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Abstract: ADHD, a complex neurodevelopment disorder, exhibits diverse manifestations across individuals, making its diagnosis 

challenging. Convolution Neural Networks (CNNs) offer a crucial edge in ADHD detection due to their proficiency in processing and 

analyzing intricate patterns within neuroimaging data, such as fMRI scans. Given the multi-dimensional nature of ADHD, CNNs excel in 

capturing subtle neurological variations that might escape conventional analysis, thereby providing a more nuanced and accurate 

approach to discerning the complex patterns associated with this condition. Their ability to automatically extract hierarchical features 

from imaging data makes CNNs indispensable in unraveling the intricate neurobiological markers crucial for ADHD identification and 

classification. Convolution Neural Networks (CNNs) have revolutionized medical imaging, offering unprecedented potential in the 

diagnosis and categorization of complex conditions like Attention-Deficit/Hyperactivity Disorder (ADHD) and its subtypes. In the 

context of ADHD, CNN and VGG-16 models are trained on functional MRI (fMRI) scans to identify unique neural patterns associated 

with the disorder. This paper introduces machine learning (ML) models designed for ADHD classification, assessed using various 

statistical metrics such as accuracy, F1-score, precision, and recall through 5-fold cross-validation. The results from the study showcase 

the capability of the Identification of Lung Cancer (IOLC) model in identifying lung cancer, gauged through accuracy, precision, recall, 

F-Measure, and error rate metrics. The model demonstrates 91.68% accuracy, 89.8% precision, 89.3% recall and 89.2% F-Measure. The 

ROC curve confirms the effectiveness of the proposed model as a classifier for ADHD types, and comparative results against VGG-16 

demonstrate the proposed model's superior performance, albeit moderately. 

Keywords: Attention-Deficit/Hyperactivity Disorder, Convolutional Neural Networks, Cross validation, functional MRI, machine 

learning, statistical metrics. 

1. Introduction 

One of the most prevalent neurodevelopmental diseases in 

kids is ADHD. It is typically initially identified in 

childhood and frequently persists into maturity. ADHD 

children may struggle to focus, restrain impulsive 

behaviour (doing without considering the consequences), 

or rein in their abundant energy. It is typical for kids to 

occasionally struggle with etiquette and attention spans. 

However, these behaviours do not just go away in kids 

with ADHD. Extended and frequently severe symptoms 

may make it difficult to interact with coworkers, friends, or 

family. 

Researchers are actively investigating the causes and risk 

factors associated with ADHD to enhance treatment 

strategies and minimize its likelihood of occurrence. While 

the precise causes and risk factors remain elusive, current 

studies indicate a significant role of genetics in ADHD, as 

evidenced by recent research [1]. Diagnosing ADHD 

involves a comprehensive process due to its symptoms 

overlapping with anxiety, depression, sleep issues, and 

specific learning difficulties, making it impossible to 

diagnose through a single test. Medical evaluations, 

including vision and hearing tests, serve as an initial step to 

eliminate other conditions presenting symptoms similar to  

ADHD. Clinicians rely on a checklist to assess symptoms 

and gather medical histories from parents, teachers, and 

occasionally the affected child to arrive at an ADHD 

diagnosis.Typically, the most effective method to address 

ADHD involves a blend of medication and behavioral 

therapy. For younger children aged 4-5 diagnosed with 

ADHD, the primary recommendation is behavior therapy, 

specifically parent education, as the first line of treatment, 

prior to considering medication. The ideal approach varies 

based on individual children and their families. Successful 

treatment strategies involve careful monitoring, regular 

check-ins, and making necessary adjustments throughout 

the process. 

2. Literature review 

Several automated diagnostic algorithms for obtaining 

mass characteristics from fMRI data have been proposed 

recently by biomedical experts. Waqas  Majeed, for 

instance, devised a novel method to determine if the 

repeatable spatiotemporal pattern of BOLD fluctuations is 

in line with other studies and provides dynamic data on 

brain activity when the body is at rest. It suggests that the 
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brain is functioning when at rest. Additionally, a few 

