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Abstract: Continual learning stands as a crucial component in advancing artificial intelligence, yet it encounters a significant challenge 

known as catastrophic forgetting. This phenomenon occurs when models lose previously acquired knowledge upon learning new tasks. 

While some methods propose partial remedies, the impact of altering the model's architecture on this forgetting remains largely unexplored. 

This study delves into Residual Networks (ResNets) to evaluate how modifications in depth, width, and connectivity influence the process 

of continual learning. By introducing a simplified design tailored specifically for continual learning, this research seeks to compare its 

efficiency against established ResNets. Through an in-depth exploration of the algorithm's configuration, the study aims to elucidate the 

underlying rationale behind its design decisions. Furthermore, it evaluates the performance of the proposed model using a diverse set of 

metrics, aiming to identify both strengths and areas for improvement. Ultimately, this research sheds light on how the architectural aspects 

of a model impact its learning capabilities over time, with the ultimate goal of fostering the development of AI systems capable of 

continuous learning without experiencing the detrimental effects of forgetting. Demonstrating accuracy levels ranging from 62.52% to 

90.39% across various tasks, the proposed model showcases its effectiveness in real-world continual learning scenarios. 
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1. Introduction 

In machine learning algorithms and human intelligence, 

human intelligence can perform better in many tasks, 

whereas most of the machine learning models are created 

for one task, and by using the same models for multiple tasks, 

their accuracy decreases significantly Silver et al.[1-2]. 

Continual learning or learning without forgetting aims to 

build models that are capable of multitasking which are 

never-ending sequences of tasks [3]. While in these models 

that are capable of continual learning the main problem that 

arises is catastrophic forgetting [4]in which when a model 

tries to learn a new thing it significantly forgets the old 

learnings from old tasks. Numerous research studies have 

delved into the field of continuous learning, investigating 

techniques such as parameter isolation and expansion-based 

approaches. These methods primarily focus on algorithms 

with a fixed architecture, aiming to enhance the adaptability 

and long-term performance of artificial intelligence systems. 

Parameter isolation techniques safeguard previously 

acquired knowledge by isolating specific model parameters 

while accommodating new information. Conversely, 

expansion-based methods [5] seek to increase the model’s 

capacity to assimilate new knowledge without disrupting 

existing knowledge. Despite the diverse range of 

approaches in continuous learning research, there remains a 

need to explore dynamic architectures that seamlessly 

evolve and adapt to changing tasks and environments. Such 

advancements hold promise for addressing the challenges 

posed by catastrophic forgetting, allowing AI systems to 

continually learn and improve their performance over time. 

There are various real-life use cases and decision-making 

scenarios that support the advancement of continual 

learning [6]. Most algorithmic approaches use the Resnet18 

architecture model [7] because residual networks (ResNets) 

redefine the layers by learning residual functions for the 

input at each layer. Instead of directly learning the desired 

transformation, ResNets focus on understanding the 

differences (residuals) between the input and output. These 

residual blocks incorporate skip connections, allowing the 

network to learn identity mappings when necessary. The 

Split CIFAR-100 and ImageNet [8-9] datasets are 

commonly employed in research, and Split CIFAR-100 is 

divided into 20 distinct, non-overlapping subsets. Each of 

these subsets serves as a separate training or evaluation set, 

allowing for more comprehensive analysis and 

experimentation. Biological intelligence is still far superior 

to ANN in multi-task learning. ANN models are created for 

specific tasks only, but by increasing the domain of learning 

tasks in ANN, we can efficiently use the resources and 

flexibility comparable to human learning so that it can 

perform in dynamic and unpredictable environments [10-

11]. Several alternative approaches, such as replay-based 

methods and regularization techniques, leverage valuable 

information from previously trained models. These methods 

aim to mitigate issues like catastrophic forgetting when 

learning new tasks. The proposed model, in contrast, builds 

upon the ESPNET [12] algorithm, which represents an 
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evolution beyond the earlier Packnet [13]. By incorporating 

advancements from ESPNET, the proposed model enhances 

its ability to handle continual learning scenarios effectively. 

It has been found that continuous learning is similar to 

learning in animals [14]. In response to the challenge of 

unsupervised embedding learning, efficient similarity 

measures between samples within a low-dimensional 

embedding space [15] was proposed. This research's main 

aim is to work on creating an architecture model that can 

perform continual learning efficiently and effectively by 

using the algorithm that is best suited for our architecture. 

Our goal is to create an architecture that reduces 

catastrophic forgetting without a decrease in the accuracy of 

overall model performance. the research has tested the 

proposed model against various other models and found that 

the proposed model produces the best results among them. 

To create such a model, we first need to understand the 

important parameters that may affect the proposed model, 

such as the width and depth of the model, and how they 

affect the learning and retention rate. 

2. Related Work  

Various methods had been proposed to solve the problem of 

catastrophic forgetting which can be categorized into three 

groups regularization-based continual learning, which is 

developed by a second-order Taylor approximation of the 

loss function of individual tasks by Lopez-Paz et al.[16] and 

Yin et al.[17]replay-based, which greatly affects the 

performance of continual learning using experience replay 

(ER) Buzzega et al. [18] and architecture, which shows how 

the quadratic regularization technique plays an important 

role in architecture to create a model suitable for continual 

learning. James et al. [19]. Our main focus is to minimize 

the problem of catastrophic forgetting with the help of the 

architecture method using different sets of ResNets 

networks. algorithmic work such as adding three fine-

grained classification tasks into a single ImageNet-trained 

VGG-16 network and accomplishing accuracies near those 

of individually trained networks for each task using the 

Packnet algorithm Fernando et al. [20].  

Super mask in superposition (SupSup) can provide better 

results using gradient-based optimization to encounter an 

unbent superposition of learned super masks, which 

supports minimizing the resulting entropy Wortsman et al. 

[21]. The method of continual learning uses memory-based 

solutions such as rehearsal or pseudo-rehearsal. This 

strategy involves storing prototype instances of past tasks in 

episodic memory and replaying them during training to 

prevent forgetting. Knowledge Distillation and Feature 

Learning (ICARL) Rebuffi et al. [22] ICARL combines 

knowledge distillation and feature learning by storing 

examples closest to the feature mean of each class in fixed 

memory and using distillation loss to mitigate forgetting. 

