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Abstract 

Retinal imaging techniques are commonly used to diagnose various eye diseases. These methods, such as fundus photography, play a 

crucial role in detecting the impact of lifestyle conditions like diabetes and hypertension for retina. They helps to identify retinal 

complications at an early stage, such as micro aneurysms, exudates, and haemorrhages, which are often difficult to detect through regular 

clinical evaluation. By detecting these issues early on, the prevalence of retinal diseases worldwide can be reduced. One commonly used 

method to enhance retinal images is called Contrast Limited Adaptive Histogram Equalization (CLAHE). However, the effectiveness of 

this approach depends on selecting the right clip limit (CL) and sub-images (N). These choices can present challenges and limit the 

outcomes of the conventional approach. To address these limitations, updated versions of CLAHE have been introduced, known as 

Enhanced-CLAHE (EN-CLAHE) and Automated-CLAHE (Auto-CLAHE). These techniques have shown significant improvement in 

enhancing the contrast between different retinal landmarks. By employing a newly developed approach, clinicians can now perform 

screenings for conditions like diabetic retinopathy, glaucoma, and hsypertensive retinopathy in hospitals and remote locations. This 

approach enables direct examination of delicate details present in retinal images. Researchers have explored various image-enhancing 

methods and compared their results using quality evaluation tools like Peak Signal-to-Noise Ratio (PSNR). These evaluations help assess 

the extent of contrast enhancement and the overall richness of the image. 
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1.Introduction 

The use of automated disease analysis in eye screening 

devices has made it feasible to provide prompt therapy to 

individuals with retinopathies like glaucoma and hypertension. 

Non-invasive fundus photography is now a need for automated 

retinopathy identification, which has improved convenience for 

ophthalmologists and retina care specialists. Ophthalmologists 

may send images associated with Glaucomatic or hypertensive 

retinopathy syndromes for further disease investigation [1,2]. 

The burden on ophthalmology doctors would be reduced 

globally if abnormalities that are typically not visible by the 

clinical investigation were discovered early. The optic disc, 

blood vessels, macula, and lesions including haemorrhages etc. 

may all be recognized and separated using image processing 

and deep learning algorithms. The quantitative examination of 

these anomalies will aid in the more accurate identification of 

retinal diseases [3].  

On a human retina, it has been possible to spot numerous 

lesions that may have been brought on by diabetes, a chronic 

illness. From moderate diabetic issues to severe Proliferative 

Diabetic Retinopathy (PDR), the illness progresses [4]. 

Microaneurysms, which are microscopic capillary dilations or 

minor haemorrhages that appear as little red spots, are often the 

typical early indicators. When lipids build and cause exudates 

from the retinal capillaries of patients with severe illness, these 

lesions appear in photographs as brilliant white or yellow spots. 

The existence of macular oedema is indicated if the exudates 

occur around the macula [5]. Most of the research has focused 

on the classification and segmentation of retinal lesions, but 

little emphasis has been paid to pre-processing these pictures to 

highlight the lesions under evaluation. Appropriate strategies 

for their amplification are crucial since the lesions are deep in 

the retina [6]. 
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1.1. Need of Glaucoma Detection Using Ml 

Early detection of glaucoma is made possible by 

machine learning algorithms, which allow prompt 

intervention & treatment to avoid permanent visual loss. 

These methods—pattern recognition algorithms in 

particular—are excellent at identifying minute structural 

alterations in retinal pictures and optic nerve heads, 

which improves diagnostic precision. It makes it easier 

to analyse massive retinal imaging collections 

effectively, which enables systematic glaucoma 

screening and diagnosis in a variety of patient groups. 

With ML, glaucoma diagnosis may be made objectively 

and consistently, minimising subjectivity in evaluations 

and guaranteeing consistency across various healthcare 

environments. By automating the first screening 

procedure, ML-driven glaucoma diagnosis maximises 

healthcare resources and frees up ophthalmologists to 

concentrate on complicated patient care and confirmed 

cases. Since machine learning algorithms can grow and 

adapt to ever-larger amounts of medical imaging info, 

they are a good fit for broad programmes to screen for 

glaucoma in a variety of healthcare settings. 

