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Abstract: Crop quality and yield can be significantly impacted by plant diseases, and even though plants may be examined for indicators 

of illness by trained biologists or farmers, this is typically an inexact and labor-intensive process. This study employs IoT and AI-based 

monitoring strategies to design and develop a smart method for classifying leaf illnesses. So as to measure the effectiveness of these two 

approaches, simulation results are compared in this work. In the first section, the data of photos of plants from the Plant Village data set 

augmented using a Hybrid CNN (Convolutional Neural Network) with RNN (Replicator Neural Network) and named as HCRNN, and 

deep features mined from these images. So as to enhance the precision of the segmentation procedure, the plant images undergo 

preliminary processing with an adaptive kaun filter. Next, a Glowworm Swarm Optimization based Clustering (GSOC) technique is used 

to isolate the plant region in the processed image. The HCRNN was then used to classify the plant disease based on the retrieved features. 

The projected method uses the Adapted Moth Search (AMS) Algorithm to fine-tune the CNN's (Convolutional Neural Network) 

hyperparameter in order to enhance its classification accuracy. Two branches of the model are used to learn from the T2- and Diffusion-

weighted MRI data: one employs a ten-layer CNN After applying HCRNN to classify the relevant characteristics, and then assesses the 

quality of the classification in terms of precision, recall, and f-score. Extensive field testing indicates that the technique is useful in hot 

and humid environments and that it is more accurate than other categorization schemes at recognizing classes of disease in leaves. 

Keywords: plant disease, Internet of Things, artificial intelligence, Convolutional Neural Network, Spiking Neuron, Adapted Moth 

Search 

 

1. Introduction 

There has been an uptick in the petition for agricultural crops in 

line with the rise in population, and about 75% of farmers still 

use time-tested methods [1]. Crop yield is negatively impacted by 

regional climate and soil variances, disease outbreaks, and an 

ever-increasing global population, making it impossible for these 

methods to keep up [1]. The belongings of climate and soil types 

cannot be tracked in the same way using conventional methods. 

The quantity of fertilizer or pesticide needed for a given crop 

cannot be determined automatically either; because of this, 

pesticides and artificial fertilizers may be used in excess. 

Agricultural prices rise, and the soil and human health are 

negatively impacted by the chemicals used. In addition, there is 

currently no automated system for early disease prediction and 

plant disease classification [2]. For agricultural disease 

identification using conventional methods, humans are required. 

The aforementioned highlights the fact that the main problems 

with conventional farming are its high prices, dependence on 

human intervention, inadequate unfortunate crop eminence, 

yields, and harmful effects of the overuse of fertilizers and 

pesticides. There is an crucial need to speech the problems above, 

such as the misuse of managed water systems, the use of harmful 

pesticides, the lack of effective contamination controls, and the 

climatic impacts on farming. Any misstep in diagnosis could 

result in faulty pest management and unnecessary chemical use. 

One of the major difficulties is accurately spraying a designated 

area with a sufficient amount of pesticide or fertilizer. Early 

disease detection is crucial for healthy plant growth [3]. 

Predicting the growth of plant diseases in a crop field based on 

environmental parameters collected via the Internet of Things 

(IoTs) is made possible with the use of Machine Learning (ML). 

The agricultural sector has witnessed substantial progress in 

recent years, attributable to the heightened interest and 

developments in Internet of Things (IoT) and Deep Learning 

(DL) [4-6]. The application of IoT enables the contemporaneous 

acquisition of real-time data. It aids in the economical use of 

water, fertilizer, and energy [7]. Two branches of the model are 

used to learn from the T2- and Diffusion-weighted MRI data: one 

employs a ten-layer CNN IoT device that can effectively monitor 

the requirement for pesticides and herbicides, as well as the early 

visible and non-visual symptoms of the disease. When combined 

with IoT, images may be fused with quantitative and genomic 

datasets, which is where DL approaches really shine [11]. Deep 

CNNs (DCNNs) are useful for the automated identification of 

features and feature selection when extended to plant disease 

diagnosis [12], weed identification [13], forecasting yields [15], 

fruit enumeration [14], and presentation of detected fruits, 

diseases, and weeds [16]. These methods streamline the tedious 

processes of manually extracting features and recognizing images 

and boost accuracy [17]. 

In addition to using ML methods to assess hyperspectral data 

from wheat leaves, Azadbakht et al. [18] successfully classified 

82% of rice leaves as either normal or damaged. Conventional 

procedure involves the initial classification of plant diseases 

based on observable symptoms manifesting on the leaves of the 
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plant [7, 8]. Traditional machine vision (MV) processes, such as 

manual categorization, necessitate feature extraction by hand, but 

CNN does not. Instead, CNN can operate with simply visual data. 

In contemporary times, the preferred approach for addressing 

challenges in learning has increasingly centered on the adoption 

of DL methodologies, with CNNs emerging as a prominent 

choice [19, 20]. 

Overfitting and low accuracy are just two of the many challenges 

that arise when attempting to classify new leaf diseases as they 

appear in plants. The agriculture sector relies on accurate and 

error-free analysis to separate good from bad products. To a 

certain extent, detection and classification tasks are where deep 

CNNs really shine as an efficient model of autonomous feature 

extraction. The network is able to properly classify images 

because of its ability to learn on its own [21]. In recent times, 

there has been a significant increase in the application of DL 

methods for image classification in agriculture, particularly for 

the diagnostic evaluation of plant diseases [22, 23]. Deep CNNs, 

on the other hand, necessitate extensive amounts of training data, 

are translatable, and have several parameters that must be set and 

fine-tuned. To classify a multitude of leaf diseases affecting 

plants and fruits, this study introduces an efficient framework 

designed for use in the feature extraction process. This is 

achieved through the utilization of a dedicated deep transfer 

learning model. The primary contributions of this proposed work 

are outlined as follows: 

• In the first segment, the data of images of plants from the Plant 

Village data set are augmented using a HCRNN and deep features 

extracted from these images.  

