Number to be

Evaluated," represents the order of tasks from 0 to 19,

indicating the sequence of evaluation. The y-axis, labelled

as "Accuracy," represents the accuracy scores achieved by

the vResNet4 model for each respective task, presented as

percentages. Initially, for task 0, the accuracy is

approximately 57.4%.The accuracy exhibits fluctuations as

the model is evaluated across tasks, with both increases and

decreases. Notable peaks in accuracy are observed at

different points, with the highest accuracy of around 85.6%

occurring around task 5. The model's performance shows

variability as it is evaluated on different tasks.

This graph visually illustrates the accuracy of the VResNet4

model changes as it is assessed across an increasing number

of tasks. It suggests that the model's accuracy can vary

considerably across tasks, with some tasks generating

significantly higher accuracy than others.

Fig.7.VResNet1 Loss over Task Numbers

In Fig.7. The graph represents the relationship between the

number of tasks (x-axis) and the L2 loss function output for

the VResNet1 model (y-axis). The x-axis, labelled as "Task

Number to be Evaluated," indicates the sequence of tasks

being evaluated, ranging from 0 to 19.The y-axis, labeled as

"L2 Loss Function Output," reflects the values of the L2 loss

function, which is a measure of the error or discrepancy

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1155

between the model's predictions and the actual target values.

Lower values on the y-axis indicate a better fit of the model

to the data. At the beginning, for task 0, the L2 loss is

approximately 0.4413.The L2 loss generally increases as

more tasks are evaluated, indicating a rise in the discrepancy

between predictions and actual values. The loss function

experiences fluctuations as it is evaluated on different tasks.

Towards the end, there is a tendency for the L2 loss to

stabilize, with values around 0.3743 to 0.4752.

Fig.8.VResNet2 Loss over Task Numbers

It indicates how well the model fits the data and provides

insights into the model's performance in minimizing

prediction errors for different tasks.

In Fig.8. The graph illustrates the relationship between the

number of tasks (x-axis) and the accuracy of the VResNet4

model (y-axis). The x-axis, labeled as "Task Number to be

Evaluated," represents the order of tasks from 0 to 19,

indicating the sequence of evaluation. The y-axis, labeled as

"Accuracy," represents the accuracy scores achieved by the

VResNet4 model for each respective task, presented as

percentages.

Initially, for task 0, the accuracy is approximately 57.4%.

The accuracy exhibits fluctuations as the model is evaluated

across tasks, with both increases and decreases. Notable

peaks in accuracy are observed at different points, with the

highest accuracy of around 85.6% occurring around task 5.

The model's performance shows variability as it is evaluated

on different tasks. This graph visually represents how the

accuracy of the vResNet3 model evolves as it is assessed

across an increasing number of tasks. It demonstrates that

the model becomes increasingly effective in handling

diverse tasks, with accuracy improving as more tasks are

evaluated.

Fig.9.VResNet3 Loss over Task Numbers

In Fig.9. The graph depicts the relationship between the

number of tasks (x-axis) and the loss values for the

VResNet3 model (y-axis). The x-axis, labelled as "Task

Number to be Evaluated," represents the order in which

tasks are evaluated, ranging from 0 to 19.The y-axis,

labelled as "Loss," indicates the values of the loss function.

In this context, the loss values represent the error or

discrepancy between the model's predictions and the actual

target values. Higher values on the y-axis suggest a greater

divergence between the model's predictions and the actual

data, signifying a less accurate model. At the start, for task

0, the loss value is around 0.5277. As the model is evaluated

on different tasks, the loss values generally decrease, which

implies improved model performance and a better fit to the

data. The loss values continue to decrease as more tasks are

evaluated, indicating the model's enhanced accuracy. This

graph visually demonstrates how the loss, which reflects

model performance, changes as the VResNet3 model is

assessed across an increasing number of tasks. It shows the

model's ability to minimize prediction errors and its overall

performance in handling various tasks, with lower loss

values indicating better accuracy.

In Fig.10. The graph illustrates the relationship between the

number of tasks (x-axis) and the accuracy of the VResNet4

model (y-axis). The x-axis, labeled "Task Number to be

Evaluated," indicates the order in which tasks are evaluated,

ranging from 0 to 19. The y-axis, labeled "accuracy,"

represents the accuracy scores achieved by the VResNet4

model for each respective task, Presented as percentages.