1.2. Limitations of Glaucoma with ML 

ML models for Glaucoma may suffer data imbalance 

difficulties, where the amount of healthy data greatly 

outnumbers Glaucomatous samples, thereby leading to 

biased outcomes. Because ML algorithms might perform 

differently across models, it's critical to test findings on 

a variety of datasets and take model-specific quirks into 

consideration. Glaucoma datasets lack uniform imaging 

techniques and data formats, which might make machine 

learning (ML) models less consistent and less 

generalizable amongst various healthcare facilities. It is 

important to train machine learning algorithms on 

representative datasets since they could not generalise 

effectively across different ethnic and demographic 

groupings. Some datasets may not have enough 

longitudinal data available, which might make it difficult 

for machine learning models to accurately depict how 

glaucoma progresses over time. It may be difficult to 

explain how and why a certain diagnosis was made since 

ML models, especially deep learning architectures, 

sometimes lack transparency in their decision-making. 

1.3. Need of Glaucoma Detection Using 

CNN 

In order to avoid permanent vision loss, CNNs are 

essential for the early identification of glaucoma and for 

prompt intervention and therapy. It provides the capacity 

to automate the screening procedure, making it possible 

to analyse massive retinal image collections effectively 

and to support mass screening programmes for early 

detection. CNNs' scalability makes them ideal for 

managing the growing amount of medical imaging data, 

offering a dependable and quick fix for glaucoma 

screening across a range of demographics. It offers 

impartial and standardised evaluations, reducing 

subjectivity in the diagnostic procedure and 

guaranteeing trustworthy outcomes in many medical 

contexts. By automating the preliminary screening, this 

maximises the use of healthcare resources by freeing up 

ophthalmologists to concentrate on verified cases and 

provide more effective patient treatment. CNN-based 

glaucoma detection facilitates telemedicine programmes 

by enabling remote screening & early risk identification, 

especially in underprivileged areas 

 2 . Related Work 
The two types of image-enhancing techniques are time 

domain and frequency domain techniques. The pre-

processing, or enhancing of contrast in a picture, is what 

determines the final processed outcome. For this, high-

pass filters with edge detection techniques like the 

Laplacian of Gaussian are typically used. Edges are often 

discovered using a few simple techniques, such as Sobel, 

Prewitt, or the Laplacian of Gaussian operators [8]. 

Noise is present in real-time medical applications, noise 

enhancement is a concern with these filters since noise and 

edges are both high-frequency components of a picture. In 

comparison to HPF masks like Prewitt and Sobel, 

morphological operations that deal with the shape and size 

of objects appear to be more sophisticated. For example, 

morphological opening and closing transform work well 

to clear away noise from both inside and outside of the 

object, respectively [9–11], and choosing the right masks, 

like discs or lines, based on the shape of the object helps 

to enhance the chosen object of interest. 

Wavelet transform is another technique for enhancing 

photographs from the medical area. Here, a wavelet is 

utilized to separate a picture into its high-frequency 

components. High-frequency parts of the spectrum are 

subjected to soft thresholding to reduce noise. Later, the 

inverse wavelet transform is employed to create an 

upgraded version of a picture [12]. 

Gamma correction is one technique for enhancing medical 

images [13]. Here, local gamma optimization is achieved 

by reducing the homogeneity with the co-occurrence 

matrix with the input picture. By using this technique, the 

range of pixel values is increased, and the image quality is 

enhanced. 

Adaptive Histogram Equalization techniques with 

variable contrast limits are explored in [14]. The 

limitations imposed by CL and N are lessened by these 

approaches, which adjust the clip limit and number of sub-

images dependent on the picture. 

The bi and multi-histogram method was suggested by 

[15]. In contrast to a typical display, which is ruined by 

the bi-histogram approach, an image's brightness is kept 

by raising the contrast. The Multi Histogram Equalization 

technique, on the other hand, keeps the display as-is but is 

unable to keep the contrast or intensity. 

For irregular and low-contrast pictures, [16] proposed an 

approach based on fuzzy logic. This technique separates 

the bright and dark areas of the picture. This approach 

outperforms more established strategies like the power 

law transform. In comparison to previous approaches, this 

process takes less time and produces brighter images. 

To increase the contrast of color photographs, a quick 

solution using a histogram and fuzzy basis was presented 

in [17]. Only images with low contrast provide good 

results with this technique. From a given RGB image, the 

HSV image is generated, and only the V factor is 

improved using the K and M parameters. Comparing the 

outcomes of several Histogram equalization methods with 

the fuzzy constructed technique. 

