
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 303–309  |  303 

Architecture Patterns Clustering using a Machine Learning Approach 

 

Omar AlHuniti1, Khawla Al-Tarawneh2, Esra Alzaghoul3, Fawaz Ahmad Alzaghoul4 

Submitted: 05/02/2024    Revised: 13/03/2024     Accepted: 19/03/2024 

Abstract: Architecture patterns are frequently employed in software development to address prevalent design challenges. The 

identification and classification of architecture patterns have become crucial in optimizing the design process due to the increasing 

complexity of software systems. Clustering has emerged as a widely adopted technique to categorize comparable entities. Recently, 

machine learning algorithms have been employed to automate and enhance the precision of clustering.  

This study proposed using k-means clustering to group the architectural patterns like repository, client-server, broker, microkernel, 

publisher-subscriber, model view controller, REST, and space-based patterns together.  

That was done on one of the benchmark dataset (Architectural Patterns dataset ) by using different Ks to perform the clustering, 

demonstrating the connections between architecture patterns. Then extract the related patterns and propose valid splitting for some 

patterns. 

Keywords: Architecture patterns, Clustering, Image Processing, Machine Learning. 

I. Introduction: 

The domain of software architecture has grown 

significantly in recent years as a result of the introduction 

of new software systems and the rising complexity of old 

ones. One key problem in software architecture design is 

discovering and selecting appropriate architecture 

patterns that may be used across different projects. These 

patterns provide a collection of tried-and-true design 

solutions that may be applied to specific issue areas, 

ultimately improving the quality of software systems. 

A set of standards that influence the construction of a 

software system is referred to as an architectural pattern. 

Functional requirements, restrictions, and quality 

attribute criteria are all part of these specifications. 

Architectural patterns are reusable solutions that are 

labeled and can be used to address frequently occurring 

difficulties in software architecture design. Software 

architects have long used architectural pattern catalogs 

such as Pattern-Oriented Software Architecture and 

Patterns of Enterprise Application Architecture.[4] 

Clustering is a proficient data analysis approach that 

groups together comparable objects based on their 

properties or features. Machine learning, data mining, 

pattern recognition, and picture segmentation are all 

disciplines where clustering is used. The k-means 

algorithm is a well-known clustering method that divides 

data into k groups, where k is a user-specified value. The 

algorithm assigns each data point to the nearest cluster 

center iteratively and then updates the cluster centers 

depending on the new assignments. When the 

assignments no longer change or when a predetermined 

convergence threshold is reached, the algorithm has 

converged.[5] 

Selecting an appropriate clustering algorithm is critical 

to any machine learning-based approach to architecture 

pattern analysis. This paper uses the k-means clustering 

algorithm due to its simplicity, efficiency, and 

effectiveness in clustering large datasets. Using 

benchmark datasets, Architectural Patterns Dataset. 

The paper is organized as follows: In section two, 

background and literature review, a group of research 

papers related to the research are presented. In section 

three, we describe the methodology of our proposed 

approach. In section four, results and discussion are 

conducted. In section five, the conclusion and future 

work are displayed. 

II. Background And literature review: 

Architecture patterns are design frameworks or 

templates often used in software architecture to provide 

a proven solution to a recurring design problem. These 

patterns capture the essential features of a system's 

structure and behavior, allowing architects to create 

systems that are scalable, maintainable, and adaptable to 

changing requirements. 

Many studies were done on architectural patterns and 

their features, pointing out their advantages and 

1Amr9220474@ju.edu.jo 

King Abdullah II School of Information Technology 

2Kol9220471@ju.edu.jo 

King Abdullah II School of Information Technology 

3Esra@ju.edu.jo 

King Abdullah II School of Information Technology 

4Fawaz.alzaghoul@gmail.com 

Department of Software engineering, College of 

Sciences and Information Technology, Jadara 

University, Irbid Jordan 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 303–309  |  304 

disadvantages. One of the simple patterns was 

Visualizing Architecture (VIZ), The VIZ pattern is a set 

of techniques and concepts to generate graphical 

depictions of software architecture. The primary 

objective of architectural visualization is to aid 

stakeholders, such as developers, architects, and business 

users, in comprehending the system's structure and 

behavior while facilitating communication and decision-

making. In their recent publication, Gebremeskel et al. 