• Secondly, to improve the accuracy of the segmentation 

process, plant images undergo pre-processing using an adaptive 

Kuan filter. Next, a GSO based Clustering (GSOC) technique is 

used to isolate the plant region in the processed image.  

• The third step is to extract the features using the HCRNN and 

then use it to classify the plant diseases. The hyperparameter of 

CNN is improved with the use of the AMS Algorithm to boost 

the classification accuracy of the suggested method.  

• The accuracy, sensitivity, f-score, and precision of the 

resulting classifications are next evaluated. Extensive field 

studies show that the approach is trustworthy in detecting disease 

classes of leaves and that it works well in hot and humid 

environments compared to previous categorization schemes. 

The subsequent sections of this project are organized as follows. 

The second part encompasses a literature review focusing on 

methodologies for classifying plant diseases. Section 3 

underscores the significance of the methodology employed. 

Section 4 elucidates the outcomes derived from the proposed 

strategy, and a concise summary is presented in Section 5. 

 

2. Related Work 

 

The current methods used in the IoTs for identifying and 

categorizing plant diseases have been discussed. Two branches of 

the model are used to learn from the T2- and Diffusion-weighted 

MRI data: one employs a ten-layer CNN For the purpose of 

reducing the severity of this agricultural tragedy, Sowmiya and 

Krishnaveni [24] introduced a ML model called IQWO- PCA 

(Improved Quantum Whale Optimization with Principal 

Component Analysis) to analyze a collection of tomato disease 

photos. The hyperparameters have undergone systematic 

optimization in the rigorous analysis, and a publicly accessible 

dataset on plant diseases has been utilized to construct the 

network employed in this investigation. The transmission 

learning-based DNN is built on top of pre-existing prototype 

networks like Alexnet, VGG16, ResNet50, and DenseNet121. 

The primary characteristics of the dataset are extracted using a 

method for optimizing composite construction components. The 

retrieved information is fed into a deep neural network in order to 

improve illness classification in tomatoes. 

Two branches of the model are used to learn from the T2- and 

Diffusion-weighted MRI data: one employs a ten-

layer CNN Kondekar and Bodhe [25] was proposed a novel 

OACB (Optimized Attentional Capsule_BiLSTM) model for 

accurately identifying a plant disease from the available samples. 

A novel Chaotic Sparrow Search Optimization (CSSO) approach 

is used to fine-tune the hyperparameters, increasing the 

effectiveness of the proposed classifier. Simulation results 

demonstrate that the suggested study when compared to other 

current methods, achieves a higher detection accuracy value of 

97.06% using the MATLAB tool and the Plant Village Dataset. 

To improve feature discrimination and processing performance, 

Saberi Anari [26] was used a model to extract features and then 

used Modern support vector machine (SVM) models. After 

settling on a model, the training phase then uses that information 

to set the RBF's kernel parameters. Six sets of leaf images, 

encompassing both healthy and damaged leaves from apple, 

cotton, maize, grape, pepper, and rice plants, were scrutinized 

using data derived from the PlantVillage and UCI databases. Two 

branches of the model are used to learn from the T2- and 

Diffusion-weighted MRI data: one employs a ten-

layer CNN. Approximately 90,000 images were generated 

through the classification process, and preliminary findings from 

the experimental implementation phase indicate the potential for 

an effective model in classification processes. This holds promise 

for various forthcoming applications in the agricultural sector, 

particularly in the investigation of leaf diseases. 

The use of a DNN (deep neural network) was proposed by Al-

bayati & Üstünda [27] as a means of diagnosing leaf diseases in 

apple trees. A new architecture for a plant disease detection 

system (PDDS) is created, with feature extraction using Speeded 

up robust feature (SURF), and optimization using the 

Grasshopper Optimization Algorithm (GOA) to increase 

recognition and classification accuracy. Classification parameters 

are calculated to demonstrate the effectiveness of the suggested 

work, including Recall, Precision, Error, F-measure, and 

Accuracy. 

The authors of [28], who conducted a survey of IoT and DL-

based schemes, argued that ambient factors and the lack of crisp 

borders around the diseased zone pose significant difficulties in 

ROI segmentation and, by extension, disease prediction. In 

addition, using IoTs methods for crop monitoring and disease 

detection presents a difficulty in terms of power consumption. 

These problems were discussed in [29], where a rider neural 

network based on the sine cosine process was presented. To 

mitigate energy consumption during the transmission of images 

from the basis to the sink, their solution incorporated a routing 

procedure. Additionally, a median filter was applied to eliminate 

undesired noise in the images. Despite achieving an accuracy of 

91.18% on the Plant Village dataset [30], their algorithm 

highlights the potential for enhancement in disease forecasting 

precision. 

For the identification of numerous agricultural diseases, the 

authors of [31] was recommended combining IoT and DL 
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models. They used MDFC-ResNet (Multidimensional Feature 

Compensation-Residual Neural Network) and claimed a 93.96% 

improvement in accuracy during training. Subsequently, the 

'FruGar' system, developed by the authors of [32], was offered as 

a web-based software for disease identification in coffee leaves. 

They used Social IoT (SIoT) to combine and share disparate data 

sources, including photos taken with a camera and smartphone 

with environmental characteristics like temperature, humidity, 

and pH measured by sensors placed in various locations. Using 

the MobileNetV2 model, they were able to achieve a 

classification accuracy of 94.58%. Sensors were utilized to 

capture parametric data, and then feature extraction, minimizing 

data, and classification were performed using knowledge-based 

fusion techniques, as described by the paper's authors [33]. 

