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Abstract: Data privacy has become a paramount concern in big data, prompting the development of encryption algorithms and security 

strategies to safeguard sensitive information. Centralized machine learning approaches often involve transferring data to a central point to 

train models, which poses a risk of data exposure because unauthorized persons can disclose our private data publicly. To address this 

issue, multi-party privacy protection combined with machine learning offers a solution, with machine learning emerging as a way to 

ensure privacy in multi-party settings. This paper presents EPFML (Efficient Privacy Framework Using Machine Learning) that employs 

data modification. The algorithm enables joint model training while maintaining multi-party security. We use gradient descent with 

encrypted data transmission, preventing data exposure during the process. To counter member inference attacks, we employ data 

modification on the data, ensuring data privacy. Our approach demonstrates applicability across various domains, offering a privacy-

protected multi-party machine learning framework. Experimental results indicate the efficiency and accuracy of our method, paving the 

way for enhanced data security and privacy in multi-party learning environments. 
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1. Introduction 

One of the biggest and most important concerns nowadays is data 

privacy, particularly in the big data era. There are several 

encryption algorithms and security strategies available which aim 

to protect sensitive information. Additionally, several security 

strategies allow only users with keys to access the data. This is 

made possible with the help of centralized learning, wherein data 

is collected, transferred to a central checkpoint to train a model. 

The process of data transfer faces the risk of the sensitive data 

being exposed to hackers. Therefore, preventing data exposure 

during the data transfer process is an important issue to achieve 

data security. 

 

An approach to ensuring data privacy is to combine multi-party 

privacy protection [1] with machine learning where several users 

share their data and jointly learn from the pooled data while 

maintaining the security of their own information. This is 

possible through federated learning which can address data 

privacy issues in a multi-party environment. This paper, presents 

EPFML, a machine learning privacy-based technique using 

homomorphic encryption. We jointly trained the model using 

gradient learning while maintaining multi-party security. In each 

iteration round, we optimized the model using gradient descent 

ensuring that each user could learn from other users’ information 

through transmission of the gradient. One concern was the 

possibility of member inference attacks wherein during the model 

training process, hackers could train their own shadow models  

 

 

 

using the plaintext gradient thereby compromising data privacy. 

In order to avoid this, we employed homomorphic encryption 

processes on the data, where users could perform calculations on 

the encrypted data. We found that upon decryption of the data, 

the result was similar to operations on the plaintext data thereby 

ensuring the quality and efficiency of the process. As encrypted 

data was used during the entire process, data privacy and data 

security was ensured. 

 

The machine learning algorithm and data modification process 

proposed in this paper has several practical applications. 

Proposed work provides privacy-protected framework using 

machine learning to achieve data privacy. Furthermore, it can 

ensure data privacy in a multi-party learning environment. We 

tested our model using MNIST and metal-fatigue strength 

datasets, and calculated accuracy rate, time taken for the 

homomorphic encryption, and impact of various network 

structures and key lengths. 

Section 2 presents a literature review that formed the foundation 

of our work. In section 3, we have provided an overview of the 

Improved Paillier federated network algorithm in terms of 

network structure, interaction, and security. The outcomes of the 

experiment are shown in Section 4, and the paper's summary is 

given in Section 5. 

2. Related Work 

2.1.  Distributed machine learning 

It’s a type of multiple-node ML technique which aims to enhance 

accuracy, performance, and easily scale the data. Distributed ML 

environment [2] aimed to address the issues with ordinary 

synchronization involving training a huge model comprising a 

large volume of data by means of a state synchronous parallel 

model. Another framework aimed to systematically solve data 

and model parallel changes in a larger scale. A factor broadcast 
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calculation model has also been proposed which enables 

distributed learning of a parameterized large matrix model. 

Network communication’s [3] efficiency under a particular 

bandwidth was improved so that parallel errors could be reduced 

and data parallel large-scale applications could be theoretically 

fused.  

 

Google released Disbelief in 2012 [3], which is a capable of 

dividing a framework into 32 different nodes for the purpose of 

performing calculations. The InfiniBand network was released in 

2013 through which model parallelism and distributed learning 

was introduced in deep learning. The efficiency of training of 

distributed Gradient Descent [4] in data parallel and model was 

compared theoretically and it was found that increasing the size 

also increases the efficiency.  