(2022) proposed that the architecture of data mining 

models can be optimized to facilitate the effective 

visualization of information extraction in the context of 

patient safety care. They proposed an approach that 

provides timely information to facilitate informed 

medical decision-making regarding patient safety care. 

The importance of visualization based on modeling is 

emphasized. The term "model representation" pertains to 

the visual manifestation of a model, which showcases the 

constituent elements that necessitate comprehension as 

they interconnect and amalgamate with one another. The 

interactivity factor pertains to the ability to observe the 

model being demonstrated in real time and integrate it as 

the user interacts with it as needed. Integration refers to 

the ability to demonstrate connections between patient 

records and other perspectives within the data based on 

which it is founded.  

While the broker pattern is the primary mechanism that 

facilitates communication between multiple components 

by acting as an intermediary, it enables the components 

to exchange information without knowing each other's 

implementation details. The technique provides a 

scalable and adaptable means of communication 

between remote system components. Facilitating clear 

communication among system components results in 

streamlined system maintenance and enhanced 

adaptability over an extended period. A message broker 

is a commonly used implementation of the broker design 

pattern, which serves as a centralized hub for 

transmitting and receiving messages among various 

components or systems in message-oriented middleware 

systems. The study by Lévy et al. (1998) aimed to 

examine the mechanisms involved in comparing 

architectural styles. The objective of comparing styles is 

to establish a set of standards that can aid in selecting a 

suitable style, contingent upon the specific demands of 

the application. Subsequently, it was employed to 

delineate the attributes of both the Mediator and the 

Broker. It was subsequently determined that the Broker 

is qualified to serve as a proficient mediator. Using a 

broker is prevalent in facilitating communication 

between two entities, particularly in scenarios with a data 

dependency. This approach is deemed advantageous in 

achieving object decoupling. 

On the other hand, the client-server pattern is a 

prominent software engineering architecture pattern 

utilized in developing distributed systems. This pattern 

involves a client communicating with one or more 

servers to execute a task or gain access to a resource. In 

this particular design, the server receives requests from 

the client, processes them, and subsequently sends back 

a response to the client. The server furnishes clients with 

a collection of amenities and assets, and the client 

communicates with the server through a precisely 

defined protocol. Kassab et al. (2018) conducted a survey 

targeting software professionals to identify architectural 

patterns. The numerical outcomes from this preliminary 

survey provide scope for further examination and 

evaluation. Implementing the peer-to-peer pattern was 

comparatively complex, and its adoption incurred higher 

costs, while the client-server architecture was observed 

to be relatively more uncomplicated.  

The system can be compartmentalized into discrete, 

autonomous units, with a fundamental microkernel 

module serving as the essential foundation. The 

microkernel provides module communication, loading 

and unloading, and system resource management. The 

residual system functionalities are executed as distinct 

units that establish communication amongst themselves 

through the microkernel. Baccelli and colleagues (2013) 

conducted a study on a Microkernel architecture 

designed to facilitate the Internet of Things (IoT). 

Furthermore, utilizing a modular microkernel 

architecture enhances the system's resilience against 

errors in individual components. 

The Repository pattern decouples the data storage layer 

from the business and application functionality. The 

repository serves as an intermediary component that 

connects the business logic and data storage layer, 

furnishing a uniform data retrieval and modification 

interface. The design style in question finds applications 

in both web applications and database systems. The 

authors Garcia-Holgado and Garcia (2016) proposed that 

the assessment of the repository architectural pattern 

should be conducted in diverse eLearning contexts to 

authenticate the pattern's definition and facilitate the 

advancement of this type of technological solution. 