Gradient Episodic Memory (GEM) and Average-GEM 

(AGEM) Hou et al. [23] These methods employ an 

inequality constraint via episodic memory to prevent 

forgetting past tasks. Unified Classifier with a Cosine Linear 

Layer Chaudhry et al. [24] and Wu et al. [25] proposes 

learning a unified classifier using a cosine linear layer and 

then progressively acquiring new knowledge. Sample-based 

techniques utilize Pham et al. [26] samples to create an 

additional validation set, enhancing model generalization. 

Generative Models (Auto-encoder, VAE, GAN) (Bengio et 

al., Kingma et al., Goodfellow et al.)[27, 28, 29] Generative 

models are employed to replicate samples from past tasks. 

By replaying generated data, these models prevent 

forgetting (Wu et al., Shin et al., Ostapenko et al.) [30, 31, 

32]. These methods collectively address both catastrophic 

forgetting and retention, ensuring a more robust learning 

process. 

2.1. Algorithmic work 

On the aspect of algorithms, various methods have been 

proposed to reduce the problem of catastrophic forgetting. 

Such as Apiece Synapse, which gathers task-appropriate 

input over time and uses this report to rapidly store new 

memories without ignoring old ones. This method 

approaches the continual learning of classification tasks and 

establishes that it reduces forgetting while           preserving 

computational efficiency Zenke et al.[33] Meta- techniques 

of meta-learning and replay-based learning to  optimize the 

model in the aspects of transfer and interference Chaudhry 

et al. [34] experience replay (MER) is a method that 

combines the Even the tiniest memory or episodic memory 

from the past increases the generalization of future tasks, 

which increases the overall performance of the machine 

learning model. Other algorithms help in adaptive learning, 

in which learning rates are automatically adjusted and show 

more yield in RBMs (Restricted Boltzmann Machines) Cho 

et al. [35]. A task-based hard attention method has been 

proposed that saves the information from the previous task 

without affecting the learning of the current task Serra et al. 

[36]. 

2.2. Architecture work 

Various architectural methods are also proposed to solve the 

problem of catastrophic forgetting, such as the expectation-

maximization (EM) method, which automatically selects the 

appropriate transfer configuration and also optimizes the 

network weights related to each task Lee et al. [37]. Network 

quantization and pruning to learn binary masks that 

piggyback on existing networks to deliver good 

arrangements on a new task Mallya et al. [38]. Other 

methods like this consist of two parts: neural structure 

optimization and fine-tuning. By separating the structure 

learning and the parameter estimation, this method can 

perform better in many ways Li et al.[39]. By performing 

iterative pruning and network retraining, we can pack 

multiple tasks into a single network with the help of a packet 
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algorithm. Deep neural network architecture, which can 

expand and adjust dynamically for lifelong learning, is a 

great advancement in continual learning, but it is still less 

accurate than other pre-trained models Yoon et al. [40]. 

3. Proposed Architectures 

This paper will present a rigorous investigation of the 

algorithm’s configuration and structure, performing an in-

depth exploration of the subtle details and complexities that 

form the foundation of the proposed method. The paper will 

focus on a thorough analysis of the various elements, 

parameters, and decisions that have been deliberately 

designed to enhance the efficiency and effectiveness of the 

architecture. Moreover, it is crucial to not only explain the 

technical aspects of the proposed structure but also reveal 

the underlying principles and ideologies that have guided its 

development. This comprehensive perspective will offer 

insight into the extensive reasoning and considerations that 

have influenced the creation of the paper's unique solution. 

Furthermore, examining the diverse set of metrics that have 

been selected for evaluating and comparing structure. These 

metrics have been carefully chosen to provide a 

multifaceted evaluation of our algorithm’s performance, 

covering factors such as accuracy, precision, scalability, and 

robustness. This paper's goal is to emphasize the thorough 

and rigorous nature of our evaluation process through a 

comprehensive analysis of these metrics.  Finally, will 

perform a deep-dive analysis of the results produced by our 

algorithm. This analysis will go beyond mere numerical 

values, probing into the identification of insights, trends, 

and patterns within the data. This paper aims to interpret 

these results in a way that not only showcases the strengths 

of our structure but also identifies areas for potential 

improvement and further optimization. Fig.1. illustrates the 

operational framework outlined in this research. the 

research uses the CIFAR100 dataset, which consists of 

6,000 training images across 100 different classes. The 

proposed method described in this study entails selecting 20 

random classes to compose a single set, resulting in a total 

of 20 distinct sets derived from the CIFAR100 dataset. By 

incorporating weights from previous tasks, the proposed 

architecture integrates them with the training of new tasks, 

thereby harnessing the advantages of continual learning. 

 

 Fig. 1. Working of Proposed Architecture 

3.1. Setup 

We evaluate our model on various metrics using the 

CIFAR100 dataset. This study goal is to measure how our 

model performs in terms of accuracy and hardware cost. the 

research wants to show that the proposed model is both 

efficient and effective. 

3.2. Architecture Setup 

The proposed architecture is the modification of 

GemResnet18 in terms of width and depth and created 

various versions of ResNet along with the algorithm of 

ESPN. We name this networks as VResNet1, VResNet2, 

VResNet3, VResNet4.  

Width per group refers to the number of channels or feature 

maps produced by each group of convolutional layers in a 

neural network. In the context of ResNet and similar 

architectures, the network is divided into groups, and each 

group contains convolutional layers responsible for 

extracting certain features from the input data. The width 

per group specifies how many feature maps are generated 

by each group of layers. For example, if a network has a 

width per group of 20, it means that each group produces 20 

feature maps or channels as output. The term "basic block 

configuration" refers to how layers are organized within a 

fundamental unit of a convolutional neural network, such as 

ResNet. In this context, it specifies the number of 

convolutional layers arranged within each block. For 

instance, a configuration like (1, 4, 4, 1) implies that the 

block comprises four convolutional layers, with fewer filters 

in the first and last layers compared to those in between. 