2.2 Homomorphic encryption and secure multi-party 

computation 

In distributed machine learning, a central network assigns tasks to 

external users and so, the data is accessible by all users and there 

is no data privacy in the system. Multi-party computing [5] is 

usually involved in distributed learning where unknown or 

complicated computing processes are revealed to third parties. 

One of the first methods to be proposed was the Garbred circuit 

method which was used to solve general and simple problems 

such as two-party password issues. Several years later, SMPC 

(Secure Multi-Party Computation) was introduced. Currently, 

SMPC represents a sub-category of cryptography that allows 

distributed users to collaborate in computing functions while 

maintaining the privacy of their information. 

 

Homomorphic encryption has slowly gained popularity in the 

recent years. It was initially proposed to be used for bank 

applications in 1978. It has been used to create multiplicative 

homomorphism in one of the first cryptosystems, RSA (Rivest-

Shamir Adleman) [6]. The Paillier algorithm [7] was developed 

in 1999. This algorithm combined with homomorphism has been 

used in applications concerning digital auction, retrieval of cloud 

ciphertext, and digital elections among others. In 2009, an 

algorithm known as fully or complete homomorphic encryption, 

or FHE, was proposed, which is based on lattices that adhered to 

the rules of additive as well as multiplicative homomorphism. 

FHE has been applied in several cases owing to its high security. 

It has proven useful especially in the field of cloud computing [8] 

where it has ensured data privacy. 

 

Another technique to maintain data privacy is differential privacy 

which adds noise to the data and thereby prevents data exposure. 

However, if noise is introduced when the data size is less, it can 

impact model’s accuracy. 

2.3 Machine learning 

Initially, federated learning was used for updating the models for 

Android users locally. Later in2019, researchers at Google 

employed Tensorflow [9] to create a scalable manufacturing 

system for multi-party collaborative learning on mobile devices. 

Furthermore, in the same year, the problem of adjusting the 

parameters of learning models when data was divided among 

multiple nodes, while ensuring that the raw data was not sent to a 

central network. A framework known as Secure Boost [10] has 

been proposed which has an accuracy equivalent to that of a total 

of five privacy protection technique. 

Several applications of federated learning [11] have been 

documented. Google designed the Gboard system which can 

recognize keyboard input, carry out predictions, protect privacy, 

and enhance input efficiency of users [12] . In the healthcare 

field, machine learning has been used to protect sensitive medical 

information of patients. The processing of natural language and 

recommendation systems are two other uses of federated 

learning. 

 

Over the recent years, considerable efforts have been dedicated to 

harnessing the capabilities of machine learning algorithms for the 

purpose of enhancing privacy protection. Differential privacy has 

been used for this purpose, and SMC [13] has been used to 

address the noise that arises from the use of differential privacy. 

A batch crypt algorithm has been proposed which was developed 

by optimizing the FATE framework [14]. This algorithm encodes 

a long integer in the place of a group of quantized gradients, and 

carries out encryption of a single gradient at a time, thereby 

increasing the encryption and decryption efficiency, and 

decreasing the calculation required.  

3. Proposed Modelling  

3.1 Generation of an algorithm using federated learning 

In data areolation, there are several intermediate variables that 

interact with each other during the training phase. At this point, it 

is possible to use optimize model (Figure 3.1). This forms the 

basis for federated learning. Federated learning is of two types: 

sample expansions or horizontal, and feature expansions or 

vertical learning. 

 

 

Figure 3.1: Horizontal and vertical federated learning indicated 

by dotted row and column respectively.  ‘A’ and ‘B’ are the two 

data owners. 

 

Horizontal federated learning encompasses machine learning. 

Considering that the D stands for data, X stands for features, I 

stands for data index and Y stands for samples and the equation 

for horizontal federated learning can be represented as: 

 

 

Based on this equation, there may or may not be intersections 

between various users that have different data. Horizontal 
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federated learning aims to enable different users to pool their data 

to train a model, while also guaranteeing the privacy of sensitive 

information. For this to take place, all users’ data need to be 

aligned to ensure that all the users contribute to similar 

framework and the iterations that take place in the model are 

synchronous. In contrast, for vertical federated learning, the data 

of all users involved in the training have different features. 

