

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1272

Achieving Highest Privacy Preservation Using Efficient Machine

Learning Technique

Pinkal Jain*1, Dr. Vikas Thada2, Shailesh Kumar Vyas3

 Submitted: 20/01/2024 Revised: 15/03/2024 Accepted: 20/03/2024

Abstract: Data privacy has become a paramount concern in big data, prompting the development of encryption algorithms and security

strategies to safeguard sensitive information. Centralized machine learning approaches often involve transferring data to a central point to

train models, which poses a risk of data exposure because unauthorized persons can disclose our private data publicly. To address this

issue, multi-party privacy protection combined with machine learning offers a solution, with machine learning emerging as a way to

ensure privacy in multi-party settings. This paper presents EPFML (Efficient Privacy Framework Using Machine Learning) that employs

data modification. The algorithm enables joint model training while maintaining multi-party security. We use gradient descent with

encrypted data transmission, preventing data exposure during the process. To counter member inference attacks, we employ data

modification on the data, ensuring data privacy. Our approach demonstrates applicability across various domains, offering a privacy-

protected multi-party machine learning framework. Experimental results indicate the efficiency and accuracy of our method, paving the

way for enhanced data security and privacy in multi-party learning environments.

Keywords: Privacy, Privacy Preservation, Data Modification, Machine Learning, Gradient descent, Multi Party Privacy.

1. Introduction

One of the biggest and most important concerns nowadays is data

privacy, particularly in the big data era. There are several

encryption algorithms and security strategies available which aim

to protect sensitive information. Additionally, several security

strategies allow only users with keys to access the data. This is

made possible with the help of centralized learning, wherein data

is collected, transferred to a central checkpoint to train a model.

The process of data transfer faces the risk of the sensitive data

being exposed to hackers. Therefore, preventing data exposure

during the data transfer process is an important issue to achieve

data security.

An approach to ensuring data privacy is to combine multi-party

privacy protection [1] with machine learning where several users

share their data and jointly learn from the pooled data while

maintaining the security of their own information. This is

possible through federated learning which can address data

privacy issues in a multi-party environment. This paper, presents

EPFML, a machine learning privacy-based technique using

homomorphic encryption. We jointly trained the model using

gradient learning while maintaining multi-party security. In each

iteration round, we optimized the model using gradient descent

ensuring that each user could learn from other users’ information

through transmission of the gradient. One concern was the

possibility of member inference attacks wherein during the model

training process, hackers could train their own shadow models

using the plaintext gradient thereby compromising data privacy.

In order to avoid this, we employed homomorphic encryption

processes on the data, where users could perform calculations on

the encrypted data. We found that upon decryption of the data,

the result was similar to operations on the plaintext data thereby

ensuring the quality and efficiency of the process. As encrypted

data was used during the entire process, data privacy and data

security was ensured.

The machine learning algorithm and data modification process

proposed in this paper has several practical applications.

Proposed work provides privacy-protected framework using

machine learning to achieve data privacy. Furthermore, it can

ensure data privacy in a multi-party learning environment. We

tested our model using MNIST and metal-fatigue strength

datasets, and calculated accuracy rate, time taken for the

homomorphic encryption, and impact of various network

structures and key lengths.

Section 2 presents a literature review that formed the foundation

of our work. In section 3, we have provided an overview of the

Improved Paillier federated network algorithm in terms of

network structure, interaction, and security. The outcomes of the

experiment are shown in Section 4, and the paper's summary is

given in Section 5.

2. Related Work

2.1. Distributed machine learning

It’s a type of multiple-node ML technique which aims to enhance

accuracy, performance, and easily scale the data. Distributed ML

environment [2] aimed to address the issues with ordinary

synchronization involving training a huge model comprising a

large volume of data by means of a state synchronous parallel

model. Another framework aimed to systematically solve data

and model parallel changes in a larger scale. A factor broadcast

1 Amity University Gwalior, MP-474020, India

ORCID ID: https://orcid.org/0000-0001-8002-320X
2 Amity University Gwalior, MP-474020, India

ORCID ID:
3 G H Raisoni University, Saikheda, MP-480106, India

ORCID ID: https://orcid.org/0009-0003-1262-7353X

* Corresponding Author Email: pinku029jain@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1273

calculation model has also been proposed which enables

distributed learning of a parameterized large matrix model.