Accuracy in disease detection was improved to 97.5% by 

combining DCNN with IoT. 

Summary: All things considered, the methods mentioned above 

for leaf disease detection using images of leaves showed promise, 

but they were only tested on modest datasets and yielded 

theoretical results. Now that CNNs have revolutionized computer 

vision, specifically the fields of image classification and object 

detection, and they are seen as a promising tool to improve these 

automated systems, allowing for better results, a broader scope of 

diseases, and the implementation of useful instantaneous plant 

disease recognition systems. 

3. METHODOLOGY 

The complete process of the proposed HCRNN-based plant 

leaf disease detection and classification method is depicted 

in Fig 1. In-depth explanations of each step taken to create 

this model for identifying plant diseases with deep CNN 

are provided. The full procedure is summarized here, 

beginning with the acquisition of images for classification 

using deep neural networks. As a result of this research, a 

four-step method was proposed for detecting diseased 

leaves: pre-processing, image segmentation, feature 

extraction, and prediction of disease. At first, AKF is used 

to do preliminary processing on the gathered raw image in 

order to clean it up and improve its overall quality. The 

suggested GSOC is then used to segment the donoised 

images, and the resulting segments are used as input in the 

detection phase, where an HCRNN is used to identify the 

disease. The suggested HCRNN achieved improved 

performance compared to other plant disease classification 

schemes, and this is due in large part to the application of 

AMS to improve the classification accuracy of CRNN by 

fine-tuning its weights. 

 

Fig.1. The overall process of Proposed HCRNN Plan 

Disease Detection 

i. Input dataset description 

PlantVillage [16], a plant disease dataset produced by Penn 

State University, has 54,305 RGB photos divided into 38 

plant disease classes. There are 14 different plant 

illustrations inside. Images of healthy and sick leaves, each 

measuring 256 by 256 pixels, represent at least two distinct 

classifications for each plant. Fig.2 displays some 

representative images from the collection. Since this data 

set became public, numerous studies on the subject of plant 

disease diagnosis have been done. 

 

Fig.2. Illustrations of some of the 38 different leaf diseases 

in the Plant Village dataset 

ii. Data pre-processing 

The utilization of a bilateral filtering technique has been 

projected as a means to reduce the occurrence of Additive 

White Gaussian Noise (AWGN) and speckle noise within a 

dataset of plant village images. The amplification of the 

noise reduction has enhanced the quality of the image and 

simplified the process. In this study, the adaptive Kalman 

filter is employed as a noise-reduction technique for leaf 

images. 
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Adapted Kaun filter 

In order to mitigate the presence of extraneous noise in 

plant photos and enhance the accuracy of the village 

dataset, this method introduces the modified Kuan filter. 

This filter effectively eliminates noise without 

compromising the integrity of edges or features within the 

images. However, the noise is converted from a 

multiplicative noise model to an image-dependent additive 

noise model. Subsequently, the model undergoes the 

application of the least MSE (Mean Square Error) 

condition in order to estimate the original representation of 

the image. The pre-processing of the grey-level value P is 

expressed in the following manner. 

Pa,b = ∑ ∑ 𝐶𝑎,𝑏 ∗ 𝑤𝑓𝑎,𝑏  + ma,b ∗ (1 − wfa,b)r=3,c=3
b=1

r=3,n=3
a=1        (1)        

The rows and columns of the pixel data are represented by 

the coordinates (r,c), whereas the pixels themselves are 

represented by the coordinates (a,b) in a picture. The central 

pixel, or 𝐶𝑎,𝑏, of the filter window ma,b is the average 

intensity inside the window. This average is sometimes 

referred to as the weighting factor 𝑤𝑓
𝑎,𝑏

. Weight factor 

adjustments made with the Random Search Algorithm 

(RSA) to recover image quality and decrease noise provide 

the basis for the predicted noise reduction performance. The 

Adapted Kalman Filter (KF) performs this purpose. An 

iteration sequence {𝑊𝑘}, where k is an index between 0 and 

k, describes the algorithm under study, which is a general 

random search algorithm. Previous pixel coordinates and an 

algorithmic parameter 𝛩 marked by informs these 

iterations. The mean vector and covariance matrix are used 

to define the algorithm. Reflecting the probabilistic nature 

of the RSA algorithm, the current iteration 𝑊𝑘 is a set of 

points, and the iterations are capitalized to denote their 

status as random variables. 

iii. Segmentation using GSOC 

Following initial processing, GSOC is used to segment the 

afflicted area of the plant. The initial number of centroids 

and premature convergence are two limitations of k-means 

that are circumvented when swarm intelligence clustering 

methods are used. As a segmentation solution, the GSOC 

has been introduced. This method leverages the GSO's 

multimodal exploration capability to identify optimal 

centroids, thus incorporating the advantages of GSO for 

effective segmentation. In addition, the GSOC can figure 

out how many clusters there are without being given a 

specific number. The suggested GSOC method is a 

partitioning-based clustering, with the idea that instances 

cluster near their centroids, serving as inspiration. As a 

method for clustering data, K-means uses a weighted 

average of the instances to determine cluster centroids. If 

the data set is grouped into regular clusters of the same 

shape, the weighted average extraction approach may work 

well; otherwise, it will be inefficient. The suggested 

method turns the grouping problem into a multimodal 

optimization problem so that the centres can be found 

based on how the glowworms move.  

Each glowworm in the swarm works to cover more ground 

in the data set as a whole using the suggested algorithm's 

clustering technique. Each glowworm, guided by the 

parameter 𝑟𝑠, also migrates toward other glowworms that 

cover more data instances and have closer proximity 

among them in their immediate region. The GSO, which 

was developed using glowworm behaviour [34], 

outperforms previous swarm algorithms in terms of 

coverage rate and works on numerous functions at once. 