 The study conducted by Perera and Jayakody (2022) put 

forth the proposal that a middleware for publisher-

subscriber architecture was developed and evaluated for 

its load and burst performance using two distinct 

methodologies. Although the publisher-subscriber 

technology is considered dated, it remains a viable option 

for developing robust middleware with adaptable 

functionalities across diverse domains. According to 

Avgeriou and Zdun's (2005), the peer-to-peer pattern 

assigns equivalent responsibilities to each component, 

allowing them to function as both a client and a server. 

Each constituent element offers its own set of services or 

data and can access the services provided by other 

constituent elements. The peer-to-peer network 

comprises a dynamically evolving collection of 

constituents. The authors Theorin et al. (2017) proposed 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 303–309  |  305 

that the event-based service-oriented architecture offers 

a versatile and scalable solution for managing low-level 

application control and higher-level information 

aggregation. Software applications can be developed and 

evaluated independently, as substitute programs that 

generate events can readily replace other programs. 

Daoudi et al. (2019) evaluated the prevalence of various 

MVC-based architectural patterns in Android 

applications. This research proposes several MVC-based 

patterns in Android applications and seeks to determine 

their dominant pattern. Their finding indicates that large 

applications utilize patterns, while small applications 

tend not to employ any. They suggested that patterns are 

a viable and efficient approach for large applications. 

Verborgh and colleagues (2015) The scholar advocated 

for investigating the role of the Representational State 

Transfer (REST) design pattern in developing an 

information framework that can generate and maintain 

stable identifiers for objects managed by enterprises. 

They are impeding the accomplishment of the 

implementation of the Linked Data Principles. Based on 

the presented data, this usage pattern appears highly 

effective within institutional settings. 

 Kaiwartya and colleagues (2016) presented a 

methodology that utilizes a multi-layer pattern to account 

for each layer's distinct representations and 

functionalities. This phrase pertains to utilizing aircraft 

safety protocols in their management and operation. The 

efficacy and efficiency of the pattern in intelligent 

vehicular applications have been established. 

The impact of utilizing various styles in business 

intelligence was examined by Iyer et al. (2019). The 

utilization of a Presentation Abstraction Controller 

(PAC) pattern has been found to be a straightforward and 

efficient approach for strategizing business applications 

and managing daily sub-tasks in accordance with the 

growth of the business. 

 Taibi and colleagues (2018) presented a standardized 

index that comprehensively evaluates the benefits, 

drawbacks, and insights gained from various types of 

case studies pertaining to diverse architectural styles. 

The microservices architecture patterns encompass 

various configurations for migration, formatting, 

storage, and disseminating a prescribed set of principles. 

Mordinyi et al. (2010) introduced the notion of space-

based architecture (SBA), which enables the separation 

of distributed applications from the underlying 

middleware architecture. This is achieved by 

incorporating the features and characteristics of 

advanced middleware architectural styles into a 

straightforward API. It retains the benefit of 

necessitating minimal modifications to the application in 

the event of a shift in the fundamental middleware 

architectural paradigm, thereby enabling more effective 

satisfaction of novel commercial demands. 

Many researchers proposed architectural patterns. 

Aychew,andAlemneh(2022) discussed the significance 

of adopting appropriate architectural patterns depending 

on intended system attributes or techniques. According 

to the authors, choosing a suitable architectural pattern is 

crucial to achieving system quality traits, including 

performance, scalability, security, maintainability, and 

adaptability. The paper then presented an outline of 

architectural patterns and reusable solutions to common 

software architecture design difficulties. When choosing 

an architectural pattern, the writers emphasize the 

importance of considering system tactics. Tactics are 

quality aspects significant to system stakeholders, such 

as performance, security, and availability, because they 

are the building blocks of architectural patterns, just as 

atoms are the building blocks of molecules. They also 

describe a method for selecting architectural patterns 

based on system tactics. The process comprises 

identifying system tactics, selecting candidate 

architectural patterns that are appropriate for the tactics, 

evaluating the candidate patterns against system 

requirements, and selecting the optimal pattern for the 

system. Six distinct experiments were carried out in the 

proposed study to determine which combination 

produced a better-performing algorithm. One of these 

algorithms achieved a 94% accuracy. 