Initially, for task 0, the accuracy is approximately 57.4%.

The accuracy experiences fluctuations as the model is

evaluated on different tasks, with both increases and

decreases. There are notable peaks in accuracy at different

points, with the highest accuracy of around 85.6% occurring

around task 5. The model's performance shows variability

as it is evaluated for different tasks. This graph visually

depicts how the accuracy of the vResNet4 model changes as

it is assessed across an increasing number of tasks. It

suggests that the model's accuracy can vary considerably

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1156

across tasks, with some tasks yielding significantly higher

accuracy than others.

Fig.10.VResNet4 Loss over Task Numbers

Table 2. Architectures and their average loss tasks.

Table 2. From the above result we can easily see that

VResNet4 contain the highest average accuracy among all

other models and VResNet3 also has as good accuracy as

compared to VResNet4 they both have the same number of

weights but a different number of layers. From our result,

we can say that shape and weight matter most for less

catastrophic forgetting architected. VResNet2 have the

largest number of layers among all the architecture but still

produces less accuracy due to high catastrophic forgetting

hence we can conclude that increasing the weight of

architecture will increase accuracy and increasing the layers

of architecture will have less effect on the accuracy for

multiple tasks.

 4. Architecture matter

Important elements of the proposed architecture’s that are

important for an efficient method of continuous learning are

the pooling layer and global pooling layer, the width and

depth of the architecture, and the effect of shape.

4.1. Effect of Shape

According to the result of this research experiment, this

study found out that the U shape network performs well as

compared to other models in terms of continual learning.

We can see that Among GemResNet18 and VResNet3 the

shape of VResNet3 is U with [2,1,1,2] stacks of layers this

type of architecture has more number width per layer and

more number of layers in the starting and end of the model.

Which produces a significant increase of 4% in overall

accuracy. Whereas in VResNet1 with [1, 4, 4, 1] stack of

layers, the accuracy decreases significantly.

4.2. Role of Width and Depth

The work by Zhou et al. [42] suggests a simple change in

the global average pooling layer and a class activation

mapping technique that enable the network to both identify

the image and locate the regions that belong to each class in

one forward pass. The work demonstrates that the proposed

method attains the best results on weakly supervised object

localization on the ImageNet Large Scale Visual

Recognition Challenge ILSVRC benchmark. It has been

shown that with an increase in the width of architecture, the

accuracy increases with the increase of related tasks, and

according to the result of our experiment, as the width of

architecture increases, the architecture performs much better

as compared to an increase in depth. This study compares

GemResNet18 and VResNet3 because same number of

parameters. Here, VResNet3 has fewer layers or depth with

a width per layer of 80, whereas GemResNet18 has a width

per layer of 20 with more layers, and still, VResNet3 can

produce a better average accuracy compared to

GemRestNet18.

4.3. Polling layers

Lin et al. [43] proposed an elements in convolutional neural

networks (CNNs) that help in decreasing the spatial

dimensions of feature maps while keeping the relevant

information. These layers are usually applied after

convolutional layers to gradually reduce the spatial size of

the representation, which aids in avoiding overfitting and

also lowers computational complexity. There are different

kinds of pooling layers, but the two most common ones are

max pooling and average pooling. In max pooling, for each

region of the input feature map, the output is the maximum

value. This operation effectively keeps the most prominent

features within each region, helping to maintain important

information while decreasing spatial dimensions. In contrast

to max pooling, average pooling computes the mean value

within each region of the input feature map. This operation

estimates the average activation of features, providing a

smoother downsampling than max pooling. Pooling layers

assist in achieving translation invariance, meaning the

network is less affected by the exact location of features in

the input. Moreover, they reduce the number of parameters

and computational complexity in the network, which can

prevent overfitting and make the model more

computationally efficient. According to the result of the

research experiment, the study compared the accuracy of

architecture with 20 epochs and found that using max-

pooling in architecture produces a good result as compared

to the average pooling layer. From the observation of the

results of our experiments, there is a 2-3% increase in the

Architecture name Average Loss

VResNet1 1.5045

VResNet2 1.56

VResNet3 1.286

VResNet4 1.5045

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1157

average accuracy of the result by using the max pooling

layer. It can be evaluated in Table 3.

Table 3. Accuracy on Average pooling layer vs Max

pooling layer.