This method chooses the best weights since they have the 

best performance, and this process typically consists of 

four stages, including the release of glowworms, an update 

to the luciferin, some forward motion, and a final decision. 

The stepwise process is given below. 

Step 1: A random point 𝑝
𝑗
 (i.e. cluster fitness) is chosen 

from the full goal space and used to initialize the 

glowworms 𝑝
𝑘

, 𝑘 = 1, … . , 𝑚. A tent map of chaos n has 

been incorporated into this phase of GSO for the purpose 

of improving randomness. Chaos is shown as a non-linear, 

ubiquitous phenomenon with superior periodicity and 

randomness. It can enable the glowworms to search for the 

optimal value accurately and is defined as  

𝑝
𝑘+1

= {
2𝑝

𝑘
, 0 ≤ 𝑝

𝑘
≤ 0.5

2(1 − 𝑝
𝑘
), 0.5 ≤ 𝑝

𝑘
≤ 1

 
(2) 

Step 2: Each swarm contains the same number of luciferin 

molecules and a similar range of weights, and the luciferin 

value has been defined in terms of the objective function 

value as  

𝐿𝑢𝑖(𝑡𝑖𝑚𝑒 + 1) = (1 − 𝜌)𝐿𝑢𝑖(𝑡𝑖𝑚𝑒)
+ 𝛾𝐹𝑡𝑖(𝑝

𝑗
(𝑡𝑖𝑚𝑒 + 1)) 

(3) 

Here, ρ represents the luciferin decay constant, taking 

values within the range of zero to one. γ denotes the 

luciferin enhancement constant, and 𝐹𝑡𝑖(𝑝
𝑗
(𝑡𝑖𝑚𝑒 + 1)) 

represents the objective function value at the position of 

glowworm i at time 𝑡𝑖𝑚𝑒. The convergence rate of GSO 

has been shown to benefit from the introduction of the 

movement rule. When the number of iterations is greater 

than 10, the worst-fitting 5% of glowworms are replaced 

by the average location of all glowworms, allowing for a 

faster search for the ideal value. 

Step 3: Here, a probabilistic process is used to shift the 

weights in favour of the neighbours whose glowworms 

have a higher luciferin value. The probability of a 

glowworm migrating toward a neighbor 𝑗, denoted by 

𝑝
𝑗
(𝑡𝑖𝑚𝑒), is defined as 

𝑝𝑟
𝑗
(𝑡) =

(𝐿𝑢𝑗(𝑡𝑖𝑚𝑒) ∗ 𝜌 − 𝐿𝑢𝑖(𝑡𝑖𝑚𝑒) ∗ 𝜌)

∑ (𝐿𝑢𝑘(𝑡𝑖𝑚𝑒) − 𝐿𝑢𝑖(𝑡𝑖𝑚𝑒))𝑘𝜖𝑛𝑖(𝑇)

 
(4) 

Where the luciferin value of glowworm is represented as 

𝑙𝑢𝑖(𝑡𝑖𝑚𝑒)and the movement of glowworms i can be 

followed as 
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𝑝
𝑖
(𝑡𝑖𝑚𝑒 + 1)

= 𝑝
𝑖
(𝑡𝑖𝑚𝑒)

+ 𝑠 × (
𝜌 ∗ (𝑝

𝑗
(𝑡𝑖𝑚𝑒) − 𝑝

𝑖
(𝑡𝑖𝑚𝑒))

‖𝑝
𝑗
(𝑡𝑖𝑚𝑒) − 𝑝

𝑖
(𝑡𝑖𝑚𝑒)‖

) 

(5) 

Where s is the step size.  

Step 4: The luciferin rule has been modernized to account 

for the varying numbers of nearby molecules, and its new 

definition is as follows: 

𝑟𝑑
𝑖 (𝑖𝑡 + 1) = 𝑚𝑖𝑛 {𝑟𝑠, 𝑚𝑎𝑥 {0, 𝑟𝑑

𝑖 (𝑖𝑡) + 𝛽(𝑛𝑖𝑡

− |𝑁𝑖(𝑖𝑡)|)}} 

(6) 

The local-decision domain of i at the 𝑖𝑡 + 1 iteration is 

represented by 𝑟𝑑
𝑖 (𝑖𝑡 + 1), where′𝛽′  is a constant 

parameter that controls the rate of change of the neighbor 

domain and 𝑛𝑖𝑡 is a threshold that is used to regulate the 

number of neighbors. Each image in the plant village data 

set V has n instances and d dimensions, and these instances 

are labelled with 𝑝
𝑖
, 𝑖 = 1 … 𝑛, which are then used as 

inputs to the clustering algorithm. An example of a 

clustering algorithm is 𝐶𝑑 = { 𝑐𝑑1; 𝑐𝑑2, … . , 𝑐𝑑𝑘} where k 

is the number of centroids in the 𝑐𝑙 centroid set, and 𝐶𝑙 =

{ 𝑐𝑙1; 𝑐𝑙2, … . , 𝑐𝑙𝑘} where a single centroid represents each 

cluster. The image is segmented to isolate the plant 

sections in a single shape. Furthermore, the clustering 

algorithm endeavors to heighten the similarity among 

examples within the same cluster while diminishing the 

similarity between instances in distinct clusters. Each 

cluster must also have at least one instance in it, and the 

various clusters must be disconnected from one another in 

a such that ⋂ 𝑐𝑙𝑖 = {}𝑖,𝑘  and ⋃ 𝑐𝑙𝑖 = 𝑉𝑖,𝑘 . The Sum 

Squared Errors (S) is then determined by filling in all of 

the blanks in each cluster. 