Anshul et al [22] has developed a couple of technologies 

CNN and MobileNetV2 for the detection of eye disease 

before attacking. The objective of the OHTS is to prevent 

or postpone visual field loss in people with increased IOP, 

especially in those who are moderately at risk of 

glaucoma. It is a forward-looking, multicenter study. The 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1213–1221 |  1215 

 

dataset (phases 1 & 2) covers around 16 years, which 

makes it possible to create algorithms that predict 

glaucoma before the condition manifests. Glaucoma 

labeling requirements include the reading center needing 

two repeated aberrant visual fields, which are then 

reviewed by a separate endpoint committee. Because of its 

effectiveness in situations with limited training data and 

computing resources, MobileNetV2, a highly efficient 

CNN, is selected. The ImageNet dataset's pre-trained 

weights are used to initialize MobileNetV2 via the use of 

transfer learning. With the use of OHTS fundus photos, 

models are refined. Class imbalance is addressed by 

balanced data sampling and data augmentation using 

methods including random turns, rotations, and color, 

saturation, and contrast alterations. Regions in fundus 

photos that affect the model's categorization are found 

using gradient-weighted class activation maps. 

Mamta Juneja et al [23] has implemented a CNN, and G-

Net methodology for the identification of glaucoma. There 

are 101 photos in the DRISHTI-GS collection. Ground 

facts are given for both sets for the optic disc, optical cup, 

& notching. Images of patients with glaucoma or normal 

eyesight have been obtained from Aravind Eye Hospital 

in Madurai, India. The optic disc was the main focus of 

the cropped original fundus photos. The optic disc and 

optic cup were precisely segmented using a modified G-

net. Using all RGB channel for the cup and the red signal 

for the disc, two different CNNs were trained for the 

segmentation of the disc. There are 31 layers in total for 

both segmentation models. While the second model 

divides the cup using photos cropped in accordance with 

the form of the segmented disc, the first model analyses 

cropped retinal fundus images. By calculating the ratio 

between the cup and disc regions in the segmented masks, 

CDR is achieved. The suggested method's accuracy 

depends on a precise CDR estimation, which is essential 

for glaucoma identification. The accuracy of optic disc & 

cup delineation is improved by the use of models for 

segmentation such as G-net. 

Yongli Xu et al [24] has proposed a HDLS methodology 

for the identification of glaucoma. The Beijing Tongren 

Hospital IRB approved the research, which followed the 

Declaration of Helsinki. Pre-diagnostic, picture division, 

and final diagnosis are the three components that make up 

the HDLS. For pre-diagnosis and picture segmentation, 

Inception-v3 & U-shaped convol DNN were used, 

respectively.  Based on the segmentation of OD and OC, 

features such as MCDR and ISNT score were derived. The 

anatomy of the neuroretinal rim was mirrored in the ISNT 

score. SVM was used to create a two-dimensional 

classification line, and a decision tree structure was used 

to determine the final diagnosis, which included the 

existence of RNFLD. For the first global diagnostic, the 

HDLS used a PDCN, concentrating on the whole fundus 

picture. Annotated locations were used to train segmented 

network for OD, OC, & RNFLD. The diagnostic 

procedure was concluded using SVM & a decision tree 

structure. A threshold of 0.8 was established for the 

classification network's softmax output in order to handle 

pre-diagnosis aberrations. With validation datasets, this 

modification attempted to strike a compromise between 

both specificity and sensitivity in the final diagnosis of the 

patient. 

Fatima Ghani et al [25] has focused on CNN, InceptionV3 

and VGG16 methodologies for the identification of 

glaucoma. A collection of 508 fundus photos from 25 

different classes is gathered from the Joint Shantou 

International Eye Centre. The dataset has been tagged and 

split into testing and training sets. A CNN ignores text and 

is built with numerous layers to interpret pictures. The 

CNN model is tested after development to make sure it 

satisfies criteria. The CNN ignores text in favour of 

producing outcome in the shape of a picture using GPU 

processing. Resizing is the process of changing the pixel 

count by enlarging and contracting the pixels.  An 

approach used in Inception-V3 & Vgg-16 to increase the 

size of the training dataset is data augmentation. For the 

purpose of augmenting picture data, Keras is used for 

operations such as covering, cutting, & horizontal 

flipping. For image identification, the Inception-V3 model 

consists of a CNN-based feature extraction section and a 

SoftMax & FC layers-based classification section. The 

model is modified for glaucoma detection and used for 

object recognition in general. 