studies have looked at the dynamics of connections 

between different brain activities [2]. Lindquist [3] has 

suggested a modified exponentially weighted moving 

average (EWMA) model that may be applied to FMRI data 

and used to assess the change point of a time series. Chang 

et al.'s [5] investigation of the brain signals' dynamic 

connection used the sliding-window methodology [5]. A 

dynamic graph metrics approach has been suggested by 

Ren et al. in [7] to describe the temporal alterations of 

functional brain networks. A hybrid fMRI framework that 

makes use of affinity propagation clustering and density 

peak for functional connectivity has been proposed by Atif 

Riaz et al. in [4]. Ahmed et al. used ELM with several 

datasets to produce a classification model that is non-

ADHD in [14]. Based on our prior research, we have 

extracted several FCs using various temporal atlases and 

classified the FCs. We have found that the more FCs we 

extract, the more accurate our model is. Different 

approaches for classifying ADHD have been proposed by 

researchers in recent years. Since this condition is a 

medical brain ailment, doctors often diagnose it by 

evaluating a few of its symptoms. Studies have shown that 

this disorder may be divided into two groups, such as 

ADHD and non-ADHD. To use them in machine learning 

methods for classification, Gülay Çıçek has created two 

different datasets: one based on Haralick texture features 

and the other on gray-level co-occurrence matrix [6]. Jie 

Wang, as described in [15], has recently made strides in 

this area by using fNIRS signals to investigate functional 

connectivity and interval aspects for the categorization of 

people with ADHD and those who do not. A unique 

approach for classifying ADHD was suggested by Shuiqi 

Lui [16]. It is based on the (AdaDT) adaptive boosting 

decision trees and the (CDAE) convolutional denoising 

autoencoder. A self-encoding network with non-imaging 

fusion for ADHD classification has been presented by 

Yibin Tang et al. [17] and obtains a very good accuracy. It 

is not able to extract the necessary characteristics from the 

fMRI data, and it performs poorly when used with diverse 

datasets, among other problems. To achieve high accuracy 

classification, Miao and Zhang [7] proposed a feature 

extraction strategy based on relief and VA-relief. 

Subsequently, in 2017, Sudha et al. proposed a model in 

[8] to extract the gait signal features of children with 

ADHD from the video signals, which helps ill children's 

cognitive abilities and diagnoses the disorder.A textural 

point of view approach to feature extraction, known as 

LBP-TOP (local binary patterns on three orthogonal 

planes)—was presented by Chang et al. [9]. This technique 

uses the support vector machine (SVM) to identify the 

features that are discovered. When comparing the EEG 

source differences between people with ADHD and 

healthy controls, Athena Taymourtashutilises a sparse 

based representation technique, extracting the feature using 

cluster ICs and using a KNN classifier [10]. Zhang 

presented the dual diagnostic model later in [11], which 

uses sparse representation to identify the feature space 

separation. According to Juan L. Lopez Marcano, the 

power ratio (TBPR) is accepted as a diagnostic 

characteristic for ADHD in the US [12]. A Dynamic 

Sparse Coding (DSC) technique developed by F.M. 

Grisales-Franco [13] is based on statistical and 

physiological data. By creating non-stationary brain 

activity under spatiotemporal constraints, they investigate 

differences between the ADHD and control groups. 

Convolutional Neural Networks (CNNs) are a valuable 

tool in the field of ADHD diagnosis because of their 

unique capacity to identify complex patterns in data [14–

17]. CNNs are specifically engineered to analyse visual 

images; they are particularly excellent at extracting 

hierarchical characteristics from pictures or 

multidimensional data. As such, they review neuroimaging 

scans and find subtle neurological variations suggestive of 

ADHD. 

Because of its hierarchical nature, CNNs can automatically 

pick up pertinent characteristics at different abstraction 

levels, which makes it possible to identify subtle patterns 

in brain scans that could be missed by a human observer 

[18–20]. This capacity is essential for identifying the many 

complexes and symptoms that differ throughout different 

forms of ADHD, when differences may not be 

immediately noticeable to the unaided eye [21]. 

Additionally, CNNs can manage the high dimensionality 

and complexity of neuroimaging data, accommodating the 

substantial quantity of information included in scans like 

MRIs and fMRIs [22–24]. CNNs can generalise patterns 

and traits linked to ADHD across a range of populations by 

drawing on large datasets, which enhances their capacity 

for accurate and reliable diagnosis [25]. 

Overall, the application of CNNs in ADHD detection 

capitalizes on their capacity for automated feature 

extraction, handling complex data structures, and 

discerning intricate patterns, thereby offering promising 

avenues for enhancing diagnostic accuracy and 

understanding the neurobiological underpinnings of 

ADHD. 