Similarly, configurations such as (2, 8, 8, 2) and (4, 1, 1, 4) 

indicate variations in layer count and filter sizes within the 

basic block. These arrangements influence the network's 

ability to capture features at different levels of abstraction, 

determining its complexity and capacity. VResNet1 has 20 

widths per group and has basic blocks of (1,4,4,1). 

VResNet2 has 80 widths per group and has basic blocks of 

(2,8,8,2). VResNet3 has 80 widths per group and has basic 

blocks of (2,1,1,2). VResNet4 has 80 widths per group and 

has basic blocks of (4,1,1,4). GemResNet18 [29] has 20 
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widths per group and has a basic block of (2, 2, 2).  

In Fig.2. the flowchart outlines the process of modifying the 

GemResNet18 architecture and creating variants like 

VResNet1-4 with adjusted width and depth. It then details 

the steps for training using the ESPN algorithm, including 

weight initialization, pre-training, pruning, and fine-tuning. 

Hyperparameters such as dataset, batch size, optimizer, and 

learning rate are specified,  along with pruning iterations 

and FLOPs values. Evaluation metrics like average 

accuracy, learning accuracy, average loss, average 

forgetting, and FLOP count are also defined. The  

Flowchart starts with modifying the architecture, moves on 

to setting up the algorithm, defining hyperparameters, and 

finally  

 

Fig.2.Flowchart of architecture   

outlining evaluation metrics. Each step is clearly defined 

and connected, guiding the process from architecture 

modification to evaluating model performance.  

3.3. Algorithmic Setups  

The proposed models are trained using the ESPN algorithm. 

This algorithm is particularly lauded for its ability to curtail 

the number of floating-point operations (FLOPs), thereby 

resulting in substantial time savings throughout the training 

process. At the outset, the subnetwork is initialized with 

zero tasks, indicating that all weights are set to zero as a 

starting point. It adopts a task sequence T along with a 

model weight w, with tasks incrementally added in sequence. 

The primary objective is to pinpoint the most suitable sub-

network that achieves the dual goals of FLOP reduction and 

sparsity enhancement without compromising the overall 

performance of the model. To achieve this objective, the 

study leverages a combination of joint channel and weight 

pruning methodologies. This strategic approach not only 

enhances the efficiency of the models but also ensures their 

effectiveness across a diverse array of tasks and scenarios. 

By integrating these pruning techniques into the training 

process, the study aims to advance the capabilities of 

continuous learning frameworks and pave the way for 

further future innovations. The provided algorithm offers a 

structured approach for continual learning tasks. It begins 

by establishing task masks, denoted as M, to encapsulate the 

parameters associated with each task in the learning 

sequence. Additionally, a set of new weights, m_new, is 

initialized, typically with a predefined value. Subsequently, 

the algorithm iterates through the task sequence, performing 

the following steps for each task: During the pre-training 

phase, the model parameters are refined through iterative 

updates to the task mask M. These updates involve 

subtracting a fraction of the gradient of the loss function for 

the model parameters, computed using the new weight set 

m_new. At the onset of each task, a sub-network mask, m_t, 

is initialized, often mirroring the weights of m_new. 

Following this, the algorithm enters a loop for gradual 

channel and weight pruning, persisting until both FLOPs 

and weight sparsity constraints are met. Within this loop, the 

task mask M undergoes updates via gradual channel and 

weight pruning techniques. This entails subtracting a 

portion of the gradient of the loss function from the model 

parameters, computed using the intersection of the sub-

network mask m_t and the new weight set m_new. Once the 

pruning constraints are satisfied, the algorithm proceeds to 

fine-tune. Here, further updates to the task mask M are made 

by subtracting a fraction of the gradient of the loss function 

for the model parameters, computed using the intersection 

of the sub-network mask m_t and the new weight set m_new. 

Upon completing fine-tuning for each task, the task mask 

set M is refreshed to include the current sub-network mask 

m_t additionally, the new weight set m_new is adjusted by 

removing parameters corresponding to the current sub-

network mask m_t. 

Algorithm.  Efficient Sparse PackNet (ESPN-1) 

Require variables. Task Sequence = T, model weight= 

M, step_size = N, pre-training, pruning, fine-tuning 

duration; weight allocation parameter = @. 

 

1. Set of task mask M  

2. Set of new weight mnew=[p] 

3. for t in T do:  

 while pre-training do: 

M = M – N *(∇LSt (θ)  mnew) 

End while  

4. Initialize sub-network mask m_t=[p] 

5. while FlOPs(1) & weight_sparsity(@) constraints not 

satisfied do:  

 Gradual channel & weight pruning: update m 

 M = M – N *( ∇LSt (θ)  (m_t ∩ m_new) ) 

    end while 

6. while  fine_tuning  do:  

 M = M – N*(∇LSt (θ)  (mt ∩ m_new) ) 

  end while 

7. M=M ∪ {t: m_t} 

8. m_new = m_new \ m_t 

9.  end for  
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3.4. Hyperparameters 

The proposed architecture trains different models on 

hyperparameters and uses a dataset of Ciffar100, where the 

proposed architecture uses the batch size 128 and Adam 

optimizer with (β1, β2)=(0, 0.999) and a learning rate of 

0.01 with 20 number epochs. The pruning iteration is a 

matrix of [60, 150] with a Flops value of 0.2. With the 

vanilla L2 loss regularization, we minimize the error in our 

continual learning task [41]. 

3.5. Metrics  

This research chose different types of metrics to prove the 

accuracy of the experiments. This study defines the metrics 

on two bases: (1) how well the proposed architecture 

performs on learning, and (2) how well the proposed 

architecture performs based on efficiency. For the former, 

this research records the average accuracy, learning 

accuracy, joint/multi-task accuracy, and also the average 

forgetting of the model. We also take the average FLOPs 

count. 