 

3.2 Federated network algorithm 

The federated learning network proposed here aims to enable all 

users to train model during the training phase. Assuming that 

most of the neural networks undergo training by gradient descent, 

gradients have been chosen as intermediate variables here. Even 

though the data cannot be represented directly by the gradients, It 

is possible to depict the connection between the model's structure 

with the data, which can help in training the model. Figure 3.2 

shows the federated learning network’s architecture which 

comprises of various learning clients and a computing server. 

 

 

Figure 3.2: Federated learning based neural network architecture 

 

3.2.1 Learning client 

Learning clients have their own data, the quantitative dimensions 

of which are aligned with other users’ data before training the 

model. The main functions of the learning client are to perform 

extraction of gradients during training, computation of the 

gradients using the computing server, collection of server 

responses, passing of the results, making updates to the model, 

and performing repeated iterations for the convergence of the 

model. 

 

 

3.2.2 Computing server 

A platform that is in between throughout the process of learning 

is represented by the computational server. The server's primary 

duties include gathering gradient data from users, conducting 

calculations using the gradients, integration of data obtained from 

multiple models, and transmission of the result to each individual 

user. 

3.2.3Federated multi-layer perceptron algorithm 

In this paper, classic multiple-layer perceptron algorithm served 

as the foundation for the development of the federated multiple-

layer perceptron (FMLP) algorithm. Another name for this kind 

of technique is a deep feed-forward network and belongs to the 

category of deep learning models. FMLP algorithm is capable of 

training simple models for individual clients in an environment of 

multi-party data areolation by means of a gradient-sharing 

process. An FMLP network model shown in figure 3.3. 

 

Figure 3.3: Multi-layer perceptron model 

 

Given the model parameter θ, represented by {w1......wn, 

b1.....bn}, and the learning rate during training denoted as lr, the 

dataset is denoted by x, comprising {x1.......xn}. The primary 

goal of the model is to approximate the distribution f*. The 

forward process of the network involves computing the training 

output through the following formula:  

 

 

The formula for loss function is as follows: 

 

The back-propagation calculates gradients then propagates 

backward so that parameters can be adjusted accordingly and the 

error can be decreased. The back-propagation can be calculated 

using the following formula: 

 

The model undergoes updates by modifying the network 

parameters in accordance with the gradients acquired following 

the back-propagation process, which is expressed using the 

following formula: 

 

Therefore, when a multi-layer perceptron (MLP) recognizes a 

federated network that, in turn, is determined by the target output. 

The recent gradient data is fused and the gradient descent is 

accelerated by the model during the learning process with the 

help of server. After integrating the variation in gradient 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280  |  1275 

information provided by every user, the server computes a new 

gradient and sends it to every user so that the model is updated. 

Finally, model convergence takes place when each user’s loss is 

less than ɛ, and the same federated model is sent to all users. 

Table 1 shows steps involved in the functioning of the FMLP 

algorithm. 

 

Table 1: FML perceptron 

Input: Consider a Dataset x 

Output: Model θ final 

1: Firstly, we initialize the parameters  

2: In the cycle, each n does 

3: Forward propagation: outn = fp(xn, θn); 

4: Calculate loss: cn = loss(f*(xn),outn); 

5: if cn < ɛ then 

6: Break 

7: else 

8: Calculate gradn = bp(xn,θn,cn); 

9:  After that the gradients value send to server then the 

computing server will provide new value of gradients; 

10: Modify: θn+1 = θn – lr * new_gradient; 

11: close if and for loop 

12: return θ  

 

3.2.4 Paillier federated network 

Several individuals can use specific information to do 

collaborative machine learning utilizing the FMLP method 

introduced in this work. However, hackers not only require the 

data of each user but also the final updated model. 

Evidence from a member inference attack shows that hackers can 

gain access to the computing server (Shokri et al., 2017). Using 

ensemble learning, hackers can derive a predicted model from 

these shadow models that is similar to the actual trained model. 

Therefore, the federated algorithm only addresses the problem of 

data security. 

To address model security, federated learning can be added with 

other techniques. In homomorphic encryption, plaintext (a) is 

encrypted to ciphertext (c), by performing few operations and 

results in encryption a plaintext. The overall encryption process is 

represented using the following formula: 

 

 

 

Here, E stands for the encryption algorithm, a and b stand for 

different plaintexts, and ⊕ and ⊗ are the operators. 