Network communication’s [3] efficiency under a particular

bandwidth was improved so that parallel errors could be reduced

and data parallel large-scale applications could be theoretically

fused.

Google released Disbelief in 2012 [3], which is a capable of

dividing a framework into 32 different nodes for the purpose of

performing calculations. The InfiniBand network was released in

2013 through which model parallelism and distributed learning

was introduced in deep learning. The efficiency of training of

distributed Gradient Descent [4] in data parallel and model was

compared theoretically and it was found that increasing the size

also increases the efficiency.

2.2 Homomorphic encryption and secure multi-party

computation

In distributed machine learning, a central network assigns tasks to

external users and so, the data is accessible by all users and there

is no data privacy in the system. Multi-party computing [5] is

usually involved in distributed learning where unknown or

complicated computing processes are revealed to third parties.

One of the first methods to be proposed was the Garbred circuit

method which was used to solve general and simple problems

such as two-party password issues. Several years later, SMPC

(Secure Multi-Party Computation) was introduced. Currently,

SMPC represents a sub-category of cryptography that allows

distributed users to collaborate in computing functions while

maintaining the privacy of their information.

Homomorphic encryption has slowly gained popularity in the

recent years. It was initially proposed to be used for bank

applications in 1978. It has been used to create multiplicative

homomorphism in one of the first cryptosystems, RSA (Rivest-

Shamir Adleman) [6]. The Paillier algorithm [7] was developed

in 1999. This algorithm combined with homomorphism has been

used in applications concerning digital auction, retrieval of cloud

ciphertext, and digital elections among others. In 2009, an

algorithm known as fully or complete homomorphic encryption,

or FHE, was proposed, which is based on lattices that adhered to

the rules of additive as well as multiplicative homomorphism.

FHE has been applied in several cases owing to its high security.

It has proven useful especially in the field of cloud computing [8]

where it has ensured data privacy.

Another technique to maintain data privacy is differential privacy

which adds noise to the data and thereby prevents data exposure.

However, if noise is introduced when the data size is less, it can

impact model’s accuracy.

2.3 Machine learning

Initially, federated learning was used for updating the models for

Android users locally. Later in2019, researchers at Google

employed Tensorflow [9] to create a scalable manufacturing

system for multi-party collaborative learning on mobile devices.

Furthermore, in the same year, the problem of adjusting the

parameters of learning models when data was divided among

multiple nodes, while ensuring that the raw data was not sent to a

central network. A framework known as Secure Boost [10] has

been proposed which has an accuracy equivalent to that of a total

of five privacy protection technique.

Several applications of federated learning [11] have been

documented. Google designed the Gboard system which can

recognize keyboard input, carry out predictions, protect privacy,

and enhance input efficiency of users [12] . In the healthcare

field, machine learning has been used to protect sensitive medical

information of patients. The processing of natural language and

recommendation systems are two other uses of federated

learning.

Over the recent years, considerable efforts have been dedicated to

harnessing the capabilities of machine learning algorithms for the

purpose of enhancing privacy protection. Differential privacy has

been used for this purpose, and SMC [13] has been used to

address the noise that arises from the use of differential privacy.

A batch crypt algorithm has been proposed which was developed

by optimizing the FATE framework [14]. This algorithm encodes

a long integer in the place of a group of quantized gradients, and

carries out encryption of a single gradient at a time, thereby

increasing the encryption and decryption efficiency, and

decreasing the calculation required.

3. Proposed Modelling

3.1 Generation of an algorithm using federated learning

In data areolation, there are several intermediate variables that

interact with each other during the training phase. At this point, it

is possible to use optimize model (Figure 3.1). This forms the

basis for federated learning. Federated learning is of two types:

sample expansions or horizontal, and feature expansions or

vertical learning.

Figure 3.1: Horizontal and vertical federated learning indicated

by dotted row and column respectively. ‘A’ and ‘B’ are the two

data owners.

Horizontal federated learning encompasses machine learning.