Average Accuracy (0–100) is a metric that shows how well 

a model or system performs on a set of X tasks based on 

their validation accuracies. The higher the average accuracy, 

the better the model or system. We can define some 

variables as follows: X: The total number of tasks. a(i). The 

validation accuracy of the i’th task. The formula can be 

written as 

𝑄 =
1

𝑋
⋅ ∑ 𝑎(𝑖)𝑋

i=0                           (1) 

Q is the “average validation accuracy.” It is the average of 

the validation accuracies of all the tasks in the set. 1/X: This 

term is used to get the average value. It divides the total sum 

of the validation accuracies by the number of tasks, X. Σ(i=0 

to X): This is a sum (sigma) symbol that tells us to add up 

the following expression for all values of i from 0 to X. In 

other words, we are adding up the validation accuracies of 

all tasks, from the first one (i = 0) to the last one (i=X). a(i): 

This is the validation accuracy of the i’th task. It shows how 

well the model or system does on each task. To sum up, the 

formula calculates the average validation accuracy of a 

model or system across all X tasks by adding up the 

validation accuracies of each task and then dividing by the 

number of tasks, X. The result, Q, can be used as a measure 

of the model’s average performance on the set of tasks, with 

higher values indicating better average accuracy. This can 

be a useful metric for evaluating the overall effectiveness of 

a model across multiple tasks. 

Learning accuracy (0–100) is a metric that shows how well 

a learner or system does on X tasks. It also reflects the 

plasticity or adaptability of the learner or system. The higher 

the learning accuracy, the better the learner or system. It is 

calculated as 

𝐿𝑄 =
1

𝑋
∗ ∑  𝑋

i=0 𝑎(i,i)                                                       (2) 

LQ, or “learner’s quality,” is a score or measure. It evaluates 

the overall quality or performance of a learner or system 

involved in X tasks; 1 / X is the term used to get the average 

value. It divides the total sum of the accuracies by the 

number of tasks, X. Σ(i=0 to X) is a sum (sigma) symbol 

that tells us to add up the following expression for all values 

of i from 0 to X. In other words, we are adding up the 

accuracies of all tasks, from the first one (i = 0) to the last 

one (i= X), where a(i, i) is the accuracy of the i’th task. It 

shows how well each task is done. The formula calculates 

the average accuracy or quality of a learner or system across 

all X tasks by adding up the accuracies of each task and then 

dividing by the number of tasks, X. The result, LQ, can be 

used as a measure of how well the learner or system 

performs on a set of tasks, with higher values indicating 

better performance.  

L2regularization=λ ∗ (|𝑤|)2                      (3) 

Average Loss (0 to 100): This metric shows how much error 

or deviation a model or system has on a set of tasks. The 

lower the loss function, the better the model or system. We 

are using l2 regularization to reduce the error of the model. 

Where λ (lambda) is the regularization parameter, 

controlling the strength of regularization and w is the vector 

of model weights.||w||^2 represents the squared L2 norm of 

the weight vector.  

Average Forgetting (-100 to 100) is metric shows how much 

a model or system forgets its previous learning while 

learning new tasks. (Loss on Task i: Best Previous Loss) N 

represents the total number of tasks. Loss on Task i (L_i) is 

how much error or deviation the model or system has on the 

ith task. The Σ from i = 1 to N indicates that we need to add 

up all tasks.  The formula is defined as  

𝐴𝐹 = (1 𝑁⁄ ) ∗ ∑  𝑁
i=1 (𝐿𝑖 − BestPreviousLoss) (4) 

Best Previous Loss is the lowest error or deviation observed 

on any of the previous tasks from task 1 to task i-1. This 

formula calculates the average forgetting by finding how 

much worse (higher loss) the model or system does on each 

task compared to its best performance (lowest loss) on any 

earlier task. The result shows how much forgetting occurs 

on average when learning new tasks. 

3.6. Result and Analysis 

The proposed architecture results from the average accuracy 

of different models with 20 random tasks from the 

CIFAR100 dataset. CIFAR-100 is a dataset of 60,000 

colored images of size 32x32, each belonging to one of 100 

fine-grained classes, such as ‘apple’, 

‘Bee’, ‘rose’, ‘castle’, and so on. These classes are also 

organized into 20 coarse-grained superclasses, creating a 

hierarchical structure for the dataset. For instance, the 
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superclass ‘fish’ includes the classes ‘aquarium fish’, 

‘whale', 'shark’, and ‘ray’. CIFAR-100 is a difficult dataset 

for image classification tasks, especially for models that aim 

to identify a wide range of objects in natural scenes. This 

study researched how well the architecture performs on 

different tasks. 

Table 1. Accuracy measures of all architecture compared 

to different tasks 

Table 1. Provides information about the number of tasks and 

the corresponding accuracy scores for different versions of 

the ResNet model, namely VResNet1, VResNet2, 

VResNet3, and VResNet4. The "Number of Tasks" column 

represents the random tasks that are taken from the dataset 

of CIFAR100. In the subsequent columns, we have the 

accuracy scores for each version of the ResNet model. For 

instance, vResNet1 achieved a 72% accuracy score for task 

7, VResNet2 81.99% score for task 9, and so on. These 

accuracy scores indicate how well each version of the 

ResNet model performed on the given tasks. The number of 

tasks  

 

Fig.3.Accuracy of VResNet1 

could vary, and these accuracy scores provide valuable 

insights into the models' performance, helping us 

understand which version of ResNet may be more suitable 

for the tasks at hand. 

In Fig.3. The graph depicts the relationship between the 

number of tasks (x-axis) and the accuracy of the vResNet1 

model (y-axis).  

The x-axis, labelled as "Task Number to be evaluated," 

represents the sequential order of tasks, starting from 0 and 

going up to 19. Each point on the x-axis corresponds to a 

specific task. The y-axis, labelled as "Accuracy," represents 

the accuracy scores achieved by the VResNet1 model for 

each task. The accuracy values are represented as 

percentages. At the beginning, for task 0, the accuracy is 

around 45.4%.The accuracy generally increases as we move 

along the x-axis, reaching a peak of approximately 74.2% 

around task 3.   

There are some fluctuations in accuracy scores as we 

progress through the tasks, but an overall increasing trend is 

visible. Towards the end, the accuracy stabilizes at a level 

around 68-69%. This graph provides a clear visual 

representation of how the accuracy of the VResNet1 model 

changes as it is evaluated on an increasing number of tasks. 

It is evident that, in general, as more tasks are evaluated, the 

model's accuracy tends to improve, although there may be 

fluctuations along the way. 