Homomorphic encryption performs its function based on the 

operator. For instance, when a multiplication operator is present, 

then the multiplicative homomorphism is satisfied, an example of 

which is the RSA algorithm (Calderbank, 2007). On the other 

hand, if an addition operator is present, the additive 

homomorphism is satisfied, and an example of this is the Paillier 

algorithm (Paillier, 1999). Furthermore, if both the multiplication 

and the addition operators are present, then both the 

homomorphisms are satisfied (Gentry, 2009). In our FMLP 

algorithm, the gradient data from all users are summed together, 

and so, the  

Paillier algorithm can perform the additive homomorphic 

encryption. 

3.2.4.1 Pailler algorithm 

Key generation: Select two primes p and q such that the values 

are large, are of equal length, and satisfy the formula of   

. Then, n and λ can be 

calculated using the following formulas: 

 

 

Then, select value g which satisfies the formula, , such 

that the order of g can be divided by n. The following equations 

can then be used to calculate µ: 

 

 

 

Encryption: Considering m to be the plaintext and c to be the 

ciphertext. The following formula can be used to represent the 

method of encryption utilizing the public key: 

 

 

Decryption: Similarly, the decryption process using the private 

key can be denoted using the following formula: 

 

 

3.2.4.2 Improved Paillier algorithm 

The complexity that occurs in the Paillier method throughout the 

steps of encryption and decryption. Hence, we have used an 

updated version of the Paillier algorithm whose accuracy and 

efficiency have been previously reported (Jost et al., 2015). The 

three steps of this improved algorithm are given below: 

 

Key generation: Considering α to be the divisor, the order of g in 

the public key can be represented as αn. 

Encryption: Considering r to be a random value, m to be plaintext 

and c to be ciphertext as follows: 

 

Decryption: The decryption process can be represented as 

follows: 

                             L(cα mod n2) 

 

The strength of the improved Paillier algorithm can be seen in the 

decryption equation where α is used instead of λ. In this equation, 

the power operations number changes from 2‧λ to 2‧α, thereby 

significantly reducing the overhead time as α is a divisor of λ. 

The enhanced algorithm's complexity in computation may be 

expressed as O(|n|2 |α|), whereas the conventional method's 

operational complexity being O(|n|3). 

3.3 Paillier federated network architecture 

Paillier encryption is used for protection of the gradients thereby 

ensuring that even if the computing server is attacked, the 

specific data from each gradient are not accessible by the hacker. 

Furthermore, hackers cannot make use of the encrypted gradient 

data for training of the shadow models.  

   

In general, Paillier encryption needs key pairs for performing its 

function; therefore, a key management centre (KMC) is added to 

the algorithm for the generation and management of key pairs. 

Thus, the model comprises of the computing server, learning 

clients, and KMC (Figure 4). 
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Figure 3.4: Paillier federated network architecture 

 

EPFMLP follows the FMLP concept, with the addition of KMC, 

which is introduced since the instructional client needs to send an 

inquiry to KMC prior to learning. Key pairs are created by the 

KMC and returns them to the users after verifying that every user 

is online. Next, using the encrypted data, each user performs 

multi-party machine learning. The algorithm for the learning 

client in EPFMLP is provided in Table 2. The three extra 

processes carried out by EP-FMLP involve encryption and 

decryption, homomorphic operations, and creation and 

distribution of key pairs. 

 

Table 2: Algorithm for EPFMLP in the learning client 

1. Begin by acquiring key pairs from the Key Management 

Center (KMC). 

2. Initialize parameters. 

3. Iterate through the dataset: 

   a. Conduct forward propagation: compute outn using the 

function fp(xn, θn). 

   b. Evaluate the loss: determine ci as the loss between the true 

labels f*(xn) and the model output outn. 

   c. If cn is below a specified threshold ɛ, exit the loop. 

   d. Otherwise, perform backward propagation: calculate gradn 

using bp(xn, θn, cn). 

   e. Encrypt  

Enc(gradn) = EncPailli-er(Publickey, gradn). 

   f. Transmit the data (Enc(gradn)) to the server and receive the 

updated encrypted gradient (Enc(gradinew)). 

   g. Decrypt the gradient using the private key of client n: grann 

= DecPailli-er(Privatekey, Enc(gradn)). 

   h. Update the model parameters: θn+1 = θn – learning rate (lr) 

multiplied by gradnew. 