Ajitha S et al [26] has developed Softmax, and CNN 

methodologies for the identification of glaucoma. The 

photos gathered at Little Flower Hospital and open data 

sets (HRF, Origa, and Drishti) are the sources of the 

dataset. Ten convolutional layers and three fully linked 

layers make up the CNN model. By stabilizing input 

pictures, batch normalization speeds up the learning 

process. Images input are down sampled using max 

pooling, and overfitting is avoided via dropout layers. 

Class probabilities are assessed by the final fully linked 

layers with SoftMax activation. Nonlinearity is introduced 

by applying ReLU layers to convolution and fully linked 

layers. Spatial dimensions are reduced via max pooling 

using a 3 * 3 filter & two layers' stride lengths. The Max 

pooling layer and RELU layer are used to train the model. 

In addition to introducing nonlinearity, the RELU layer 

guarantees convergence learning. Feeding a dataset is part 

of the training process to determine if a picture is part of 

the glaucomatous. In order to forecast whether a picture 

corresponds to the glaucomatous or healthy class, a dataset 

is fed into the training process. Using a 0.001 default 

learning rate and a batch size of 32, the model is trained 

utilising the Adam Optimizer. The loss function used in 

the error computation is categorical cross-entropy. 

Ramgopal Kashyap et al [27] has implemented a U-Net, 

DenseNet-201 with DCNN methodologies for the 

identification of glaucoma. 650 retinal fundus photos from 

the SiMES make up the glaucoma dataset. For feature 

extraction, a pre-trained model called Densenet-201 is 

used. The model performs well on a number of datasets, 

including CIFAR-100 and ImageNet. An important part of 

glaucoma detection is optical cup segmentation, which is 

accomplished using U-Net architecture. Preprocessing, 

creating ground-truth masks, and applying the U-Net 

architecture to the segmentation process are all part of 

optical cup segmentation. Disc double & cup double 

equations are used to produce the masks. The DenseNet-

201 design is shown with direct connections between 

layers to show how connected it is. Using feature maps, 

the network adjusts to shifting environments. DenseNet-

201 uses transfer learning, which makes use of 

information from big datasets such as ImageNet. TL 

speeds up model training and decreases the need for large 

amounts of data. In order to determine the final 

classification, sigmoid activation is used to make a binary 

choice for glaucoma risk evaluation. The neuron's output 

is represented by value between 0 & 1 that are produced 

by the sigmoid function. 

Lucas Pascal et al [28] has proposed a MTL-IO 

methodology for the identification of glaucoma. The 
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dataset REFUGE was used. adoption of a VGG-16 

structured U-Net architecture for MTL. The segmentation, 

regression, and classification tasks are covered by this 

architecture. Following the common decoder, a 

convolutional layer yields the OD & OC segmentation 

masks. By using ground truth coordinates to create a map, 

fovea localization is approached as a segmentation job. 

After training the network to suit these maps, the saliency 

map's centre of mass is anticipated to be located at the 

fovea coordinates. The process of detecting glaucoma 

consists of two stages: first, a LR classification prediction 

that incorporates the visual class distribution from 

segmentation tasks, and then an FC classifier prediction. 

When classifying cases of glaucoma, focal loss is used to 

address the disparity between positive & negative 

samples. Introduction of a separate gradient descent 

technique for MTL that involves alternating steps on 

several task-specific goals. The employment of unique 

optimizers for every job is emphasized by designating the 

whole pipeline as MTL-IO. This method helps to keep 

tasks from interfering with one another while optimizing. 

Syna Sreng et al [29] has focused on Encoder with DCNN, 

SVM, TL, Ensemble models for the identification of 

glaucoma. The system consists of two stages: the 

categorization of normal & glaucoma utilizing 3 different 

forms of deep CNNs, and the OD segmentation using 

DeepLabv3+. DeepLabv3+ is used for an encoder & a 

decoder in OD segmentation. The decoder retrieves object 

boundaries while the encoder extracts features using four 

simultaneous atrous convolutions. Three techniques for 

glaucoma prediction using deep CNNs. Eleven pre-trained 

CNNs are used in transfer learning to replace the final 

fully connected layer in the categorization of glaucoma. 