3. Methodology 

The application of CNNs for ADHD detection and subtype 

classification holds great promise. It enables automated 

and objective analysis of fMRI data, potentially leading to 

faster and more accurate diagnoses. Furthermore, the 

ability to differentiate between ADHD subtypes using 

CNNs contributes to a deeper understanding of the 

disorder's heterogeneity. 
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Fig 1: Basic Convolutional Neural Network for ADHD 

CNNs can serve as valuable tools for clinicians, providing 

supplementary insights derived from neuroimaging data to 

aid in their diagnostic decisions. Early detection of ADHD 

is crucial for timely intervention and support. CNNs can 

aid in identifying subtle neuroimaging patterns in early 

stages, allowing for proactive intervention and 

management. A typical proposed model has been shown in 

Figure 2. 

 

Fig 2: Proposed model 

 

3.1 Data Set Collection: 

Collecting a comprehensive dataset for ADHD involves 

sourcing neuroimaging scans, behavioral assessments, and 

clinical information from diverse sources like hospitals, 

research institutions, and databases. These datasets often 

comprise structural and functional MRI scans, along with 

additional cognitive or behavioral measurements, to 

encapsulate the multidimensional aspects of ADHD. Once 

compiled, the dataset undergoes meticulous preprocessing, 

including image normalization, artifact removal, and 

feature extraction to ensure data quality and consistency. 

The dataset is then split up into multiple sets for testing 

and training the models: these sets typically consist of a 

test set to assess the model's performance on unidentified 

data, a validation set to fine-tune hyperparameters, and a 

training set for improving the model. To prevent bias and 

guarantee the generalizability of the model, the division 

procedure must make sure that these sets accurately reflect 

the heterogeneity of the full dataset, preserving a balance 

between ADHD subtypes, age ranges, and other pertinent 

parameters. 

3.2 CNN Model: 

Creating a CNN for the detection and classification of 

various ADHD types entails a comprehensive process 

encompassing several critical steps, from data 

preprocessing to model architecture. The following section 

elaborates on the distinct components involved in 

constructing a CNN for this purpose: An overview of the 

layers utilized in the proposed model is provided below. 

3.3  Batch Normalization:  

Normalisation is a pre-processing method for data that 

reduces the size of numerical data without altering its 

structure. Neural networks may be made faster and more 

dependable by building more layers into a deep neural 

network. The new layer standardises and normalises the 

information that comes from the preceding layer. The BN 

algorithm's γ (gamma) and β (beta) components come into 

play. These parameters are used to rescale (γ) and shift (β) 

the vector containing the values from the previous 

operations, as shown in Eq. (1). 

                 hi = γ hi(norm)+β      (1) 

3.4 ReLU: A rectified linear unit (ReLU) is an activation 

function that introduces the property of non-linearity to a 

deep learning model and solves the vanishing gradients 

issue. "It interprets the positive part of its argument. It is 

one of the most popular activation functions in deep 

learning. This means that the neurons will only be 

deactivated if the output of the linear transformation is less 

than 0. The plot shown in Figure 3 shows clear picture of 

the ReLU function as in Eq. (2). 
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                        f(x)=max(0,x)                                 (2) 

 

 

 

 

 

 

Figure 3: ReLU activation function 

3.5 Max pool layer 

When Maximum pooling, also referred to as max pooling, 

is a pooling technique that finds the maximum or greatest 

value in each feature map patch. The findings are sampled 

or pooled feature maps that show the feature that is most 

abundant in the patch, as opposed to average pooling, 

which highlights the feature's average presence. It has been 

discovered that this works better in practice than average 

pooling for computer vision applications like picture 

categorization. 

3.6 Softmax The relative probabilities are computed using 

the Softmax activation function. Equation (3) displays the 

SoftMax activation function equation. (3) 

 

 

The output layer's neurons' values are represented by the Z. 

The non-linear function is exponential. These values are 

later normalised and turned into probabilities by dividing 

by the sum of the exponential values. 

4. Results and Discussion 

Figure For the computation processes we have used intel 

core i5-7gen CPU, with 8gb system memory for 

implementing. Further we have considered ADHD data set 

from Neuroimaging tools and resource Collaboratory 

database. The size of the image will be irregular size. At 

the time of feature extraction this image of both the sets are 

resized 227 * 227 and 224 * 224. Here, 6360 iris images 

have been used to conduct the experiment.  

 

 

Fig 4: (a) Accuracy (b) Loss curves 

Figure 4 displays the accuracy and loss curves produced 

throughout the training phase. The model has undergone 

700 iterations of training. Over the iterations, accuracy has 

improved while the loss has decreased.  Using 5-fold cross 

validation, the statistical metrics True Positive Rate (TPR), 

False Positive Rate (FPR), and Accuracy for individual 

subtypes have been calculated and reported as in table 1. 