Komolov et al. (2022) introduced a machine-learning 

methodology to forecast architectural design patterns. 

According to the authors, using design pattern prediction 

can aid software architects in making well-informed 

decisions regarding the design of software systems. The 

study presented a methodology based on machine 

learning to identify architectural design patterns using 

source code metrics. The dataset was acquired from 

GitHub using the GitHub API and subsequently 

disseminated to the academic community. The dataset 

comprises 5973 samples, of which 1195 were allocated 

for testing purposes, and 4778 were designated for 

training. The investigators utilized nine conventional 

machine learning techniques to identify the MVVM and 

MVP architectures within every dataset sample. The 

ensemble learning techniques of cat boost, support vector 

machines (SVM), and Neural Networks demonstrated 

exceptional F1 score, recall, precision, and accuracy. The 

machine learning model that exhibited the highest level 

of performance achieved an 83% precision, recall, 

accuracy, and F1 score. 

Cluster architectural patterns can be used to create 

scalable and fault-tolerant systems. They provide better 

resource usage and system performance while delivering 

high availability and fault tolerance Daoudi et al. (2019) 

provided a method for determining which MVC-based 

patterns dominate an Android application. According to 

the study, MVC is the most commonly used pattern in 

Android apps, with 57% of Android apps, and it is 

increasing in popularity in the Android community. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 303–309  |  306 

MVP is less popular, and many projects still need an 

MVC-based paradigm. The study also discovered no 

association between whether or not a pattern is used and 

an app's category. Furthermore, most small-sized apps do 

not employ any pattern. These findings emphasize the 

significance of comprehending the existence and 

application of architectural patterns in Android app 

development. 

Moreover, Velasco-Elizondo et al. (2016) presented a 

novel approach for analyzing architectural patterns using 

knowledge representation and information extraction 

techniques. The authors propose a framework that can 

automatically extract and represent relevant information 

from architecture pattern documents and use this 

information to perform analysis tasks such as pattern 

classification and identification of pattern relationships. 

The framework uses a knowledge representation model 

that captures architectural patterns' essential features and 

relationships. The authors evaluate their approach using 

a set of real-world architecture pattern documents and 

demonstrate that their framework can effectively extract 

and represent the necessary information for pattern 

analysis. This work contributes to the field of software 

architecture by providing a systematic approach for 

analyzing architecture patterns that can be used to 

support the design and evaluation of software systems. 

Furthermore, explain a methodology that employs 

knowledge representation and information extraction 

methodologies to scrutinize architectural pattern 

descriptions about particular quality attributes. An 

automated approach can be facilitated by utilizing a 

computable model as a prototype tool. The study 

centered on the performance quality attribute and utilized 

experimentation on a pattern corpus involving 45 

architects with differing experience levels. The findings 

indicated that the suggested technique enhances recall 

and diminishes analysis time compared to manual 

analysis. 

 

III. Methodology: 

1- Dataset: 

Our study was done on one of the benchmark datasets, 

Architectural Patterns Dataset. It contains 2035 images 

from the main fourteen Architectural Patterns (Broker, 

ClientServer, EventBusPubSub, Layered, Microkernel, 

Microservices_ServiceBased, ModelViewController, 

PeerToPeer, PipeAndFilter, 

PresentationAbstractionController, PublishSubscriber, 

Repository, REST, and Spacebased)those images are 

balanced and distributed around one hundred each 

architecture. This dataset from the IEEE data port is a 

valuable resource for anyone interested in software 

architecture. All are available in high-resolution image 

forms of the architecture and provide a comprehensive 

overview of the field.  