4. End the iteration loop. 

5. Return the final model with parameters θ final. 

 

The local model is not updated immediately after the calculation 

of the gradients by the learning client. The gradient data is 

homomorphically encrypted and transmitted to the computing 

server, following which the learning client waits for performing 

operations. Once the learning client receives and decrypts the 

gradient data, the model is updated. This ensures privacy of other 

users’ data. The algorithm for the KMC in EPFMLP is given in 

Table 3. 

 

Table 3: Algorithm for EPFMLP in KMC 

 

1. Continuously monitor incoming requests from clients. 

2. Upon receiving a request: 

   a. Create a fresh KeyPair. 

   b. Provide the generated KeyPair to the requesting learning 

client. 

3. Continue listening for requests in an ongoing loop. 

 

On demand, the computational server delivers the gradient data 

returned by the computer's learning client after homomorphically 

synthesizing the encrypted data that it received from the client. 

Table 4 provides the algorithm for the compute server in 

EPFMLP. In this case too, data privacy is ensured during model 

training as the generated key pairs are not transmitted to the 

computing server. 

 

Table 4: Algorithm for EPFMLP in the computing server 

 

1. Continuously monitor incoming requests from clients. 

2. Set up and initialize a container for gradient data, denoted as 

GradientData. 

3. Upon receiving a request: 

   a. Add the received encrypted data. 

   b. If total number of received requests equals the number of 

learning clients: 

      i. Iterate through the learning clients: 

         - Aggregate the encrypted data for each client and append it 

to the GradientData. 

      ii. Send the aggregated GradientData back to each respective 

client. 

      iii. Terminate the process. 

4. Continue listening for requests in an ongoing loop. 

 

Security analysis of the algorithm 

The KMC cannot access the gradient data, nor can it access the 

data that has been encrypted by the learning client using the key, 

therefore it cannot be a part of security breach. The learning 

client encrypts the ciphertext. To perform operations, the 

computer server does not need to decipher the data. Because of 

this, all of the data on the server itself remains secret, meaning 

that hackers cannot access it regardless of whether they manage 

to breach the server.  

 

Following receipt of the key pairing by the KMC, a learning 

client transmits the data that has been encrypted to the server 

that's it analyses and returns the result with encryption to the 

learning clients. This also ensures that a user cannot access the 

data of other users. If hackers gain access to the computing 

server, they can only access the ciphertext form of the data. Even 

if the hackers can gain access to some of the intermediate results 

sent by the server, key pairs can be altered in each iteration 

process and so, hackers cannot access the final result sent by the 

server. 
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4. RESULTS AND DISCUSSIONS 

In this section all the results and the discussions should be made.  

4.1 Datasets and environment 

Verification of the algorithm was performed using. Furthermore, 

784 input layers are present in the neural network model along 

with two hidden layers. 

 

On the other hand, the metal fatigue strength dataset comprises of 

437 records that are derived from the NIMS. MatNavi is a 

materials database which encompasses alloys, ceramics, 

polymers, composites, superconducting materials, and diffusion 

samples. In this study, 437 samples were selected from MatNavi 

and a regression model was generated for testing different metals 

such as carburizing steel based on characteristics of the rolled 

product and conditions of heat treatment. 

 

There are 15 dimensional features and a single dimensional label 

for each sample. The entire dataset is divided into four categories 

(Table 5). Overall, the model that was used in our study 

comprised of a single input layer comprising of 15 dimensions, a 

single output layer comprising of four units, and three hidden 

layers comprising of 64 units.  

 

Table 5: Metal strength dataset for tasks of classification 

 

Dataset_Name Range Count 

  
Fatigue [200, 400] 56 

  
[400, 500] 147 

  
[500, 600] 148 

  
[600, ∞] 86 

 

Table 6: EPFMLP network structure 

 

Dataset_Name Input (Layer) Hidden    

(Layer) 

Output (Layer) 

 

  
MNIST 784  2(layers) 64     10 (units) 

  
Fatigue 16  3(layers) 64      4 (units) 

 

 

The value of  denotes the value of the nth sample of 

the dataset. The experiments performed to test the EPFMLP 

algorithm and its optimization included assessing the prediction 

accuracy of the FMLP and single-node MLP, time used in 

training the model with varying key lengths, time used in training 

the model using varying sizes of the units of hidden layers, and 

influence of learning user count on the model's performance. 