Pre-trained models customized for glaucoma prediction 

using ImageNet. optimization of cross-entropy loss for 

every iteration. Deeply activated features are extracted by 

using CNNs that have been trained as feature descriptors.  

While deeper layers collect bigger, more complex data, 

early convolutional layers catch little, low-level 

characteristics. Retrieving deep active features by 

flattening the last level before categorization and the 

completely linked layer. SVM classifier is used to identify 

glaucoma. constructing two ensemble classifiers by fusing 

the individual learners' predictions from Methods P1 and 

P2. The estimated probabilities of each individual 

classifier are averaged to provide predictions from 

ensemble classifiers. Table X discusses the overall 

analysis of the existing approaches. 

Table X: Comparative Analysis on Traditional 

Approaches 

Autho

r 

Algorith

m 

Merits Demerits Accur

acy 

Anshu

l 

Thaku

r et al 

CNN, 

MobileN

etV2 

Hybrid 

model 

has high 

efficienc

y. 

The 

datasets 

was not 

real. 

 

Mamta 

Juneja 

et al 

CNN, G-

Net 

Because 

of 

multiple 

layers 

the 

images 

are 

easily 

classifie

d. 

Compare

d to OD 

OC has 

less 

performa

nces. 

95.8% 

Yongli 

Xu et 

al 

HDLS This 

model 

was 

built in 

three 

modes 

for easy 

and 

early 

detectio

n. 

Several 

methods 

are used 

where it 

may be 

difficult 

while 

building. 

95% 

Fatima 

Ghani 

et al 

CNN, 

Inception 

V3 and 

VGG-16 

Even the 

layers 

are less 

the 

predicti

on was 

appropri

ate. 

The 

dataset 

contains 

less data. 

90.1% 

Ajitha 

S et al  

Softmax, 

CNN 

Several 

layers 

are used 

where 

the data 

is easily 

detected

. 

Combini

ng with 

DL. ML 

has high 

performa

nces. 

95.6% 

Ramg

opal 

Kashy

ap et al 

U-Net, 

DenseNe

t-201 

with 

DCNN 

For 

every 

layer 

high 

technolo

gies are 

utilized. 

The 

testing 

has less 

accuracy. 

98.8% 

Lucas 

Pascal 

et al 

MTL-IO Time 

complex

ity is 

less. 

The 

images 

should 

have high 

quality. 

97.0% 

Syna 

Sreng 

et al 

Encoder 

with 

DCNN, 

SVM, 

TL, 

Ensembl

e models 

The 

models 

are 

efficient 

while 

creating 

ensembl

e 

models. 

Difficult 

for 

creating 

this 

method. 

95.5% 

 

3.Methodology 

3.1 Introduction 
High-Resolution Fundus (HRF)- The dataset was made 

available by a collaborative research team to do a 

comparative study on automatic segmentation methods on 

retinal fundus images. The images were taken using a 

Canon EOS 20D camera at a resolution of 3504x2336. The 

online-accessible collection consists of 45 images in total, 

15 of each kind representing the normal human retina, 

diabetic retina, and glaucoma-affected retina. For each 

picture in the collection, the masks, together with the FOV 

and segmented vessel tree, are made accessible as a 

ground truth standard. The group of professionals in the 

analysis of retinal pictures and trained specialists from 

ophthalmology clinics provide the gold standards for 

segmentation [18]. 
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Fig1: Pre-processing flow chart 

3.2 Methodology 
In the pre-processing procedure depicted in Figure 1, the 

effects of three enhancement approaches—conventional 

CLAHE, AC-CLAHE, and FA-CLAHE [14]—on retinal 

fundus pictures are investigated. Based on the results, a 

comparison of the techniques was made. 