2- The Methodology: 

The first step of this study was to prepare the images by 

putting all of them in one group and resizing them to be 

500x500 pixels on grayscale. This data preprocessing 

was a crucial step that ensured the coherence of the data 

and yielded optimal outcomes.  

Considering the data type being utilized, specifically 

images, it was necessary to resize the images to ensure 

uniform dimensions.  

Additionally, normalization techniques were employed 

to mitigate any potential biases that may have affected 

the analysis. To reduce the computational burden of the 

clustering procedure, the images were transformed into 

grayscale and then converted into a one-dimensional 

array appropriate for k-means clustering. 

Subsequently, our attention was directed toward feature 

extraction to clustering the images based on their visual 

resemblance. After preparing the data and extracting the 

main features, we performed a clustering analysis 

utilizing the k-means algorithm. 

The algorithm employs a partitioning technique to split a 

given dataset into several clusters (K). Each data point is 

allocated to the group whose mean is closest to it.  

The process was done in different k values, and by 

experimental, the proper values were the ones that 

related to the number of original distinct architectural 

patterns in the dataset. The dataset comprised fourteen 

distinct architectural patterns, so the final selected values 

of K in this study were seven, fourteen, and twenty-one, 

corresponding to the anticipated number of unique 

clusters. 

After computing the proximity among the data points 

using the Euclidean distance, we cluster them using k-

means clustering. Our choice of K as fourteen was based 

on our dataset comprising fourteen distinct architectural 

patterns. Each cluster represented a unique pattern, and 

we used this information to gain insights into the 

underlying structure of our data. By analyzing each 

cluster's characteristics, we could identify commonalities 

and differences between the architectural patterns. This 

allowed us to conclude the design principles that 

governed these patterns and how they could be improved 

or optimized. Using k-means clustering and Euclidean 

distance proved a practical approach for analyzing 

complex datasets with multiple variables and identifying 

meaningful patterns within them.  

After conducting the k-means clustering, we proceeded 

to the validation stage to evaluate the clustering 

algorithm's efficacy. Multiple validation metrics were 

employed, among which was the silhouette coefficient. 

This metric quantifies the degree of resemblance 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 303–309  |  307 

between an entity and its corresponding cluster 

compared to other clusters. Furthermore, the Rand Index 

was employed as a metric considering the proportion of 

correct determinations. The clustering algorithm used in 

this study was evaluated using multiple validation 

metrics, including the silhouette coefficient and the Rand 

Index. The silhouette coefficient measures how well an 

entity fits into its assigned cluster compared to others, 

providing insight into the quality of the clustering results. 

The Rand Index, on the other hand, assesses the accuracy 

of the clustering by calculating the proportion of correct 

determinations. By utilizing these metrics, we evaluated 

and optimized our clustering algorithm for improved 

accuracy and efficiency. Overall, these validation 

metrics proved to be valuable tools in assessing the 

effectiveness of our clustering approach.  

Finally, we proceeded to the analysis and interpretation 

of the findings. The analysis yielded clusters, which were 

subsequently scrutinized. Each image within a given 

cluster was thoroughly examined to identify shared 

characteristics. In addition, the outcomes of the 

clustering process were cross-checked with the initial 

image labels, thereby facilitating the evaluation of the 

clustering's precision. Notably, clustering is an 

investigative methodology; therefore, there is a degree of 

subjectivity in interpreting outcomes. Consequently, our 

objective was to engage in an iterative approach, 

whereby we would make essential adjustments to the 

parameters and verify the outcomes with professionals in 

the relevant field whenever feasible. 

IV. Result and discussion: 

This research used Google Colaboratory (Colab), an 

online interactive Python development and execution 

environment, to implement and execute our 

computational models.  