𝑆 = ∑ ∑ (𝑐𝑑(𝑝𝑣𝑖 , 𝑐𝑙𝑗))
|𝐶𝑙𝑗|

𝑖=1
𝑘
𝑗=1

2

                                        (7) 

Every glowworm in the GSO optimization swarm S is 

denoted by a vector (𝑔𝑤𝑗  , 𝑗 = 1 … 𝑚), with a total of m 

glowworms in the swarm. The coverage set (𝑐𝑠𝑗) 

represents the set of data examples covered by 𝑔𝑤𝑗 , and 

intra-distance (𝑖𝐷𝑗) signifies the distance between the 

members of 𝑐𝑠𝑗 and the position of 𝑔𝑤𝑗 . Each 𝑔𝑤𝑗  

comprises five components: luciferin level (𝐿𝐿𝑗), fitness 

function value (𝐹𝐹𝑗), d-dimensional position vector (𝑝
𝑗
), 

and 𝑐𝑠𝑗. In its local range, the 𝑔𝑤𝑗  should include at least 

one data instance. All of the glowworms in swarm S have 

the same radial sensor range; hence, the local range is also 

𝑟𝑠. Even if a glowworm has no nearby neighbours or 

many, it can still move towards the optimal glowworms by 

maintaining a constant local range during the clustering 

process. The method above is used to divide up the plant 

village dataset. Fig. 3 depicts the GSO clustering 

procedure. Small black crosses represent the initial, 

unplanned positions of the glowworms, and the red dots 

represent actual instances of plants in the data set. (ii) How 

the glowworms moved around when clustering. (iii) 

Following the clustering procedure with four centroids, the 

final positions of glowworms (i.e., little squares) are 

shown, with each cluster in the data set having a different 

colour (i.e., plant region) based on the smallest distances to 

the centroid. 

 

Fig 3: The clustering procedure for the village dataset 

involves a swarm size of 1, and the maximum number of 

iterations is set to 200. 

iv. Plant disease detection using hybrid CNN and 

RNN 

In this portion, a new automatic hyperparameter selection 

approach will be proposed for identifying the ideal 

network configuration, which includes the network 

topology and hyperparameters for HCRNN by utilizing 

AMS in conjunction with a leaf gradient descent algorithm. 

As part of the suggested method, network configurations 

were encoded as a collection of real-number m-

dimensional vectors that the AMS algorithm would use to 

conduct its search. When using a search agent to train the 

HCRNN classifier, the AMS algorithm is utilized to 

discover the optimal settings for the network. In terms of 

automatic network structure and parameter selection for 

HCRNN, the suggested method provides an alternate 

option. 

Deep Convolutional neural networks (DCNN) 

A CNN has one or more convolutional layers and one or 

more fully connected layers that connect them. Multiple 

hidden layers, typically consisting of a succession of 

convolutional layers, merge the information from the input 

and output layers. A CNN can spot network traffic 

anomalies and dangerous software very ease. However, 

this required a lot of processing time; thus, AMS was used 

to fine-tune the hyperparameter. For classification, the 

feature vector learned in the flattened layer in conjunction 

with softmax activation algorithms employed. Finally, the 

information gleaned from the network nodes used to place 

assaults into several categories. The suggested technique 

uses a CNN because of the CNN's superior performance in 

feature identification and recognition tasks. DCNN works 

by chaining together a variety of activation functions, such 

as. The combination of ReLU and Hard-Swish can produce 

neural networks with improved performance.  

Convolution 1: The array of numerical data that make up 

the input plant village features can now be fed into a 
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convolutional layer to undergo further processing. The 

equation is used to determine the feature matrix 𝐹𝑚. 

𝐹𝑚 =  𝐶ℎ(𝑖𝑥) ∙ (𝑁𝑤, 𝔟 × 𝐹𝑟𝑤+𝔴−1,𝑐𝑙+ℎ−1 + 𝔟) 

     (8) 

In this formula, ch signifies the number of channels, rw 

represents the rows of the matrix, which can take on any 

value from 1 ≤  𝑤 ≤  𝑙 and cl represents the columns of 

the matrix, which can take on any value from 1 ≤  ℎ ≤  𝑙. 
By switching from the ReLU activation function to a non-

linear activation function for all activations, the model's 

convergence rate is stabilized and the vanishing gradient 

problem is avoided. Here 𝐴(𝑥) is the ReLU formula as in 

Eq. (9):  

𝑟𝑒𝑙𝑢(𝐴(𝑖𝑥)) = {
0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 𝑥 > 0

   

      (9) 

In this paper, Hard-Swish (𝐻𝑆), a new and novel 

activation which is carefully connected to the activation 

function Swish is introduced. It is defined as in Eq.(10) 

𝐻𝑆(𝐴(𝑖𝑥)) = 2𝑥 × max(0, min(1, (𝛼𝑥 × 0.2 + 0.5))) 

     (10) 

where 𝛼, is a constant or a parameter that can be adjusted 

through training. After a certain value of 𝛼 →  ∞, the 

hard-sigmoid part of HS behaves like the ReLU activation 

function. HS uses a non-linear approach to interpolate 

between Relu and linear functions smoothly. The level of 

interpolation can be modified by altering α, a trainable 

parameter. Consequently, the channel dimension is 

constructed by stringing together the proposed pair of 

activation functions (or, more generally, a set of activation 

functions). 

𝐶ℎ(𝑖𝑥) = 𝑃([𝐻𝑆(𝐴(𝑖𝑥)),  𝑟𝑒𝑙𝑢(𝐴(𝑥))])  (11) 

Where P is concentrate. 