3.3 Contrast Limited Adaptive Histogram 

Equalization 
CLAHE is an adaptation of the classical HE technique that 

redistributes pixel intensities to enhance the apparent 

amount of details in photographs. It makes sure that the 

enhancement is tailored for specific characteristics and 

structures by adjusting its contrast enhancement procedure 

to the properties of various areas inside a picture. Each of 

the tiny tiles that make up the picture has its own 

individual application of the histogram equalization. This 

lessens the likelihood that noise in areas with poor contrast 

will be over-amplification. by adding a contrast limiting 

option to stop noise from being amplified in areas with 

high contrast. By doing this, it is ensured that the 

augmentation is under control and doesn't produce inflated 

or unrealistic details. CLAHE often includes overlapping 

between adjoining tiles to prevent erroneous borders 

between them. This facilitates a more seamless shift in 

contrast improvement across various places. For low-

contrast areas, it usually uses a non-linear adjustment to 

map the pixel intensities' cumulative distribution function, 

making the augmentation more noticeable. 

Increased contrast between the image's 

foreground and background is an advantage of CLAHE. It 

prevents the issue of oversaturation in related locations 

and reduces the difficulty of noise and contrast 

intensification. The number of sub-images and clip limit 

play a major role in the CLAHE method's outcomes. The 

input photos are split up into a variety of smaller images, 

or "tiles," and the contrast transform function is generated 

for each tile with the contrast factor "Clip Limit." The 

Rayleigh, Exponential, or Uniform distributions are used 

to create the contrast transform function. The CLAHE is 

utilized according to [21] and we employed an exponential 

distribution in this case to achieve superior results. 

Contrast Limited Adaptive Histogram Equalization 

(CLAHE) is used to equalize images. In order to overcome 

the problem of contrast over-amplification, CLAHE is an 

adaption of Adaptive Histogram Equalization (AHE). 

CLAHE operates with separate regions known as tiles 

rather than the entire image. Bilinear interpolation is used 

to combine the neighbouring tiles in order to remove the 

fake borders. This technique can be applied to improve 

contrast in photos.  

We may also use CLAHE on colour photos; typically, it is 

performed on the luminance channel, and the outcomes 

are considerably better for an HSVrather than for a BGR 

image by adjusting all the channels.  

3.4. Enhanced Contrast Limited Adaptive 

Histogram Equalization 
A more flexible and adaptable enhancement is possible 

with enhanced CLAHE, which dynamically modifies the 

contrast limiting value depending on the local properties 

of picture areas. In order to ensure that the enhancement 

method is responsive to changes in local gradient 

magnitude, it could combine data on gradients to better 

capture picture structures. Multi-scale processing, in 

which the method is performed at many scales to enable 

the augmentation of characteristics at various degrees of 

detail, is often used in enhanced CLAHE. This version 

could include controls for boosting certain aspects of the 

image—like edges or textures—selectively so as to 

prevent over-amplification of undesirable details. Post-

processing measures may be used in improved CLAHE 

approaches to further improve the appearance of the 

enhanced picture and minimize artefacts. Depending on 

the features of the local picture content, the process may 

dynamically modify the size that it processes tiles in order 

to optimize the trade-off between improving detail and 

reducing noise. 

The choice of the clip limit value and the 

number of sub-images is particularly important in the 

heuristic CLAHE strategy to control the best possible 

picture quality. For CLAHE, the value of the clip limit in 

CLAHE is determined by the size of bins in the local 

histogram of a sub-image. The number of tiles (N X N sub-

images) in the recommended Auto Clipped CLAHE 

technique should be determined by user based on the 

objects of interest. The maximum height of the bin 'n' local 

histogram for the selected tile, is used to determine the clip 

limit value. All the pixels in the sub-image that are over 

the clip limit are reallocated evenly [14]. The algorithmic 

definition of the EN-CLAHE is as follows: 

Algorithm1: EN-CLAHE 

Step 1. Import retinal fundus image. 

Step2. Green plane extraction from the image. 

Step 3. Create N × N subsections from the supplied image. 

Step 4. Complete the instructions for each subsection. 

a) Find each tile's histogram and the greatest 

intensity value for each tile. 

b) Determine the Clip Limit (CL) value using the 

half-interval search method. 

c) Equalize the histogram by evenly distributing 

the pixels with values greater than CL 

throughout all the histogram bins of a tile. 

Step 5.  To acquire the best image processing quality, map 

each pixel in the provided picture to the weighted sum of 

four neighbours, two neighbours, or the pixel itself 

depending on its placement as an Internal Region, Border 

Region, or Corner Region. 