 

The environment used for the experiment was Windows 10, and 

Python. A computing server, several learning clients, and a KMC 

were deployed from the local area network, and Socket was used 

to establish communication between the various machines. The 

layout of the network that was used in the study is given in Figure 

3.5. 

 

 

Figure 3.5: Network deployment  

4.2 Comparison of prediction accuracy 

Comparison between the EPFMLP and different algorithms was 

carried out while using the same dataset and network structure 

during training of the model.  

 

For example, for the MNIST dataset, the first 4000 samples were 

selected as the training data (Dmnist), which were divided into 

two parts:  and  

. For the test data, 10,000 

samples from the MNIST dataset were used. 

Similarly, for the metal fatigue strength dataset, 400 samples 

were selected (DFatigue) and were randomized [DFatigue’ = 

random (DFatigue)]. This was divided into two subsets:  

 

  

and . 

 

Overall, 70% of the data was used for training and 30% was used 

as test dataset. The results of the experiment are given in Table 7. 

Table 7: Comparison table 

Dataset_Name Data_Subset Algorithm Accuracy 

MNIST  MLP 0.8333 

 MLP 0.9033 

Dmnist     MLP 0.9245 

 EPFMLP 0.9252 

 EPFMLP 0.9252 

Fatigue  MLP 0.9013 

 MLP 0.7833 

DFatigue’ MLP 0.8583 

 EPFMLP 0.8833  
 EPFMLP 0.8167 

DFatigue’ EPFMLP 0.8500 

 

Based on results, accuracy of the model is higher in case of 

EPFMLP compared. The model that is trained by EPFMLP is 

similar to model trained by MLP. An accuracy rate of 0.9252 was 

reached, while an accuracy of 0.9245 was reached for the MLP 

model, with a difference of just 0.007 between the two models. In 

case of the metal fatigue strength dataset, a weighted average of 

both experimental results was performed as the same EPFMLP 

trained each client’s model. The prediction accuracy for the MLP 

model was 0.858, with a difference of 0.008 between the two 
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models. Therefore, our findings indicate that both the EPFMLP 

and MLP algorithms can train models with similar prediction 

accuracies. 

 

4.3 Comparison of time for model training 

Network is vulnerable to attacks by hackers who may use the data 

to train their shadow models. This not only breaches the model 

security of the client to whom the data belongs, but also places 

other clients’ data at risk. Therefore, in order to encrypt the data, 

we used the Paillier homomorphic encryption in EPFMLP. This 

encryption was operated during the transmission of data, and all 

homomorphic operations were carried out in the server to tighten 

the security of the data. 

 

Optimal functioning of the Paillier encryption method is the key 

length. Higher security is provided by longer keys in general. 

However, the problem with using longer keys is that it increases 

the time taken for both the datasets, three comparison runs were 

carried out. Additionally, the structure of the model was fixed, 

and the effect of various key lengths on the time and cost of 

training the model was evaluated (Table 8 and Figure 3.6). 

 

Table 8: Impact of differences in key lengths on model training 

time 

Encryption algorithm Dataset Keylength (bits) Time (s) 

None MNIST - 7.92 

Paillier 128 12,033.25 

Paillier 256 45,467.44 

Paillier 512 199,915.70 

None Fatigue - 9.84 

Paillier 64 2567.44 

Paillier 128 4480.02 

Paillier 256 13,428.92 

 

Figure 3.6: Impact of differences in key lengths. 

 

Our findings indicate that in Paillier encryption, the length of the 

key directly impacts the time used for training the model. It 

follows that with an increase in the key length, the time taken for 

training the model will also increase. Therefore, an appropriate 

length of the key can help achieve a balance between data 

security and time consumption. Furthermore, if we want to 

enhance the security.  