Max pooling 1: Max pooling can downsample superfluous 

features to prevent overfitting and lower network 

parameters. It can be expressed by 

𝑖𝑥𝑗
𝑙 = 𝐴(𝑤𝑡𝑗

𝑙 ∗ 𝑑(𝑖𝑥𝑗
𝑙−1) + 𝔟𝑗

𝑙)   

     (12) 

where 𝑤𝑡𝑗
𝑙  signifies the weight of the jth feature map in the 

lth layer and 𝔟𝑗
𝑙represents the bias in that map. Two 

branches of the model are used to learn from the T2- and 

Diffusion-weighted MRI data: one employs a ten-

layer CNN Mean, and the greatest, and probabilistic 

pooling functions are all abbreviations for down-sampling 

(*) in the field of statistics. The dimension of the final 

feature map was reduced using max-pooling with shift-

invariances. 

Convolution 2: After being obtained in the Maxpooling 

layer, the pooled functional matrix serves as the input for 

the second convolution layer, which is responsible for the 

extraction of high-level characteristics from that matrix. 

The calculation for the second convolution layer is the 

same as the first (Eq. 8 and 9). The objective of the second 

max-pooling layer is analogous to that expressed in 

Equation 13, aiming to reduce the size of the matrix. The 

outcome of the second max-pooling layer can subsequently 

serve as a pooled function map for this flattened layer. A 

pooled plant feature matrix is transformed into a column or 

feature vector via the flattening layer. Within this layer, the 

function is restructured in order to transform the features or 

parts of the pooled feature map 𝐼𝑚 into feature vectors 𝐼𝑣, 

as explained below. 

𝑄 = 𝑝𝑜. 𝑟𝑠 [(𝑟𝑒𝑙𝑢 (𝐴(𝑝𝑖)) −  𝑤𝑡 +  1) ×  (𝐻𝑆(𝐴(𝑝𝑖)) −

ℎ + 1)]     (13) 

Where p is pooling, and rs is reshape.  

Classification: Two branches of the model are used to 

learn from the T2- and Diffusion-weighted MRI data: one 

employs a ten-layer CNN. Disease categories' probabilities 

are determined by the use of softmax functions applied to a 

dense layer of numerous neurons. Consequently,  the net 

output op calculated using (Eq. 14):  

𝑜𝑝
𝑗

= ∑  𝑤𝑡𝑖 ∙ 𝑝𝑖
𝑖

+ 𝔟𝑙
𝑖=1     

     (14)  

At the classification layer, the softmax activation functions 

are used.  

Hyperparameter Tuning: The AMS offers an approach 

that is ideal for searching for parameters in the proposed 

CNN. Parameters like kernel size, number of steps, number 

of channels, weight, and bias must be set because it relies 

on Hyperparameter Tuning. The optimal set of parameters 

for a model is determined by hyperparameter tuning. Based 

on the recommended comparison parameters employing 

AMS and the modified structure referred to as DCNN, 

Hyperparameter Tuning was chosen for this investigation. 

The RNN is also a hybrid with the CNN scheme, and its 

name is HCRNN, to increase the classification accuracy.  

The RNN is a three-hidden-layer feed-forward multi-layer 

perceptron that sits between an input and an output layer. 

The objective of the RNN training process is to attain a 

precise reproduction of the input data design at the output 

layer. The n units in the input layer and the n units in the 

output layer jointly signify features extracted from the 

exercise data [35]. The sizes of the three hidden layers are 

determined in order to minimize the mean rebuilding error 

transversely all training designs. Specifically, the 

activation function 𝐴𝑘(𝐼𝑝𝑜), where 𝐼𝑝𝑜 is the weighted total 

of the inputs to the unit and is demarcated as the output of 

unit 𝑜 in layer 𝑝. 

I𝑝𝑜 =  ∑ wpoqZ(p−1)j

Lp−1

j=0

 

     
(15) 
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Where Zkj is the productivity from the qth unit of the pth 

layer. Lp is the number of units in the pth layer and 

activation function 𝑎𝑓 for the two external hidden layers (p 

= 2, 4) is then: 

Sp( Ipo) = tanh(ap Ipo) , p = 2,4 (16) 

For this experiments, ap is a tuning parameter set to 1. In 

the case of the middle-hidden layer (p = 3), the DL is the 

cascade with N as the number of stages or degrees of 

activation and a3 determining the rate of transition between 

levels. 

S3( Ipo) =  
1

2
+  

1

2 (p − 1)
∑ tanh[a3 ( Ipo −

j

N
)]

N−1

j=1

 

     
(17) 

For the middle-hidden layer, a step-wise 𝑎𝑓 is utilized, 

which converts the endlessly distributed data points into a 

set of discrete valued vectors (activation levels): 0, 1/N1, 

2N1, etc. This method of data classification is utilized in 

this work for the purpose of categorizing liver diseases. 

Data points are organized into groups due to the plotting to 

the discrete classes in the middle-hidden layer. Further 

analysis of the RNN's disease predictions can reveal both 

isolated cases and clusters. 

Training the IRNN: The 𝑎𝑓 for the output layer is 

selected from two possible candidates. The first is linear, 

and it equals the inputs' weighted total using the formula in 

Equation 18. This means that S5 (Ipo) = Ipo. The Sigmoid 

function comes in at number 2. 

S5( Ipo) =  
1

1 + e−a5 Ipo
 

 (18) 

The neural network weights are modified with the use of 

an adaptive learning rate (l) throughout each training 

iteration: 

wtoq
l+1 =  wt𝑜𝑞

l + αl + 1 ∆wt𝑜𝑞
l+1  (19) 

The novel learning amount at iteration l + 1, αl+1 is 

specified by: 

αl+1

= {
βr × αl                        if el+1 > 1.01 ∗ 𝑀𝑠1

βe × αl                              if Msl+1 < 𝑀𝑠1   and αl < αmax

αl                otherwise

 

     (20) 

 

Where 𝑒𝑙 in equation 20 refers to the mean square error 

(MSE) and calculated as Ms 

Ms =  
1

mn
∑ ∑(x𝑜𝑞 − op𝑜𝑞

l )
2

n

j=1

M

i=1

 
(21) 

In Equation 21, the variable "m" denotes the quantity of 

images within the training dataset, "n" signifies the number 

of features, and "𝑥𝑜𝑞" represents both the input and the 

desired output (o = 1, 2......m, q = 1, 2.....n), and op
oq
l  

represents the rate of the RNN's output at the lth iteration, 

where 𝑜 and 𝑞 are the input and target, respectively. 