 

 

Auto-CLAHE 

Ex-CLAHE 

         CLAHE 

 Retinal Image 
Green 

Plane 

Extractio
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3.5.  Automated Contrast Limited Adaptive 

Histogram Equalization 
Automatic CLAHE uses algorithms to dynamically 

modify contrast limiting settings according to the 

statistical properties of the input picture, therefore it may 

be used to a variety of material. The programme is able to 

determine the appropriate level of enhancement in various 

places by using automated image analysis techniques to 

evaluate local contrast fluctuations. In order to avoid over-

amplification of noise and other artefacts, the algorithm 

may use feature-sensitive techniques to selectively 

improve certain picture structures. In order to optimize the 

trade-off between computational efficiency and local 

contrast enhancement, automated CLAHE cleverly 

arranges and sizes processing tiles according to the 

content. In some implementations, the method is trained 

on a variety of datasets using machine learning techniques, 

which enables it to generalize and adjust to a broad range 

of pictures and events. Real-time processing might be 

included in CLAHE automation, allowing for quick and 

spontaneous parameter adjustments for changing visual 

surroundings. 

The approach suggested in EN-CLAHE still 

depends on the user's selection of the number of tiles or 

sub-images, or "n," and is still arbitrary. While the 

constant value of "n" might not be appropriate for all 

photos, even those from the same database, or for various 

image kinds captured using various sensors. We have 

suggested a fully automated CLAHE considering the EN-

CLAHE method's flaw. Based on the input picture's 

overall and sectional entropy values, the approach 

separates the input image into sub-images. Here, "n" is 

changed from 2 to 12, and the value of "n" will be chosen 

to divide the input picture into sub-images for which the 

associated entropy will be at its highest. Here, the number 

of tiles and clip limit is automatically selected. 

 

Algorithm 2: Auto-CLAHE  

STEPS: 

Step 1. Enter an image. 

Step 2. Green plane extraction from the image. 

Step 3. Obtain the entropy values as described by 

Equation 1 from the smallest to the largest value of "N" 

and store them in an array as "entropy[n]". 

Step 4. Select the N value that matches the highest possible 

entropy[n] value. 

Step 5. The total number of photos equals N x N. 

Step 6. Repetition of steps 3 through 5 from the EN-

CLAHE method described in this paper's section "D". 

3.6. Integration of Automated Contrast 

Limited Adaptive Histogram Equalization 

with CNN 
The CNN receives the input pictures after they have 

undergone automated CLAHE pre-processing, which 

dynamically modifies contrast and highlights local 

characteristics. Because CLAHE is automated, contrast is 

adaptively changed, which helps CNNs concentrate on 

pertinent information and lessens the effect of varying 

lighting conditions in a variety of datasets. By highlighting 

the important aspects in photos, CLAHE improves feature 

localization. This gives the CNN better input 

representations, which enable more precise feature 

extraction. CNN robustness may be improved in particular 

by using CLAHE's adaptive nature to lessen the influence 

of noise and increase the proportion of signal to noise in 

the pictures. The integration enables automatic adaptation 

to various imaging domains, guaranteeing that the CNN is 

capable of managing contrast and illumination 

fluctuations over a wide range of datasets. Adaptive 

contrast enhancement improves the CNN's ability to 

generalize across various pictures, which improves model 

performance on tasks like object detection and 

segmentation. 

4. Results 
The dataset HRF (High-Resolution Fundus) is used to test 

the proposed algorithms. Here, the results are shown on 

photos from a single dataset, HRF, to help with 

comprehension. Figures 2(a-d) display the outcomes of 

the healthy fundus under HSV and BGR-plane CLAHE 

algorithms while figures 3(a-d) display the outcomes of 

glaucomatous fundus under HSV and BGR-image 

CLAHE algorithm. Figures (a, c) are used for the clip limit 

value=2.0 while figures (b, d) are used for the clip 

limit=0.8. The resultant images are the findings from a 

single original healthy fundus(2a-2d) and a single original 

glaucomatous fundus(3a-3d). 