Table 1: Evaluation metrics 

Fold 
Precis

ion 

Reca

ll 

F1-

score 

TP

R 

FP

R 

Accura

cy 

Fold 

1 

0.85 0.77 0.81 0.74 0.02 91 

0.84 0.92 0.88 0.93 0.03 95 

0.88 0.89 0.88 0.89 0.03 94 

0.99 0.98 0.99 0.98 0.00 100 

Fold 

2 

0.93 0.94 0.93 0.94 0.02 97 

0.95 0.99 0.97 0.99 0.01 99 

0.98 0.92 0.95 0.92 0.0 98 
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0.99 1 0.99 1 0.00 100 

Fold 

3 

0.98 0.93 0.96 

0.93

5 0.00 
98 

0.97 0.99 0.98 0.99 0.00 99 

0.95 0.99 0.97 0.99 0.01 99 

0.99 0.99 0.99 0.99 0.01 100 

Fold 

4 

0.90 0.85 0.87 0.85 0.03 94 

0.89 0.98 0.93 0.98 0.04 97 

0.95 0.90 0.92 0.90 0.01 96 

0.99 0.99 0.99 0.99 0.01 100 

Fold 

5 

0.98 0.96 0.97 0.96 0.01 99 

0.99 0.99 0.99 0.99 0.01 100 

0.97 0.98 0.97 0.98 0.10 99 

0.99 0.99 0.99 0.99 0.01 100 

 

Fig 5:Confusion matrix 

 

The CNN model proposed aims to categorize individuals 

into specific ADHD groups—Combined, Hyperactive, 

Inattentive, and Normal— utilizing machine learning's 

prowess in extracting intricate patterns from fMRI scans, 

enabling precise distinction among these ADHD subtypes 

and the typical state. Figure 5 illustrates the confusion 

matrix detailing the model's classification performance, 

while Table 2 present the accuracy achieved in detecting 

each class 

 

 

 

Fig 6: ROC Curve 

The plotted curve lies consistently above the diagonal line, 

indicating the effectiveness of the proposed model in 

classifying different types of ADHD. Additional 

performance metrics is as detailed in Table 3 and figure 7. 

Furthermore, Table 4 illustrates a comparative analysis 

between the proposed model and VGG-16. 
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Table 2: Evaluation metrics 

Class Precisio

n 

Recal

l 

F1 

score 

Accurac

y 

ADHD_Combin

ed 

0.860 0.781 0.810 0.958 

ADHD_Hyper 0.884 0.879 0.880 0.980 

ADHD_Inattenti

ve 

0.855 0.923 0.886 0.972 

Normal 0.994 0.990 0.992 1.000 

 

 

Fig 7: Evaluation Metic 

The classification accuracy for ADHD subtypes—

Hyperactive, Inattentive, and Combined—ranges from 

95.8% to 97.7%, while the accuracy for distinguishing 

individuals without ADHD (Normal) stands at an 

impressive 99.8% as mentioned in table 3. These results 

suggest high precision in identifying ADHD subtypes and 

exceptional accuracy in differentiating individuals without 

ADHD using the model or classification system being 

evaluated. 

Table 3: Accuracy for each sub type 

Sub type 
Accuracy 

% 

ADHD_Combined 98.9 

ADHD_Hyperactive 97.7 

ADHD_Inattentive 95.8 

Normal 99.8 

 

 

 

 

Table 4: Comparison of accuracy between VGG-16 and 

proposed method 

Fold/Accuracy 

Actual 

Accuracy 

VGG_16 

(%) 

Accuracy 

Proposed 

Model 

(%) 

Fold 1 87.86 91.68 

Fold 2 89.4 89.96 

Fold 3 91.2 89.5 

Fold 4 88.68 93.43 

Fold 5 89.51 92.24 

Average 89.33 91.68 

 

With an average accuracy of 89.33%, the proposed model 

consistently outperformed the VGG_16 model, which had 

an average accuracy of 91.68% across five folds. 

Accuracy-wise, the proposed model consistently beat 

VGG_16, even when individual fold results varied. This 

demonstrates the general robustness and effectiveness of 

the model in classification tasks using the given dataset.  

5 Conclusions 

A brand-new deep learning model has been put out in the 

current research for the categorization of ADHD. Various 

statistical criteria have been used to evaluate the model. 

The outcomes were contrasted with VGG-16 and proposed 

model. However, when using the VGG-16 architecture, 

this competence to about 89%. For the same dataset, the 

suggested model achieves a remarkable accuracy of nearly 

91.68%, indicating significant progress in the 

categorization of ADHD subtypes. According to the 

comparative results, the suggested machine learning model 

outperformed VGG-16. 
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