 

Fig.4.Accuracy of VResNet2 

In Fig.4. The graph illustrates the relationship between the 

Task 

Numb

er 

VResnet

1 

Accurac

y 

VResnet

2 

Accurac

y 

VResnet

3 

Accuracy 

VResnet4  

Accuracy 

1 45.4 57.6 59.4 57.4 

2 68.2 73.8 72.8 71.2 

3 66.0 72.0 73.4 73.6 

4 74.1 76.4 79.4 70 

5 70.6 72.4 81.6 83 

6 67.6 82.6 83.2 85.6 

7 66.2 67.4 72.8 78.0 

8 72.0 70.4 80.6 60.2 

9 68.4 79.4 72.4 71.2 

10 59 82.0 85.0 82.2 

11 66.8 69.4 76.0 79.6 

12 71.8 69.0 78.2 65.8 

13 60.6 71.0 41.2 77.8 

14 59.2 72.0 68.4 70.0 

15 39.2 50.2 44.8 39.6 

16 60.8 54.6 58.8 63.2 

17 57.4 60.0 57.6 49.0 

18 59.4 66.0 61.8 63.4 

19 48.6 42.2 47.2 79.0 

20 69.0 90.4 77.0 80.8 
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number of tasks (x-axis) and the accuracy of the VResNet2 

model (y-axis). The x-axis, labeled as "Task Number to be 

evaluated," represents the sequence of tasks from 0 to 19, 

indicating each task's order in evaluation. The y-axis, 

labeled as "Accuracy," presents the accuracy scores attained 

by the VResNet2 model for    

Each corresponding task, represented as percentages. 

Initially, for task 0, the accuracy stands at around 57.6%. 

The accuracy consistently improves as we progress through 

the tasks, reaching a peak of roughly 90.4% around task 19. 

The VResNet2 model displays substantial accuracy gains 

during the evaluation of tasks. While there might be minor 

fluctuations along the way, the general trend shows a 

notable increase in accuracy. This graph provides a visual 

representation of how the accuracy of the VResNet2 model 

evolves as it is evaluated across an increasing number of 

tasks.  

In Fig.5. The graph depicts the relationship between the 

number of tasks (x-axis) and the accuracy of the VResNet3 

model (y-axis). The x-axis, labeled as "Task Number to be 

Evaluated," represents the sequence of tasks from 0 to 19, 

indicating the order in which each task is evaluated. The y-

axis, labeled as "Accuracy," shows the accuracy scores 

achieved by the VResNet3 model for each respective task, 

represented as percentages. At the outset, for task 0, the 

accuracy is approximately 59.4%. 

 

Fig.5.Accuracy of VResNet3 

The accuracy shows a consistent upward trend as the 

number of evaluated tasks increases, with notable gains. The 

model's performance steadily improves, reaching a peak of 

about 85.0% around task 9. While there may be minor 

fluctuations, the overall trend suggests that the VResNet3 

model becomes more accurate as it is evaluated on 

additional tasks. 

This graph visually represents how the accuracy of the 

vResNet3 model evolves as it is assessed across an 

increasing number of tasks.  

 

Fig.6.Accuracy of VResNet4 

In Fig.6. the graph illustrates the relationship between the 

number of tasks (x-axis) and the accuracy of the vResNet4 

model (y-axis). The x-axis, labelled as "Task Number to be 

Evaluated," represents the order of tasks from 0 to 19, 

indicating the sequence of evaluation. The y-axis, labelled 

as "Accuracy," represents the accuracy scores achieved by 

the vResNet4 model for each respective task, presented as 

percentages. Initially, for task 0, the accuracy is 

approximately 57.4%.The accuracy exhibits fluctuations as 

the model is evaluated across tasks, with both increases and 

decreases. Notable peaks in accuracy are observed at 

different points, with the highest accuracy of around 85.6% 

occurring around task 5. The model's performance shows 

variability as it is evaluated on different tasks. 

This graph visually illustrates the accuracy of the VResNet4 

model changes as it is assessed across an increasing number 

of tasks. It suggests that the model's accuracy can vary 

considerably across tasks, with some tasks generating 

significantly higher accuracy than others. 

 

Fig.7.VResNet1 Loss over Task Numbers 

In Fig.7. The graph represents the relationship between the 

number of tasks (x-axis) and the L2 loss function output for 

the VResNet1 model (y-axis). The x-axis, labelled as "Task 

Number to be Evaluated," indicates the sequence of tasks 

being evaluated, ranging from 0 to 19.The y-axis, labeled as 

"L2 Loss Function Output," reflects the values of the L2 loss 

function, which is a measure of the error or discrepancy 
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between the model's predictions and the actual target values. 

Lower values on the y-axis indicate a better fit of the model 

to the data. At the beginning, for task 0, the L2 loss is 

approximately 0.4413.The L2 loss generally increases as 

more tasks are evaluated, indicating a rise in the discrepancy 

between predictions and actual values. The loss function 

experiences fluctuations as it is evaluated on different tasks. 

Towards the end, there is a tendency for the L2 loss to 

stabilize, with values around 0.3743 to 0.4752.  

 

Fig.8.VResNet2 Loss over Task Numbers 

It indicates how well the model fits the data and provides 

insights into the model's performance in minimizing 

prediction errors for different tasks. 

In Fig.8. The graph illustrates the relationship between the 

number of tasks (x-axis) and the accuracy of the VResNet4 

model (y-axis). The x-axis, labeled as "Task Number to be 

Evaluated," represents the order of tasks from 0 to 19, 

indicating the sequence of evaluation. The y-axis, labeled as 

"Accuracy," represents the accuracy scores achieved by the 

VResNet4 model for each respective task, presented as 

percentages. 

Initially, for task 0, the accuracy is approximately 57.4%. 

The accuracy exhibits fluctuations as the model is evaluated 

across tasks, with both increases and decreases. Notable 

peaks in accuracy are observed at different points, with the 

highest accuracy of around 85.6% occurring around task 5. 

The model's performance shows variability as it is evaluated 

on different tasks. This graph visually represents how the 

accuracy of the vResNet3 model evolves as it is assessed 

across an increasing number of tasks. It demonstrates that 

the model becomes increasingly effective in handling 

diverse tasks, with accuracy improving as more tasks are 

evaluated. 