Architec-

ture

Accu-

racy on

Average

pooling

layer

Accu-

racy on

Max

pooling

layer

VResNet1 62.52% 64.20%

VResNet2 68.90% 69.60%

VResNet3 68.58% 70.20%

VResNet4 69.78% 71.68%

4.4. Global Pooling Layers

Sermanet et al. [44] proposed a technique that reduces the

size of feature maps in convolutional neural networks

(CNNs) that are used for tasks such as image classification.

It preserves the essential information in the feature maps

while decreasing the spatial dimensions. In a CNN model,

an input image goes through several convolutional and

pooling layers, which produce feature maps that capture the

spatial information of various features detected by the

model. However, before making predictions, the feature

maps need to be transformed into a fixed-length vector that

can be inputted into a fully connected layer for classification

or regression. This is the role of the global average pooling

layer. It differs from traditional pooling layers like max

pooling, which choose the maximum value in each region

by computing the average of all values in each feature map.

It effectively turns each feature map into a single value, thus

reducing the spatial dimensions to 1x1. The global average

pooling layer is simple to implement. For each feature map,

the layer calculates the mean of all values in that map. This

results in a vector where each element corresponds to the

average activation of a specific feature over the entire spatial

extent of the feature map. One of the main benefits of global

average pooling is that it provides translation invariance,

meaning the network is less affected by the exact location

of features in the input image. Moreover, global average

pooling reduces the number of parameters in the network,

which can help avoid overfitting, especially in situations

with limited training data. The study tested it with different

proposed models and found that the global pooling layer

causes more forgetting in between layers which henceforth

decreases the accuracy of the model, which can have

evaluated from Table 4.

Table 4. Effect of Global pooling layer vs without Global

pooling layer.

Architectu

re

Accuracy with

GPL

Accuracy without

GPL

VResNet1 59.78% 62.52%

VResNet2 64.57% 68.9%

VResNet3 65.37% 68.58%

VResNet4 67.67% 69.78%

5. Comparative analysis

The comparative analysis of all the proposed architecture

concerning their accuracy and losses with the help of

different matrices such as average forgetting score, average

accuracy and parameters is given in table.5. This evaluation

incorporates diverse metrics, offering a comprehensive

understanding of the proposed architecture.

Table 5. Is summary of how different neural network

architectures perform on various image classification tasks.

The architecture column shows the name of the

architectures, which indicates the type, depth, and width of

the model. Zagoruyko et al. [45] proposed a model which

represents a wide residual network with a depth of 10 and a

widening factor of 2, is a notable convolutional neural

network design renowned for its effectiveness in image

classification tasks. This architecture extends the

foundational ideas from residual networks (ResNets). The

central concept behind WRN involves enhancing model

capacity by widening the network while maintaining a

relatively shallow depth, thus mitigating overfitting

concerns and improving overall generalization performance.

WRN-10-10, denoting a wide residual network with a depth

of 10 and a widening factor of 10, stands out as a

convolutional neural network design celebrated for its

prowess in handling image classification tasks. The core

principle underlying WRN-10-10 involves augmenting the

model’s capacity by broadening the network while

maintaining a relatively shallow depth, thereby addressing

concerns related to overfitting. He et al. proposed the

ResNet-34, ResNet-50, and ResNet-101 vary in their depth,

comprising 34, 50, and 101 layers, respectively. The

numerical values in their names correspond to the total

count of convolutional layers within the architecture. These

ResNet variants employ residual blocks, which are pivotal

for training extremely deep neural networks by mitigating

the issue of vanishing gradients. Within a ResNet, each

residual block consists of multiple convolutional layers,

followed by batch normalization and ReLU given by Nair et

al. [46] activation functions. Notably, these blocks

incorporate shortcut connections, also known as skip

connections, allowing the gradient to propagate more

smoothly during training. This mechanism effectively

tackles the challenge of vanishing gradients and facilitates

the training of deeper networks. ResNet-34 exhibits a

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1158

simpler structure compared to ResNet-50 and ResNet-101

due to its fewer layers. On the other hand, ResNet-50 and

ResNet-101, with their deeper architectures, possess the

capability to capture intricate features from input data.