This cloud-based platform offered a flexible workspace 

with access to high-performance computing resources, 

which expedited the execution of complex algorithms 

integral to our study. The adoption of Python language 

in this process was instrumental, given its comprehensive 

libraries and tools that facilitated efficient data 

manipulation, analysis, and visualization. The choice of 

these technologies significantly contributed to the 

robustness of our research result. 

In this study, we used K-means clustering to collect 

images, revealing interesting groupings and illuminating 

underlying architectural patterns. The clusters that 

appeared at different values of k had a definite 

distribution of images throughout them. The 

fundamental qualities were crucial in constructing each 

group were revealed by carefully analyzing images from 

each cluster, especially those related to architectural 

traits. Notably, commonalities and recurrent patterns 

were found in the photographs of each cluster, 

confirming the algorithm's ability to recognize and 

classify images according to their inherent architectural 

similarity. 

When using seven as the K value cluster, all architectural 

patterns will be divided into seven clusters, as shown in 

the sample of groups in figure one. 

That shows how you could group these patterns based on 

some common features and the most common patterns 

were as the following lists of groups: 

1- (EventBusPubSub, REST, 

PublishSubscriber , PeerToPeer) 

2- (Microservices_ServiceBased,spaceba

sed) 

3- (Layered, ModelViewController, 

PresentationAbstractionController) 

4- (repository) 

5- (ClientServer) 

6- (Microkernel) 

7-  (PipeAndFilter). 

This clustering depends on the images but agrees with 

the functionality, architecture style, and communication 

model. 

 

Figure 1: Three different clusters in k value equal seven 

While using fourteen as a K value cluster, all 

architectural patterns in it return the original fourteen 

clusters, which agrees with the collected dataset's 

distribution as the sample of groups that appear in Figure 

two. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 303–309  |  308 

 

 

Figure 2:Three different clusters in k value equal 

fourteen 

 

Figure 3: Three different clusters in k value equal 

twenty-one. 

When expanding the number of clusters to twenty 

architectural patterns, many architectural patterns show 

the clear dividing into two sub-patterns that are shown 

clearly on some of them like  

Layered architecture patterns give two subgroups. One 

shows the Three-tier architecture, and the second 

contains N-tier architecture. 

V. Conclusion and Future Works: 

 This research introduces an approach for k-means 

clustering aimed at grouping entities with identical 

architectural features. The similarity between the 

fourteen distinct architecture patterns was assessed using 

three distinct k values. The value of k is deemed suitable 

for the cluster across all of our data points. 

The clustering process provides a comprehensive 

understanding of the underlying patterns, facilitating 

comparative analysis of various architectural patterns 

and identifying their distinctive characteristics. 

Our recommendation is to thoroughly analyze the pattern 

cluster and generate a novel hybrid architecture pattern 

based on the closest group. 

References: 

[1] Ritu Kapur, Sumit Kalra, Kamlesh Tiwari, Geetika 

Arora. (2021). Architectural Patterns Dataset. IEEE 

Dataport. https://dx.doi.org/10.21227/z9k4-8217 

[2] Aychew, M., & Alemneh, E. (2022, November). 

Selection of Architectural Patterns based on Tactics. In 

2022 International Conference on Information and 

Communication Technology for Development for 

Africa (ICT4DA) (pp. 13-18). IEEE. 

[3] Komolov, S., Dlamini, G., Megha, S., & Mazzara, M. 

(2022). Towards Predicting Architectural Design 

Patterns: A Machine Learning Approach. Computers, 

11(10), 151. 

[4] Velasco-Elizondo, P., Marín-Piña, R., Vazquez-Reyes, 

S., Mora-Soto, A., & Mejia, J. (2016). Knowledge 

representation and information extraction for analysing 

architectural patterns. Science of Computer 

Programming, 121, 176-189. 

[5] Daoudi, A., ElBoussaidi, G., Moha, N., & Kpodjedo, 

S. (2019, April). An exploratory study of MVC-based 

architectural patterns in Android apps. In Proceedings 

of the 34th ACM/SIGAPP Symposium on Applied 

Computing (pp. 1711-1720). 