Adjustable parameters include the Early Learning Rate, 0, 

the Extreme Learning Rate, max, the Learning Rate 

Expansion Factor, βe, and the Learning Rate Lessening 

Factor, βr. 

Hyperparameter tunning using AMS 

Phototaxis refers to the behaviour of moths, in which they 

circle and approach a source of artificial light. Various 

hypotheses have been proposed to explain this behavior, 

but its precise cause remains a mystery. Using celestial in a 

transverse orientation when airborne is one of the proposed 

explanations. Moths, like the moon, will keep a constant 

angle to the celestial light by flying in a straight line [36]. 

Moths are characterized in part by their ability to perform 

Levy's flights, one of the most important flying patterns in 

their native environments. Levy flights, as seen in insects 

like the fruit fly Drosophila, resemble a power law 

distribution over a wide range of scales, with exponents 

close to 3/2 [37]. Based on the findings presented in 

reference [38], certain complex flight patterns can be 

elucidated by adopting an optimal biased scale-free 

searching strategy to emulate the two primary phases of the 

MS algorithm, namely exploitation (intensification) and 

exploration (diversification). In this context, phototaxis 

and Levy flights inspired by moths in nature were 

incorporated. Specifically, moths within the population 

situated in proximity to the most superior moth (or light 

source) execute Levy flights around the preeminent moth. 

The ensuing equation encapsulates this behavioral 

phenomenon: 

𝑝
𝑖
𝑡+1 = 𝑝

𝑖
𝑡 + 𝛼𝐿𝐷(𝑠),          (22)  

Two branches of the model are used to learn from the T2- 

and Diffusion-weighted MRI data: one employs a ten-

layer CNN where 𝑝
𝑖
𝑡+1 is the current iteration's moth i's 

updated location and 𝑝
𝑖
𝑡 is the original location of moth i in 

the current generation. The LD(s) notation stands for Levy-

drawn steps. The value of the scaling parameter 𝛼 is a 

function of the optimization issue. In the unique MS 

algorithm, α was specified as [36]:  

𝛼 =  𝑆𝑚𝑎𝑥/𝑡2 ,      

     (23)  

In the equation provided, where 𝑆𝑚𝑎𝑥 represents the 

maximum step length in the walk, its value is subject to 

dependence on the specific characteristics of the given 

problem. LD assumed in Eq. (23) can be articulated as 

given in Eq. [24]: 

 𝐿𝐷(𝑠)  =
(𝛽 − 1)𝛤(𝛽 − 1)∗sin(

𝜋×(𝛽−1)

2
)

𝜋𝑠𝛽  ,                 

     (24)  

where Γ is gamma function and 𝑠 is better than 0. Two 

branches of the model are used to learn from the T2- and 

Diffusion-weighted MRI data: one employs a ten-
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layer CNN The most successful moth in a population, even 

if it's far from the light, will still fly in a straight line 

towards it. This process can be described as given eqn 

𝑝
𝑖
𝑡+1 = 𝜆 × (𝑝

𝑖
𝑡 + 𝜑 × (𝑝

𝑏𝑒𝑠𝑡
𝑡 − 𝑝

𝑖
𝑡))                        

     (25)  

where 𝑝
𝑏𝑒𝑠𝑡
𝑡  denotes best moth in generation 𝑡 and 𝜑 and 𝜆 

are quickening and scale factors, correspondingly. Two 

branches of the model are used to learn from the T2- and 

Diffusion-weighted MRI data: one employs a ten-

layer CNN The moth can also reach the destination ahead 

of the best moth in the community by flying toward the 

source of light. This flight pattern is described as  

 𝑝
𝑖
𝑡+1 = 𝜆 × (𝑝

𝑖
𝑡 +

1

 𝜑 
× (𝑝

𝑏𝑒𝑠𝑡
𝑡 − 𝑝

𝑖
𝑡 ))            (26)  

The original paper [36] simplifies things by splitting the 

moth population in half along fitness lines. Moths in the 

first subpopulation (those with higher fitness) have their 

positions updated utilizing Levy flights according to 

eqn.26. In comparison, those in the second subpopulation 

(those with lesser fitness) have their locations updated 

according to eqns.27, with a chance of 50%. According to 

the findings of actual trials and the data presented in [36], 

the MS algorithm is an effective means of resolving global 

optimization problems. There were, however, a few 

problems with the way MS operated.  

In later iterations, when the algorithm assumed and has 

located the proper section of the search space, the current 

best solution has a large impact on the updated positions of 

moths in subpopulation 2. However, this often results in 

inferior mean values and premature convergence in the 

first few rounds. Subpopulation 2 introduces a third search 

equation that uses random exploration of the search space 

to make up for these shortcomings.   

𝑝
𝑖,𝑗

= 𝑙𝑏𝑗 + 𝑟𝑎𝑛𝑑(0, 1)  ∗  (𝑢𝑏𝑗 − 𝑙𝑏𝑗),                   (27)  

Two branches of the model are used to learn from the T2- 

and Diffusion-weighted MRI data: one employs a ten-

layer CNN where 𝑢𝑏𝑗  and 𝑙𝑏𝑗 are the upper and lowest 

limits of the j-th solution variable, respectively, and 𝑝
𝑖,𝑗

 is 

the j-th parameter of the i-th moth in the subpopulation 2. 