 

Fig.9.VResNet3 Loss over Task Numbers 

In Fig.9. The graph depicts the relationship between the 

number of tasks (x-axis) and the loss values for the 

VResNet3 model (y-axis). The x-axis, labelled as "Task 

Number to be Evaluated," represents the order in which 

tasks are evaluated, ranging from 0 to 19.The y-axis, 

labelled as "Loss," indicates the values of the loss function. 

In this context, the loss values represent the error or 

discrepancy between the model's predictions and the actual 

target values. Higher values on the y-axis suggest a greater 

divergence between the model's predictions and the actual 

data, signifying a less accurate model. At the start, for task 

0, the loss value is around 0.5277. As the model is evaluated 

on different tasks, the loss values generally decrease, which 

implies improved model performance and a better fit to the 

data. The loss values continue to decrease as more tasks are 

evaluated, indicating the model's enhanced accuracy. This 

graph visually demonstrates how the loss, which reflects 

model performance, changes as the VResNet3 model is 

assessed across an increasing number of tasks. It shows the 

model's ability to minimize prediction errors and its overall 

performance in handling various tasks, with lower loss 

values indicating better accuracy. 

In Fig.10. The graph illustrates the relationship between the 

number of tasks (x-axis) and the accuracy of the VResNet4 

model (y-axis). The x-axis, labeled "Task Number to be 

Evaluated," indicates the order in which tasks are evaluated, 

ranging from 0 to 19. The y-axis, labeled "accuracy," 

represents the accuracy scores achieved by the VResNet4 

model for each respective task, Presented as percentages. 

Initially, for task 0, the accuracy is approximately 57.4%. 

The accuracy experiences fluctuations as the model is 

evaluated on different tasks, with both increases and 

decreases. There are notable peaks in accuracy at different 

points, with the highest accuracy of around 85.6% occurring 

around task 5. The model's performance shows variability 

as it is evaluated for different tasks. This graph visually 

depicts how the accuracy of the vResNet4 model changes as 

it is assessed across an increasing number of tasks. It 

suggests that the model's accuracy can vary considerably 
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across tasks, with some tasks yielding significantly higher 

accuracy than others. 

 

Fig.10.VResNet4 Loss over Task Numbers 

Table 2. Architectures and their average loss tasks. 

Table 2. From the above result we can easily see that 

VResNet4 contain the highest average accuracy among all 

other models and VResNet3 also has as good accuracy as 

compared to VResNet4 they both have the same number of 

weights but a different number of layers. From our result, 

we can say that shape and weight matter most for less 

catastrophic forgetting architected. VResNet2 have the 

largest number of layers among all the architecture but still 

produces less accuracy due to high catastrophic forgetting 

hence we can conclude that increasing the weight of 

architecture will increase accuracy and increasing the layers 

of architecture will have less effect on the accuracy for 

multiple tasks. 

 4. Architecture matter 

Important elements of the proposed architecture’s that are 

important for an efficient method of continuous learning are 

the pooling layer and global pooling layer, the width and 

depth of the architecture, and the effect of shape. 

4.1. Effect of Shape 

According to the result of this research experiment, this 

study found out that the U shape network performs well as 

compared to other models in terms of continual learning. 

We can see that Among GemResNet18 and VResNet3 the 

shape of VResNet3 is U with [2,1,1,2] stacks of layers this 

type of architecture has more number width per layer and 

more number of layers in the starting and end of the model. 

Which produces a significant increase of 4% in overall 

accuracy. Whereas in VResNet1 with [1, 4, 4, 1] stack of 

layers, the accuracy decreases significantly. 

4.2. Role of Width and Depth 

The work by Zhou et al. [42] suggests a simple change in 

the global average pooling layer and a class activation 

mapping technique that enable the network to both identify 

the image and locate the regions that belong to each class in 

one forward pass. The work demonstrates that the proposed 

method attains the best results on weakly supervised object 

localization on the ImageNet Large Scale Visual 

Recognition Challenge ILSVRC benchmark. It has been 

shown that with an increase in the width of architecture, the 

accuracy increases with the increase of related tasks, and 

according to the result of our experiment, as the width of 

architecture increases, the architecture performs much better 

as compared to an increase in depth. This study compares 

GemResNet18 and VResNet3 because same number of 

parameters. Here, VResNet3 has fewer layers or depth with 

a width per layer of 80, whereas GemResNet18 has a width 

per layer of 20 with more layers, and still, VResNet3 can 

produce a better average accuracy compared to 

GemRestNet18. 

4.3. Polling layers 

Lin et al. [43] proposed an elements in convolutional neural 

networks (CNNs) that help in decreasing the spatial 

dimensions of feature maps while keeping the relevant 

information. These layers are usually applied after 

convolutional layers to gradually reduce the spatial size of 

the representation, which aids in avoiding overfitting and 

also lowers computational complexity. There are different 

kinds of pooling layers, but the two most common ones are 

max pooling and average pooling. In max pooling, for each 

region of the input feature map, the output is the maximum 

value. This operation effectively keeps the most prominent 

features within each region, helping to maintain important 

information while decreasing spatial dimensions. In contrast 

to max pooling, average pooling computes the mean value 

within each region of the input feature map. This operation 

estimates the average activation of features, providing a 

smoother downsampling than max pooling. Pooling layers 

assist in achieving translation invariance, meaning the 

network is less affected by the exact location of features in 

the input. Moreover, they reduce the number of parameters 

and computational complexity in the network, which can 

prevent overfitting and make the model more 

computationally efficient. According to the result of the 

research experiment, the study compared the accuracy of 

architecture with 20 epochs and found that using max-

pooling in architecture produces a good result as compared 

to the average pooling layer. From the observation of the 

results of our experiments, there is a 2-3% increase in the 

Architecture name Average Loss 

VResNet1 1.5045 

VResNet2 1.56 

VResNet3 1.286 

VResNet4 1.5045 
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average accuracy of the result by using the max pooling 

layer. It can be evaluated in Table 3. 

Table 3. Accuracy on Average pooling layer vs Max 

pooling layer. 