[6] Rokach, L., & Maimon, O. (2005). Clustering methods 

[7] Gebremeskel, G. B., Hailu, B., & Biazen, B. (2022). 

Architecture and optimization of data mining modeling 

for visualization of knowledge extraction: patient 

safety care. Journal of King Saud University-Computer 

and Information Sciences, 34(2), 468-479. 

[8] Lévy, N., Losavio, F., & Matteo, A. (1998, November). 

Comparing architectural styles: broker specializes 

mediator. In Proceedings of the third international 

workshop on Software architecture (pp. 93-96). 

[9] Kassab, M., Mazzara, M., Lee, J., & Succi, G. (2018). 

Software architectural patterns in practice: an empirical 

study. Innovations in Systems and Software 

Engineering, 14, 263-271. 

 

[10] Baccelli, E., Hahm, O., Günes, M., Wählisch, M., & 

Schmidt, T. C. (2013, April). RIOT OS: Towards an 

OS for the Internet of Things. In 2013 IEEE conference 

on computer communications workshops (INFOCOM 

WKSHPS) (pp. 79-80). IEEE. 

[11]  García-Holgado, A., & García-Peñalvo, F. J. (2016). 

Architectural pattern to improve the definition and 

implementation of eLearning ecosystems. Science of 

Computer Programming, 129, 20-34. 

https://dx.doi.org/10.21227/z9k4-8217


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 303–309  |  309 

[12] Perera, H., & Jayakody, A. (2022, September). 

Common Object Request Broker-based Publisher-

Subscriber Middleware for Internet of Things-Edge 

Computing. In 2022 International Research Conference 

on Smart Computing and Systems Engineering (SCSE) 

(Vol. 5, pp. 68-75). IEEE. 

[13] Avgeriou, P., & Zdun, U. (2005). Architectural patterns 

revisited-a pattern language. 

[14] Theorin, A., Bengtsson, K., Provost, J., Lieder, M., 

Johnsson, C., Lundholm, T., & Lennartson, B. (2017). 

An event-driven manufacturing information system 

architecture for Industry 4.0. International journal of 

production research, 55(5), 1297-1311. 

[15] Verborgh, R., Van Hooland, S., Cope, A. S., Chan, S., 

Mannens, E., & Van de Walle, R. (2015). The fallacy 

of the multi-API culture: Conceptual and practical 

benefits of representational state transfer (REST). 

Journal of Documentation, 71(2), 233-252. 

[16] Kaiwartya, O., Abdullah, A. H., Cao, Y., Altameem, 

A., Prasad, M., Lin, C. T., & Liu, X. (2016). Internet of 

vehicles: Motivation, layered architecture, network 

model, challenges, and future aspects. IEEE access, 4, 

5356-5373. 

[17] Iyer, A., Bali, S., Kumar, I., Churi, P., & Mistry, K. 

(2019). Presentation Abstraction Control Architecture 

Pattern in Business Intelligence. In Advances in 

Computing and Data Sciences: Third International 

Conference, ICACDS 2019, Ghaziabad, India, April 

12–13, 2019, Revised Selected Papers, Part II 3 (pp. 

666-679). Springer Singapore. 

[18] Taibi, D., Lenarduzzi, V., & Pahl, C. (2018). 

Architectural patterns for microservices: a systematic 

mapping study. In CLOSER 2018: Proceedings of the 

8th International Conference on Cloud Computing and 

Services Science; Funchal, Madeira, Portugal, 19-21 

March 2018. SciTePress. 

[19] Mordinyi, R., Kühn, E., & Schatten, A. (2010, 

February). Space-based architectures as abstraction 

layer for distributed business applications. In 2010 

International Conference on Complex, Intelligent and 

Software Intensive Systems (pp. 47-53). IEEE 

 