In the second subpopulation, the modified MS (MMS) 

method can use either eqn (18%), (18%), (20%), or (21%). 

4. Experimental Results and Discussions 

In this part of the discussion, the performance of the 

projected HCRNN-based plant disease detection scheme is 

examined and compared with the performance of existing 

schemes such as DCNN and OACB. 54,306 pictures; 14 

crop species; 26 illnesses (or healthy); 38 classes of 

healthy and sick leaves are used in this study, all sourced 

from Plant Village. In this work, the confusion matrix was 

computed in order to provide a summary of the 

classification performance of a classifier based on the test 

dataset. Accuracy, specificity, sensitivity, precision, and 

the F1 score are only a few of the performance metrics for 

which it is commonly employed.  

 

Fig 4:  Accuracy performance of proposed HCRNN and 

other schemes 

For a specific number of features in a database, Fig. 4 

displays the accuracy of the proposed HCRNN in 

comparison to the existing models of OACB and DCNN. 

The HCRNN enhances precision and speeds up 

computations. Given that the HCRNN does not require a 

substantial number of derived components during 

reduction, it attains an accuracy of 98.5%, surpassing all 

other models in comparison. Two branches of the model 

are used to learn from the T2- and Diffusion-weighted 

MRI data: one employs a ten-layer CNN. The HCRNN 

method proposed in this study outperforms existing 

methods in terms of favorable validation outcomes for 

disease prediction. This superiority stems from its 

enhanced capacity to learn and adapt to illness and leaf 

image data by incorporating texture features. Moreover, 

the proposed method successfully mitigates the risk of 

overfitting in small datasets. 

 

Fig 5: Precision performance of proposed HCRNN and 

other schemes 

The accuracy of HCRNN in comparison to the OACB and 

DCNN models already in use is shown in Fig. 5. As the 

number of characteristics grows, so does the accuracy. The 

HCRNN, in comparison to the DENN and the ECPRC, 

achieves a recall of 98%. HCRNN decreases the time 

required computing derived factors, making network fine-

tuning easier and more accurate. The most important 
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details can be zeroed in on and duplicated work can be 

avoided by employing a unique loss method for each 

image representation. Therefore, the efficacy of disease 

classification and prediction is enhanced by this approach. 

 

Fig 6: F1-score performance of proposed HCRNN and 

other schemes 

Compared to the existing models of OACB and DCNN, 

the F1 score of the proposed HCRNN for the number of 

features in the given databases is shown in Fig. 6. The f-

measure is optimized along with the number of 

characteristics. When compared to other models like 

OACB and DCNN, for instance, the f-measure provided by 

the HCRNN is 96%. In terms of accuracy and F1 score, the 

HCRNN was clearly superior to the alternatives. These 

processes, when combined with FMSO, greatly enhance 

the quality of the hyperparameters of AMSs while 

reducing the computational cost, allowing for a high F1 

score to be attained. 

Compare the recall of the proposed HCRNN to that of the 

existing models of OACB and DCNN for a given database 

size in Fig. 7. The recall improves linearly with the number 

of characteristics. When compared to the OACB and 

DCNN, the HCRNN achieves a recall of 98.5%. Existing 

approaches are underfitting because they rely on simplistic 

models that perform poorly on high-dimensional data. The 

suggested method's specificity will be enhanced once the 

optimal hyper-parameter configuration has been 

discovered in AMS and applied to the complete training of 

a CRNN, leading to a much-decreased error rate. 

 

Fig 7: Specificity performance of proposed HCRNN and 

other schemes 

 

Fig 8: Sensitivity performance of proposed HCRNN and 

other schemes 

Utilizing the identical database and an equivalent number 

of features, Fig 8 juxtaposes the accuracy of the proposed 

HCRNN against that of the existing models OACB and 

DCNN. When compared to the OACB and DCNN, the 

HCRNN improves accuracy and eventually reaches a rate 

of 98%. As a result, the suggested method outperforms the 

state-of-the-art algorithms at validating citrus fruit and leaf 

health. Since different RNN layers have variable potential 

in boosting sensitivity, the proposed HCRNN's ability to 

optimize individual CNN layers is helpful for achieving 

greater performance at a lower cost.  

5. Conclusion  

The model utilizes two branches to learn from T2- and 

Diffusion-weighted MRI data. One branch employs a ten-

layer CNN, considering images of both healthy and 

infected leaves from the leaf infection database. This 

research introduces a framework for real-time leaf disease 

detection based on the HCRNN approach. The image pre-

processing approaches employed with the AK fileting 

method to expand the dataset and make the suggested 

system more resilient. The GSOC segmentation is then 

used to isolate the damaged area of the leaf picture. The 

efficiency and generalizability of the model are both 

improved by this method. The findings of the planned 

HCRNN study are extremely encouraging for identifying 

healthy and sick leaf types in the plant village dataset. 

When compared to other algorithms like OACB and 

DCNN, the suggested HCRNN performed exceptionally 

well, with an F1 score of 98% and accuracy, specificity, 

sensitivity, and precision, all in the 98% range. However, 

more research is needed to segment the sick parts of the 

leaf image in the future by reducing background noise. 

Current leaf disease diagnosis techniques are developed 

with photos acquired in a controlled environment, such as 

a laboratory. Even though real-time disease recognition 

architecture based on photos of leaves taken in the field 

has been established, the suggested system is not yet fully 

automated. Additionally, a multi-object deep learning 

model will be developed to detect plant diseases from a 

cluster of leaves rather than focusing solely on a single 
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leaf. This approach aims to address challenges associated 

with real-time data collection in the context of plant 

disease detection. Additionally, efforts are being made to 

put the trained model developed here into a mobile app. 
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