Architec-

ture 

Accu-

racy on 

Average 

pooling 

layer 

Accu-

racy on 

Max 

pooling 

layer 

VResNet1 62.52% 64.20% 

VResNet2 68.90% 69.60% 

VResNet3 68.58% 70.20% 

VResNet4 69.78% 71.68% 

 

4.4. Global Pooling Layers 

Sermanet et al. [44] proposed a technique that reduces the 

size of feature maps in convolutional neural networks 

(CNNs) that are used for tasks such as image classification. 

It preserves the essential information in the feature maps 

while decreasing the spatial dimensions. In a CNN model, 

an input image goes through several convolutional and 

pooling layers, which produce feature maps that capture the 

spatial information of various features detected by the 

model. However, before making predictions, the feature 

maps need to be transformed into a fixed-length vector that 

can be inputted into a fully connected layer for classification 

or regression. This is the role of the global average pooling 

layer. It differs from traditional pooling layers like max 

pooling, which choose the maximum value in each region 

by computing the average of all values in each feature map. 

It effectively turns each feature map into a single value, thus 

reducing the spatial dimensions to 1x1. The global average 

pooling layer is simple to implement. For each feature map, 

the layer calculates the mean of all values in that map. This 

results in a vector where each element corresponds to the 

average activation of a specific feature over the entire spatial 

extent of the feature map. One of the main benefits of global 

average pooling is that it provides translation invariance, 

meaning the network is less affected by the exact location 

of features in the input image. Moreover, global average 

pooling reduces the number of parameters in the network, 

which can help avoid overfitting, especially in situations 

with limited training data. The study tested it with different 

proposed models and found that the global pooling layer 

causes more forgetting in between layers which henceforth 

decreases the accuracy of the model, which can have 

evaluated from Table 4. 

Table 4. Effect of Global pooling layer vs without Global 

pooling layer. 

Architectu

re 

Accuracy with 

GPL 

Accuracy without 

GPL 

VResNet1 59.78% 62.52% 

VResNet2 64.57% 68.9% 

VResNet3 65.37% 68.58% 

VResNet4 67.67% 69.78% 

5. Comparative analysis 

The comparative analysis of all the proposed architecture 

concerning their accuracy and losses with the help of 

different matrices such as average forgetting score, average 

accuracy and parameters is given in table.5. This evaluation 

incorporates diverse metrics, offering a comprehensive 

understanding of the proposed architecture. 

Table 5. Is summary of how different neural network 

architectures perform on various image classification tasks. 

The architecture column shows the name of the 

architectures, which indicates the type, depth, and width of 

the model. Zagoruyko et al. [45] proposed a model which 

represents a wide residual network with a depth of 10 and a 

widening factor of 2, is a notable convolutional neural 

network design renowned for its effectiveness in image 

classification tasks. This architecture extends the 

foundational ideas from residual networks (ResNets). The 

central concept behind WRN involves enhancing model 

capacity by widening the network while maintaining a 

relatively shallow depth, thus mitigating overfitting 

concerns and improving overall generalization performance. 

WRN-10-10, denoting a wide residual network with a depth 

of 10 and a widening factor of 10, stands out as a 

convolutional neural network design celebrated for its 

prowess in handling image classification tasks. The core 

principle underlying WRN-10-10 involves augmenting the 

model’s capacity by broadening the network while 

maintaining a relatively shallow depth, thereby addressing 

concerns related to overfitting. He et al. proposed the 

ResNet-34, ResNet-50, and ResNet-101 vary in their depth, 

comprising 34, 50, and 101 layers, respectively. The 

numerical values in their names correspond to the total 

count of convolutional layers within the architecture. These 

ResNet variants employ residual blocks, which are pivotal 

for training extremely deep neural networks by mitigating 

the issue of vanishing gradients. Within a ResNet, each 

residual block consists of multiple convolutional layers, 

followed by batch normalization and ReLU given by Nair et 

al. [46] activation functions. Notably, these blocks 

incorporate shortcut connections, also known as skip 

connections, allowing the gradient to propagate more 

smoothly during training. This mechanism effectively 

tackles the challenge of vanishing gradients and facilitates 

the training of deeper networks. ResNet-34 exhibits a 
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simpler structure compared to ResNet-50 and ResNet-101 

due to its fewer layers. On the other hand, ResNet-50 and 

ResNet-101, with their deeper architectures, possess the 

capability to capture intricate features from input data. 

However, these deeper variants demand more 

computational resources for both training and inference 

tasks. For instance, GemResNet-18 means a Generalized-

Memory ResNet model with 18 layers, and WRN-10-10 

means a Wide ResNet model with 10 layers and a width 

factor of 10. The average forgetting score is a measure of 

how much the model’s performance on a previous task 

deteriorates after learning a new task. A lower forgetting 

score means that the model is more capable of preserving its 

knowledge from previous tasks. For instance, VResNet4 has 

the lowest forgetting score of 11, which means that on 

average, its accuracy on a previous task reduces by 11% 

after learning all the tasks. The Average Accuracy column 

shows the average accuracy of each architecture, which is 

the percentage of correctly classified images across all the 

tasks.  

Table 5. Effect of parameters on forgetting and accuracy 

Previous 

Presented 

Method 

Architec-

ture 

Av-

er-

age 

For-

get-

ting 

score 

Av-

erage 

Ac-

cu-

racy 

Parame-

ters/1000,000 

Chow et 

al. 

GemRes-

Net-18 
15 64.7 10.9 

 WRN-10-

2 
33 47.2 0.3 

 WRN-10-

10 
28 53.8 7.7 

Zagoruyko 

et al. 

WRN-16-

2 
39 41.3 0.7 

 WRN-16-

10 
34 49.9 17.5 

 WRN-28-

2 
37 44.2 6 

 WRN-28-

10 
33 47.1 36.6 

 ResNet-34 54 47.3 21.5 

He et al. ResNet-50 55 57.2 23.8 

 ResNet-

101 
54 58.1 42.7 

 VResNet1 18 62.52 12.9 

Proposed 

Architec-

ture 

VResNet2 14 68.9 43.1 

 VResNet3 13 68.58 17.3 

  VResNet4 11 69.78 32.99 

 

A higher accuracy means that the model is more accurate 

for the given tasks. VResNet4 has the highest accuracy of 

69.78%, which means that it correctly classifies about 70% 

of the images on average. Parameters/1000,000 is a column 

that shows the number of parameters in each architecture 

divided by one million, which is an indicator of the model’s 

size and complexity. A higher number of parameters means 

that the model has more weights and biases to train, which 

may increase its expressive power but also its computational 

cost and risk of overfitting. For instance, ResNet-101 has 

the highest number of parameters at 42.7 million, which 

means that it is a very large and complex model. The study 

shows that VResNet4 is the best-performing architecture 

among the ones listed, as it has the lowest forgetting score, 

the highest accuracy, and a moderate number of parameters. 