 

From our experimental run, using the same key length and the 

same model, 358.14 s is used for 4000 pieces of data, 733.69 s is 

used for 8000 pieces of data, and 1284.06 s is used for 12,000 

pieces of data for every iteration. Therefore, the amount of data 

directly impacts the time used for model training. Furthermore, 

the iterations to compare the time taken for data encryption and 

decryption (Table 9 and Figure 3.7). It is evident from our results 

that the improved Paillier algorithm showed a 25 to 28% better 

performance compared to the native Paillier algorithm. 

 

Table 9: Impact of differences in key lengths  

Method Key length (bits) Time (s) 

Paillier 128 1068.38 

 256 6411.23 

 512 35,930.83 

Improved Paillier 128 779.37 

 256 4716.37 

 512 26,148.56 

   

 

 

Figure 3.7: Impact of differences in model training for the Paillier 

and improved Paillier algorithms. 

4.4 Comparison  

The time and performance for both the forward and backward 

propagation is affected by the size of each layer. We tested this 

relationship through our experimental runs on the two datasets 

(Table 10 and Figure 3.8). 

 

Table 10: Impact of differences in key lengths. 

Dataset Size of hidden layer (units) Time (s) 

MNIST 2 . 64 12,033.25 

 2 . 128 23,981.02 

 2 . 256 47,702.87 

Fatigue 3 . 64 2615.42 

 3 . 128 6941.04 

 3 . 256 21,782.07 
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Figure 3.8: Impact of differences in key lengths of model training 

for the MNIST and fatigue datasets. 

There is also an increase in the data that is transmitted over the 

network. Therefore, if we want to reduce the time, we should also 

reduce the layers. 

 

4.5 Comparison of number of learning clients 

Multi-party machine learning is possible through the use of 

EPFMLP algorithm. Theoretically, with increase in the number of 

learning clients.  

Table 11: Accuracy of EPFMLP on fatigue dataset with various 

learning clients 

Method Dataset Local_Accuracy Logical_Accuracy 

MLP 
 

0.858 - 

MLP 
 

0.833 - 

MLP 
 

0.783 - 

2-Client-

EPFMLP  

0.867 0.850 

2-Client-

EPFMLP  

0.833 0.850 

MLP 
 

0.767 - 

MLP 
 

0.933 - 

MLP 
 

0.800 - 

MLP 
 

0.600 - 

4-Client-

EPFMLP  

0.833 0.850 

4-Client-

EPFMLP  

0.967 0.850 

4-Client-

EPFMLP  

0.867 0.850 

4-Client-

EPFMLP  

0.733 0.850 

 

The prediction accuracy was significantly improved when using 

the multi-client EPFMLP algorithm. However, the logical 

accuracy was similar when using two or four clients. The local 

accuracy for the EPFMLP algorithm was also significantly 

improved and was amplified in extreme cases, for instance, in the 

4-Client run, the last client had outlier data despite which 

EPFMLP is having higher accuracy than the accuracy of MLP. 

The local accuracy for the second client was 93.3% which was 

improved by 3.4% when using EPFMLP. Rather, it is similar to 

the model performance in case of MLP. As the model 

performance depends on batch expansion, if each client transmits 

lesser amount of data, then the learning per round will also reduce 

thereby reducing the time.  

5. CONCLUSION & FUTURE WORK 

In this research, we offer a multi-party confidentiality-protected 

learning algorithm that uses data modification-based 

confidentiality and machine learning to ensure that various 

individuals are able to utilize it without jeopardizing the safety 

and confidentiality of their personal information. When 

considering data security, our proposed algorithm can train 

models in multiple rounds in a way that is similar to the model 

being trained in a single round using all data together. All users 

transmit their respective data over the network and data 

modification is performed on the data over the server. The new 

data thus obtained forms the basis for updating the model. 

However, data modification affects the model performance by 

increasing the workload involved in encryption and decryption, 

which in turn affects the efficiency of training the model. Also, 

the final model performance is also affected by the structure of 

the network, length of the key, and replacement frequency of the 

key. 

In future, machine learning can be made more efficient and 

scalable by using vertical federated learning algorithms which 

can divide the features among the users. Secondly, the model 

performance should be improved by increasing the efficiency of 

the encryption process. Finally, other privacy-protected learning 

algorithms can be considered that are more robust such as anti-

malicious attack client algorithms and hybrid algorithms. 
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