However, these deeper variants demand more

computational resources for both training and inference

tasks. For instance, GemResNet-18 means a Generalized-

Memory ResNet model with 18 layers, and WRN-10-10

means a Wide ResNet model with 10 layers and a width

factor of 10. The average forgetting score is a measure of

how much the model’s performance on a previous task

deteriorates after learning a new task. A lower forgetting

score means that the model is more capable of preserving its

knowledge from previous tasks. For instance, VResNet4 has

the lowest forgetting score of 11, which means that on

average, its accuracy on a previous task reduces by 11%

after learning all the tasks. The Average Accuracy column

shows the average accuracy of each architecture, which is

the percentage of correctly classified images across all the

tasks.

Table 5. Effect of parameters on forgetting and accuracy

Previous

Presented

Method

Architec-

ture

Av-

er-

age

For-

get-

ting

score

Av-

erage

Ac-

cu-

racy

Parame-

ters/1000,000

Chow et

al.

GemRes-

Net-18
15 64.7 10.9

 WRN-10-

2
33 47.2 0.3

 WRN-10-

10
28 53.8 7.7

Zagoruyko

et al.

WRN-16-

2
39 41.3 0.7

 WRN-16-

10
34 49.9 17.5

 WRN-28-

2
37 44.2 6

 WRN-28-

10
33 47.1 36.6

 ResNet-34 54 47.3 21.5

He et al. ResNet-50 55 57.2 23.8

 ResNet-

101
54 58.1 42.7

 VResNet1 18 62.52 12.9

Proposed

Architec-

ture

VResNet2 14 68.9 43.1

 VResNet3 13 68.58 17.3

 VResNet4 11 69.78 32.99

A higher accuracy means that the model is more accurate

for the given tasks. VResNet4 has the highest accuracy of

69.78%, which means that it correctly classifies about 70%

of the images on average. Parameters/1000,000 is a column

that shows the number of parameters in each architecture

divided by one million, which is an indicator of the model’s

size and complexity. A higher number of parameters means

that the model has more weights and biases to train, which

may increase its expressive power but also its computational

cost and risk of overfitting. For instance, ResNet-101 has

the highest number of parameters at 42.7 million, which

means that it is a very large and complex model. The study

shows that VResNet4 is the best-performing architecture

among the ones listed, as it has the lowest forgetting score,

the highest accuracy, and a moderate number of parameters.

However, this does not mean that VResNet4 is always the

best choice for any image classification task, as different

tasks have different requirements and trade-offs. For

example, if we want to save memory and computational

resources, we may prefer a smaller architecture like WRN-

10-2, which has only 0.3 million parameters.

In Fig. 11. From the graph, we have analyze that VResnet1

has a low accuracy of about 45% on the first task, but it

improves gradually as it learns from more tasks. It shows a

positive trend in performance and attains an accuracy of

around 72% by task7.

However, its performance becomes unstable and sometimes

drops after task 7. The model has significant variations in

performance, especially after task 12.VResNet2 has a high

accuracy of about 57% on the first task and performs

consistently better than VResNet1. It achieves an accuracy

of around 82% by task 5. VResNet2 maintains its high

performance and has fewer variations than

VResnet1.VResNet3 has a similar accuracy to VResNet2 of

about 59% on the first task, and its performance is

comparable to VResNet2 in the early tasks. It reaches an

accuracy of around 83% by task 5. However, like VResnet1,

it also has unstable performance after task 10. VResNet4 has

an accuracy of about 57% on the first task and keeps a high

and stable performance throughout the tasks. It attains an

accuracy of around 80% by task 6 and maintains a relatively

constant accuracy in later tasks. VResNet4 is the most stable

model among the four. In a continual learning scenario,

where models learn from multiple tasks sequentially,

maintaining stability and preventing catastrophic forgetting

are important. VResNet4 shows better stability, while

VResNet2 also performs well. VResnet1 and VResNet3

may require techniques to reduce performance variations

and forgetting of previous tasks. It’s important to consider

the characteristics of these models when choosing the

appropriate model for a specific application in a continual

learning setting. Additionally, techniques such as lifelong

learning, knowledge distillation, and architectural

modifications can be explored to improve the performance

and stability of these models.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1159