However, this does not mean that VResNet4 is always the 

best choice for any image classification task, as different 

tasks have different requirements and trade-offs. For 

example, if we want to save memory and computational 

resources, we may prefer a smaller architecture like WRN-

10-2, which has only 0.3 million parameters.  

In Fig. 11.  From the graph, we have analyze that VResnet1 

has a low accuracy of about 45% on the first task, but it 

improves gradually as it learns from more tasks. It shows a 

positive trend in performance and attains an accuracy of 

around 72% by task7.  

However, its performance becomes unstable and sometimes 

drops after task 7. The model has significant variations in 

performance, especially after task 12.VResNet2 has a high 

accuracy of about 57% on the first task and performs 

consistently better than VResNet1. It achieves an accuracy 

of around 82% by task 5. VResNet2 maintains its high 

performance and has fewer variations than 

VResnet1.VResNet3 has a similar accuracy to VResNet2 of 

about 59% on the first task, and its performance is 

comparable to VResNet2 in the early tasks. It reaches an 

accuracy of around 83% by task 5. However, like VResnet1, 

it also has unstable performance after task 10. VResNet4 has 

an accuracy of about 57% on the first task and keeps a high 

and stable performance throughout the tasks. It attains an 

accuracy of around 80% by task 6 and maintains a relatively 

constant accuracy in later tasks. VResNet4 is the most stable 

model among the four. In a continual learning scenario, 

where models learn from multiple tasks sequentially, 

maintaining stability and preventing catastrophic forgetting 

are important. VResNet4 shows better stability, while 

VResNet2 also performs well. VResnet1 and VResNet3 

may require techniques to reduce performance variations 

and forgetting of previous tasks. It’s important to consider 

the characteristics of these models when choosing the 

appropriate model for a specific application in a continual 

learning setting. Additionally, techniques such as lifelong 

learning, knowledge distillation, and architectural 

modifications can be explored to improve the performance 

and stability of these models.  
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Fig. 12 shows the comparative analysis of different models 

on continuous learning tasks.  VResnet1 has a relatively 

high initial loss on the first task, showing that the model’s 

performance is not 

Optimal at the beginning. The model shows improvement as 

it learns from more tasks and reduces its losses gradually. It 

reaches a relatively low and stable loss by task 8, showing 

that the model has learned effectively from the tasks. There 

are some variations in loss after task 8, but they do not 

indicate a significant increase in forgetting. VResNet2 has a 

lower initial loss on the first task than VResNet1, showing 

better initialization. The model reduces its loss consistently 

with each new task and shows a downward trend, indicating 

continuous learning and improvement. After task 10, the 

loss keeps decreasing, showing that the model learns 

effectively from new tasks. VResNet2 has minimal loss 

variations, showing that it retains knowledge from previous 

tasks well. VResNet3 has a relatively high initial loss on the 

first task, similar to VResNet1, showing that the initial 

performance is suboptimal. The model reduces its loss 

gradually and achieves a lower loss by task 5, showing 

improved task-specific performance. However, from task 10 

onwards, there is a significant increase in the loss, 

 

Fig.11. Accuracy of all architecture over Task Numbers 

 

Fig.12. Loss of all architecture over Task Numbers 

Showing potential catastrophic forgetting of previous tasks. 

The variation in loss after task 10 shows that the model has 

difficulty retaining knowledge from earlier tasks. VResNet4 

starts with a moderately low initial loss on the first task, 

showing a good starting point. The model keeps a 

consistently low loss throughout the tasks, showing its 

ability to learn from new tasks without significant forgetting. 

VResNet4 is relatively stable and does not show significant 

variations in loss, showing good knowledge retention. 

VResNet4 shows superior performance among the models, 

with a consistently low loss throughout tasks, showing 

strong continual learning capabilities. 

VResNet2 also shows good performance, with a gradually 

decreasing loss and minimal fluctuations, showing effective 

knowledge retention. VResNet1, although showing 

improvement over tasks, has some fluctuations in loss, 

showing occasional forgetting, but it stabilizes at a 

reasonably low loss. VResNet3 starts with high loss and 

shows significant forgetting after task 10, with noticeable 

fluctuations in loss. In continuous learning scenarios, it is 

important to consider models that can effectively manage 

knowledge retention and minimize catastrophic forgetting. 

VResNet4 and VResNet2 show promising characteristics in 

this regard. Further research and techniques can be explored 

to address the challenges faced by VResNet1 and VResNet3, 

such as regularization methods and architectural 

modifications to mitigate forgetting and improve stability in 

learning from sequential tasks 

6. Conclusion 

This research explores the impact of different architectural 

attributes on continual learning, including shape, size, and 

parameters. Additionally, it proposes several variants of 

ResNet, a widely used model in computer vision. Our study 

reveals that the architecture's shape, width, depth, and 

utilization of max-pooling significantly influence its 

performance and susceptibility to forgetting in continual 

learning scenarios. Notably, we observe that enhancing the 

width of the architecture and employing appropriate shapes 

with a balanced depth-to-width ratio ratio leads to improved 

outcomes with reduced forgetting. Moreover, our findings 

indicate that augmenting the architecture's depth does not 

markedly alter its loss value across diverse tasks. This study 

sheds light on the intricate relationship between 

architectural design and continual learning performance, 

providing insights for optimizing model configurations to 

mitigate forgetting and enhance overall performance in AI 

systems. This study has some limitations that can be 

addressed in future research. First, the research only used 

one dataset and one type of model for our experiments. 

Extending the research to other datasets and models, such as 

transformers, would be interesting, which have shown 

promising results in various domains. Second, we used fixed 

architectures for each task without adapting them to the 

task-specific requirements. 
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