Considering that the D stands for data, X stands for features, I

stands for data index and Y stands for samples and the equation

for horizontal federated learning can be represented as:

Based on this equation, there may or may not be intersections

between various users that have different data. Horizontal

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1274

federated learning aims to enable different users to pool their data

to train a model, while also guaranteeing the privacy of sensitive

information. For this to take place, all users’ data need to be

aligned to ensure that all the users contribute to similar

framework and the iterations that take place in the model are

synchronous. In contrast, for vertical federated learning, the data

of all users involved in the training have different features.

3.2 Federated network algorithm

The federated learning network proposed here aims to enable all

users to train model during the training phase. Assuming that

most of the neural networks undergo training by gradient descent,

gradients have been chosen as intermediate variables here. Even

though the data cannot be represented directly by the gradients, It

is possible to depict the connection between the model's structure

with the data, which can help in training the model. Figure 3.2

shows the federated learning network’s architecture which

comprises of various learning clients and a computing server.

Figure 3.2: Federated learning based neural network architecture

3.2.1 Learning client

Learning clients have their own data, the quantitative dimensions

of which are aligned with other users’ data before training the

model. The main functions of the learning client are to perform

extraction of gradients during training, computation of the

gradients using the computing server, collection of server

responses, passing of the results, making updates to the model,

and performing repeated iterations for the convergence of the

model.

3.2.2 Computing server

A platform that is in between throughout the process of learning

is represented by the computational server. The server's primary

duties include gathering gradient data from users, conducting

calculations using the gradients, integration of data obtained from

multiple models, and transmission of the result to each individual

user.

3.2.3Federated multi-layer perceptron algorithm

In this paper, classic multiple-layer perceptron algorithm served

as the foundation for the development of the federated multiple-

layer perceptron (FMLP) algorithm. Another name for this kind

of technique is a deep feed-forward network and belongs to the

category of deep learning models. FMLP algorithm is capable of

training simple models for individual clients in an environment of

multi-party data areolation by means of a gradient-sharing

process. An FMLP network model shown in figure 3.3.

Figure 3.3: Multi-layer perceptron model

Given the model parameter θ, represented by {w1......wn,

b1.....bn}, and the learning rate during training denoted as lr, the

dataset is denoted by x, comprising {x1.......xn}. The primary

goal of the model is to approximate the distribution f*. The

forward process of the network involves computing the training

output through the following formula:

The formula for loss function is as follows:

The back-propagation calculates gradients then propagates

backward so that parameters can be adjusted accordingly and the

error can be decreased. The back-propagation can be calculated

using the following formula:

The model undergoes updates by modifying the network

parameters in accordance with the gradients acquired following

the back-propagation process, which is expressed using the

following formula:

Therefore, when a multi-layer perceptron (MLP) recognizes a

federated network that, in turn, is determined by the target output.

The recent gradient data is fused and the gradient descent is

accelerated by the model during the learning process with the

help of server. After integrating the variation in gradient

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1275

information provided by every user, the server computes a new

gradient and sends it to every user so that the model is updated.

Finally, model convergence takes place when each user’s loss is

less than ɛ, and the same federated model is sent to all users.

Table 1 shows steps involved in the functioning of the FMLP

algorithm.

Table 1: FML perceptron

Input: Consider a Dataset x

Output: Model θ final

1: Firstly, we initialize the parameters

2: In the cycle, each n does

3: Forward propagation: outn = fp(xn, θn);

4: Calculate loss: cn = loss(f*(xn),outn);

5: if cn < ɛ then

6: Break

7: else

8: Calculate gradn = bp(xn,θn,cn);

9: After that the gradients value send to server then the

computing server will provide new value of gradients;

10: Modify: θn+1 = θn – lr * new_gradient;

11: close if and for loop

12: return θ

3.2.4 Paillier federated network

Several individuals can use specific information to do

collaborative machine learning utilizing the FMLP method

introduced in this work. However, hackers not only require the

data of each user but also the final updated model.

Evidence from a member inference attack shows that hackers can

gain access to the computing server (Shokri et al., 2017). Using

ensemble learning, hackers can derive a predicted model from

these shadow models that is similar to the actual trained model.

Therefore, the federated algorithm only addresses the problem of

data security.