Fig. 12 shows the comparative analysis of different models

on continuous learning tasks. VResnet1 has a relatively

high initial loss on the first task, showing that the model’s

performance is not

Optimal at the beginning. The model shows improvement as

it learns from more tasks and reduces its losses gradually. It

reaches a relatively low and stable loss by task 8, showing

that the model has learned effectively from the tasks. There

are some variations in loss after task 8, but they do not

indicate a significant increase in forgetting. VResNet2 has a

lower initial loss on the first task than VResNet1, showing

better initialization. The model reduces its loss consistently

with each new task and shows a downward trend, indicating

continuous learning and improvement. After task 10, the

loss keeps decreasing, showing that the model learns

effectively from new tasks. VResNet2 has minimal loss

variations, showing that it retains knowledge from previous

tasks well. VResNet3 has a relatively high initial loss on the

first task, similar to VResNet1, showing that the initial

performance is suboptimal. The model reduces its loss

gradually and achieves a lower loss by task 5, showing

improved task-specific performance. However, from task 10

onwards, there is a significant increase in the loss,

Fig.11. Accuracy of all architecture over Task Numbers

Fig.12. Loss of all architecture over Task Numbers

Showing potential catastrophic forgetting of previous tasks.

The variation in loss after task 10 shows that the model has

difficulty retaining knowledge from earlier tasks. VResNet4

starts with a moderately low initial loss on the first task,

showing a good starting point. The model keeps a

consistently low loss throughout the tasks, showing its

ability to learn from new tasks without significant forgetting.

VResNet4 is relatively stable and does not show significant

variations in loss, showing good knowledge retention.

VResNet4 shows superior performance among the models,

with a consistently low loss throughout tasks, showing

strong continual learning capabilities.

VResNet2 also shows good performance, with a gradually

decreasing loss and minimal fluctuations, showing effective

knowledge retention. VResNet1, although showing

improvement over tasks, has some fluctuations in loss,

showing occasional forgetting, but it stabilizes at a

reasonably low loss. VResNet3 starts with high loss and

shows significant forgetting after task 10, with noticeable

fluctuations in loss. In continuous learning scenarios, it is

important to consider models that can effectively manage

knowledge retention and minimize catastrophic forgetting.

VResNet4 and VResNet2 show promising characteristics in

this regard. Further research and techniques can be explored

to address the challenges faced by VResNet1 and VResNet3,

such as regularization methods and architectural

modifications to mitigate forgetting and improve stability in

learning from sequential tasks

6. Conclusion

This research explores the impact of different architectural

attributes on continual learning, including shape, size, and

parameters. Additionally, it proposes several variants of

ResNet, a widely used model in computer vision. Our study

reveals that the architecture's shape, width, depth, and

utilization of max-pooling significantly influence its

performance and susceptibility to forgetting in continual

learning scenarios. Notably, we observe that enhancing the

width of the architecture and employing appropriate shapes

with a balanced depth-to-width ratio ratio leads to improved

outcomes with reduced forgetting. Moreover, our findings

indicate that augmenting the architecture's depth does not

markedly alter its loss value across diverse tasks. This study

sheds light on the intricate relationship between

architectural design and continual learning performance,

providing insights for optimizing model configurations to

mitigate forgetting and enhance overall performance in AI

systems. This study has some limitations that can be

addressed in future research. First, the research only used

one dataset and one type of model for our experiments.

Extending the research to other datasets and models, such as

transformers, would be interesting, which have shown

promising results in various domains. Second, we used fixed

architectures for each task without adapting them to the

task-specific requirements.

Conflicts of interest

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1160

The authors declare no conflicts of interest.

References

[1] Yin, Q.Y., Yang, J., Huang, K.Q., et al., "AI in

Human-computer Gaming: Techniques, Challenges

and Opportunities," Mach. Intell. Res., vol. 20, pp.

299–317, 2023. [Online]. Available:

https://doi.org/10.1007/s11633-022-1384-6

[2] O. Vinyals et al., “Grandmaster level in Starcraft II

using multi-agent reinforcement learning,” Nature, vol.

575, no. 7782, pp. 350–354, 2019. [Online]. Available:

https://doi.org/10.1038/s41586-019-1724-z

[3] S. Thrun, “Lifelong learning algorithms,” in Learning

to Learn, pp. 181–209, Springer, 1998.

[4] M. McCloskey and N. J. Cohen, “Catastrophic

interference in connectionist networks: The sequential

learning problem,” Psychology of Learning and

Motivation, vol. 24, pp. 109–165, 1989.