 CLIP LIMIT= 2.0; NUMBER OF TILES=8 CLIP LIMIT= 0.8; NUMBER OF TILES=8 

 

 

 

 

HSV 
 

FIG 2a:HEALTHY EYES 
 

FIG 2b: HEALTHY EYES 

 
FIG 3a: GLAUCOMATOUS EYES 

 
FIG 3b: GLAUCOMATOUS EYES 

 

 

 

 

BGR 
 

FIG 2c: HEALTHY EYES 
 

FIG 2d: HEALTHY EYES 

 
FIG 3c: GLAUCOMATOUS EYES 

 
FIG 3d: GLAUCOMATOUS EYES 
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Figures 2(a-d); Figures 3(a-d) 

 

 

EN-CLAHE BASED OBSERVATIONS:-  

  Here, the number of tiles used are 8. The figure (4a) displays the outcome of the healthy fundus under the 

proposed algorithm of EN-CLAHE. The figure (4b) displays the outcome of the glaucomatous fundus under the proposed 

algorithm of EN-CLAHE. 

 
FIG: 4a 

 
FIG: 4b 

AUTO-CLAHE BASED OBSERVATIONS:-  

  The figure (5a) displays the outcome of the healthy fundus under the proposed algorithm of AUTO-

CLAHE. The figure (5b) displays the outcome of the glaucomatous fundus under the proposed algorithm of AUTO-CLAHE. 

 
FIG: 5a 

 
FIG: 5b 

5. Findings and Analysis 
On a PC running PYTHON 3.9 and equipped with an Intel 

Core i5 CPU running at 2.40GHz and 8GB of RAM, 

experiments are conducted. 

The CLAHE algorithm is implemented in two steps: first, 

the number of tiles is fixed at 8, and the clip limit is 

changed from 0.8 to 2.0 because higher clip limit values 

result in saturation in terms of enhancement, as well as 

undesirable effects like noise and uneven lighting being 

added to the image. Similar to the first part, the second 

portion's clip restriction is maintained but the number of 

tiles varies. It has been shown that even for photos in the 

same database, a constant clip limit and number of tiles 

value do not work well.  

The CLAHE findings show that choosing the right clip 

limit value was essential to achieving the best potential 

improvement. The answer to this issue is provided by EN-

CLAHE, which selects the clip limit adaptively depending 

on the histogram of a sub image. When testing with the 

EN-CLAHE method, the number of tiles (n) was equal. 

The results were seen on both high-contrast and low-

contrast photos. Selecting 'n' too high can often add noise 

and exacerbate the issue of uneven illuminations, while 

selecting 'n' too low does not improve the quality of all 

objects in a picture. A method that chooses "n" and "clip 

limit" depending on the kind and contents of a picture is 

therefore necessary. 

By varying the value of "n" from 2 to 12, we have looked 

for the input image's highest entropy (randomness) and 

have picked the value of "n" for which the associated 

entropy is largest. Once the number of sub-images has 

been established, the EN-CLAHE technique is used to find 

the clip limit value for each sub image. Although the 

approach strives for adaptable 'n' and 'L' values, the issue 

of non-uniform lighting still persists for many of the input 

photos. On the aforementioned equipment, the Auto-

CLAHE process requires 1 to 2 minutes. 
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In the below table, Img1 and Img2 denote healthy fundus 

while Img3 and Img4 denote glaucomatous fundus. Peak 

Signal-to-Noise Ratio (PSNR) comparison between 

suggested art and literary strategies. A high value denotes 

excellent image quality. 

Methods Img1 Img2 Img3 Img4 

CLAHE 

under HSV 

30.450 30.494 32.100 32.332 

CLAHE 

under BGR 

33.446 33.421 33.337 33.381 

EN-CLAHE 35.595 35.382 37.491 37.419 

Auto-

CLAHE 

35.588 35.375 37.480 37.407 

 

6. Conclusion 
Traditional CLAHE techniques produce results that 

depends number of sub-images (N) and also clipping limit 

(CL) that we select initially. A higher number of tiles 

unnecessarily adds to the computational load, while a 

smaller number of tiles-subsections does not raise the 

image quality to the necessary level. The another issue 

with this type of approach is selection of the clipping limit; 

a higher clip limit value enhances noise, whereas a single 

clip limit value applied to the whole image yields subpar 

results. Because EN-CLAHE selects the clip limit based 

on the sub picture intensities, it overcomes the issue of 

noise amplification and, as a result, performs better than 

CLAHE. Due to the fixed amount of sub images used in 

EN-CLAHE, it nevertheless remains subjective. The 

number of tiles and clip limits are automatically selected 

in Auto-CLAHE as it provides more results. 
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