[5] J. Yoon et al., “Lifelong learning with dynamically

expandable networks,” in Sixth International

Conference on Learning Representations (ICLR),

2018.

[6] M. Delange et al., “A continual learning survey:

Defying forgetting in classification tasks,” IEEE

Transactions on Pattern Analysis and Machine

Intelligence, 2021. [Online]. Available:

https://doi.org/10.1109/TPAMI.2021.3057446

[7] G. M. Van de Ven and A. S. Tolias, “Three scenarios

for continual learning,” arXiv preprint

arXiv:1904.07734, 2019. [Online]. Available:

https://doi.org/10.48550/arXiv.1708.01547

[8] K. He et al., “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 770–

778, 2016. [Online]. Available:

https://doi.org/10.48550/arXiv.1512.03385

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton,

“Imagenet classification with deep convolutional

neural networks,” Communications of the ACM, vol.

60, no. 6, 2017. doi: 10.1145/3065386

[10] C. Badue et al., “Self-driving cars: A survey,” CoRR,

abs/1901.04407, 2019.

[11] D. Silver et al., “Mastering the game of go with deep

neural networks and tree search,” Nature, vol. 529, no.

7587, pp. 484–489, 2016.

[12] Y. Li et al., "Provable and Efficient Continual

Representation Learning," arXiv:2203.02026v2

[cs.LG], 2022.

[13] A. Mallya and S. Lazebnik, "Packnet: Adding multiple

tasks to a single network by iterative pruning," in

Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pp. 7765–7773, 2018.

doi: 10.48550/arXiv.1711.05769

[14] J. T. Wixted, et al., The psychology and neuroscience

of forgetting, Annual review of psychology 55 (1)

(2004) 235–269. [Online]. Available:

https://doi.org/10.1146/annurev.psych.55.090902.141

555

[15] M. Ye, X. Zhang, P. C. Yuen, S.-F. Chang,

Unsupervised embedding learning via invariant and

spreading instance feature, in Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 6210–6219.

[16] D. Lopez-Paz and M. Ranzato, "Gradient Episodic

Memory for Continual Learning," in Advances in

Neural Information Processing Systems, vol. 30, 2017,

pp. 6467-6476.

[17] D. Yin et al., "Optimization and generalization of

regularization-based continual learning: a loss

approximation viewpoint," arXiv preprint

arXiv:2006.10974, 2020.

[18] P. Buzzega, M. Boschini, A. Porrello, and S. Calderara,

"Rethinking experience replay: a bag of tricks for

continual learning," in Proc. 25th Int. Conf. Pattern

Recognit. (ICPR), 2021, pp. 2180–2187.

[19] J. Kirkpatrick et al., "Overcoming catastrophic

forgetting in neural networks," Proc. Natl. Acad. Sci.

U.S.A., vol. 114, no. 13, pp. 3521–3526, 2017.

[20] C. Fernando et al., "Pathnet: Evolution channels

gradient descent in super neural networks," arXiv

preprint arXiv:1701.08734, 2017.

[21] M. Wortsman et al., "Supermasks in superposition,"

arXiv preprint arXiv:2006.14769, 2020.

[22] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, C. H. Lampert,

icarl: Incremental classifier and representation

learning, in: 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE

Computer Society, 2017, pp. 5533–5542.

[23] S. Hou, X. Pan, C. C. Loy, Z. Wang, D. Lin, Learning

a unified classifier incrementally via rebalancing, in:

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp.

831–839. doi: 10.48550/arXiv.1812.00420

[24] A. Chaudhry, R. Marc’Aurelio, M. Rohrbach, M.

Elhoseiny, Efficient lifelong learning with agem, in:

7th International Conference on Learning

Representations, ICLR 2019, International Conference

on Learning Representations, ICLR, 2019.

https://doi.org/10.1007/s11633-022-1384-6

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1148–1161 | 1161

[25] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Y.

Fu, Large scale incremental learning, in: Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 374–382.

[26] Q. Pham, D. Sahoo, C. Liu, S. C. Hoi, Bilevel

continual learning, arXiv preprint arXiv:2007.15553

(2020).

[27] Y. Bengio, A. Courville, P. Vincent, Representation

learning: A review and new perspectives, IEEE

transactions on pattern analysis and machine

intelligence 35 (8) (2013) 1798–1828. doi:

10.1109/TPAMI.2013.50. doi:

10.1109/TPAMI.2013.50

[28] D. P. Kingma, M. Welling, Auto-encoding variational

bayes, arXiv preprint arXiv:1312.6114 (2013).

[29] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, Y. Bengio,

Generative adversarial networks, Communications of

the ACM 63 (11) (2020) 139– 144.

[30] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Y.

Fu, Large scale incremental learning, in: Proceedings

of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019, pp. 374–382. doi:

10.1109/TPAMI.2013.50

[31] H. Shin, J. K. Lee, J. Kim, J. Kim, Continual learning

with deep generative replay, arXiv preprint

arXiv:1705.08690 (2017).

[32] O. Ostapenko, M. Puscas, T. Klein, P. Jahnichen, M.

Nabi, Learning to remember: A synaptic plasticity

driven framework for continual learning, in:

Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2019, pp.

11321–11329. doi: 10.1109/TPAMI.2013.50

[33] F. Zenke, B. Poole, and S. Ganguli, "Continual

learning through synaptic intelligence," in Proc. 34th

Int. Conf. Mach. Learn., vol. 70, 2017, pp. 3987–3995.

doi: 10.1109/TPAMI.2013.50

[34] A. Chaudhry et al., "On tiny episodic memories in

continual learning," arXiv preprint arXiv:1902.10486,

2019.

[35] K. Cho, T. Raiko, and A. Ilin, "Enhanced gradient and

adaptive learning rate for training restricted boltzmann

machines," in Proc. 28th Int. Conf. Mach. Learn.

(ICML), 2011, pp. 105–112. doi:

10.1109/TPAMI.2013.50

[36] J. Serra, D. Suris, M. Miron, and A. Karatzoglou,

"Overcoming catastrophic forgetting with hard

attention to the task," in Int. Conf. Mach. Learn., 2018,

pp. 4548–4557.

[37] S. Lee, S. Behpour, and E. Eaton, "Sharing less is more:

Lifelong learning in deep networks with selective layer

transfer," in Proc. 38th Int. Conf. Mach. Learn., vol.

139, 2021, pp. 6065–6075.

[38] A. Mallya, D. Davis, and S. Lazebnik, "Piggyback:

Adapting a single network to multiple tasks by

learning to mask weights," in Proc. Eur. Conf. Comput.

Vis. (ECCV), 2018, pp. 67–82. doi:

10.1109/TPAMI.2013.50

[39] X. Li et al., "Learn to grow: A continual structure

learning framework for overcoming catastrophic

forgetting," in Proc. 36th Int. Conf. Mach. Learn.

(ICML), vol. 97, 2019, pp. 3925–3934.

[40] B. H. Y. Chow and C. C. Reyes-Aldasoro, "Automatic

Gemstone Classification Using Computer Vision,"

Minerals, vol. 12, 2022, Art. no. 60. doi:

10.3390/min12010060.

[41] J. S. Smith et al., "A Closer Look at Rehearsal-Free

Continual Learning," in 2023 IEEE/CVF Conf.

Comput. Vis. Pattern Recognit. (CVPR) Workshop on

Continual Learning. Comput. Vis. (CLVision 2023).

[42] B. Zhou et al., "Learning deep features for

discriminative localization," in 2016 IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), pp. 2921–

2929. doi: 10.1109/TPAMI.2013.50

[43] M. Lin, Q. Chen and S. Yan, “Network In Network,”

2014 International Conference on Learning

Representations (ICLR), Banff, AB, Canada, 2014.

[44] P. Sermanet, S. Chintala and Y. LeCun,

“Convolutional Neural Networks Applied to House

Numbers Digit Classification,” 2012 21st International

Conference on Pattern Recognition (ICPR), Tsukuba,

Japan, 2012, pp. 3288-3291.

doi:10.3390/min12010060

[45] S. Zagoruyko and N. Komodakis, "Wide Residual

Networks," in Proceedings of the British Machine

Vision Conference (BMVC), 2016, doi:

10.5244/C.30.84

[46] V. Nair and G. E. Hinton, "Rectified Linear Units

Improve Restricted Boltzmann Machines," in

Proceedings of the 27th International Conference on

International Conference on Machine Learning

(ICML), Haifa, Israel, 2010, pp. 807-814.