To address model security, federated learning can be added with

other techniques. In homomorphic encryption, plaintext (a) is

encrypted to ciphertext (c), by performing few operations and

results in encryption a plaintext. The overall encryption process is

represented using the following formula:

Here, E stands for the encryption algorithm, a and b stand for

different plaintexts, and ⊕ and ⊗ are the operators.

Homomorphic encryption performs its function based on the

operator. For instance, when a multiplication operator is present,

then the multiplicative homomorphism is satisfied, an example of

which is the RSA algorithm (Calderbank, 2007). On the other

hand, if an addition operator is present, the additive

homomorphism is satisfied, and an example of this is the Paillier

algorithm (Paillier, 1999). Furthermore, if both the multiplication

and the addition operators are present, then both the

homomorphisms are satisfied (Gentry, 2009). In our FMLP

algorithm, the gradient data from all users are summed together,

and so, the

Paillier algorithm can perform the additive homomorphic

encryption.

3.2.4.1 Pailler algorithm

Key generation: Select two primes p and q such that the values

are large, are of equal length, and satisfy the formula of

. Then, n and λ can be

calculated using the following formulas:

Then, select value g which satisfies the formula, , such

that the order of g can be divided by n. The following equations

can then be used to calculate µ:

Encryption: Considering m to be the plaintext and c to be the

ciphertext. The following formula can be used to represent the

method of encryption utilizing the public key:

Decryption: Similarly, the decryption process using the private

key can be denoted using the following formula:

3.2.4.2 Improved Paillier algorithm

The complexity that occurs in the Paillier method throughout the

steps of encryption and decryption. Hence, we have used an

updated version of the Paillier algorithm whose accuracy and

efficiency have been previously reported (Jost et al., 2015). The

three steps of this improved algorithm are given below:

Key generation: Considering α to be the divisor, the order of g in

the public key can be represented as αn.

Encryption: Considering r to be a random value, m to be plaintext

and c to be ciphertext as follows:

Decryption: The decryption process can be represented as

follows:

 L(cα mod n2)

The strength of the improved Paillier algorithm can be seen in the

decryption equation where α is used instead of λ. In this equation,

the power operations number changes from 2‧λ to 2‧α, thereby

significantly reducing the overhead time as α is a divisor of λ.

The enhanced algorithm's complexity in computation may be

expressed as O(|n|2 |α|), whereas the conventional method's

operational complexity being O(|n|3).

3.3 Paillier federated network architecture

Paillier encryption is used for protection of the gradients thereby

ensuring that even if the computing server is attacked, the

specific data from each gradient are not accessible by the hacker.

Furthermore, hackers cannot make use of the encrypted gradient

data for training of the shadow models.

In general, Paillier encryption needs key pairs for performing its

function; therefore, a key management centre (KMC) is added to

the algorithm for the generation and management of key pairs.

Thus, the model comprises of the computing server, learning

clients, and KMC (Figure 4).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1276

Figure 3.4: Paillier federated network architecture

EPFMLP follows the FMLP concept, with the addition of KMC,

which is introduced since the instructional client needs to send an

inquiry to KMC prior to learning. Key pairs are created by the

KMC and returns them to the users after verifying that every user

is online. Next, using the encrypted data, each user performs

multi-party machine learning. The algorithm for the learning

client in EPFMLP is provided in Table 2. The three extra

processes carried out by EP-FMLP involve encryption and

decryption, homomorphic operations, and creation and

distribution of key pairs.

Table 2: Algorithm for EPFMLP in the learning client

1. Begin by acquiring key pairs from the Key Management

Center (KMC).

2. Initialize parameters.

3. Iterate through the dataset:

 a. Conduct forward propagation: compute outn using the

function fp(xn, θn).

 b. Evaluate the loss: determine ci as the loss between the true

labels f*(xn) and the model output outn.

 c. If cn is below a specified threshold ɛ, exit the loop.

 d. Otherwise, perform backward propagation: calculate gradn

using bp(xn, θn, cn).

 e. Encrypt

Enc(gradn) = EncPailli-er(Publickey, gradn).

 f. Transmit the data (Enc(gradn)) to the server and receive the

updated encrypted gradient (Enc(gradinew)).

 g. Decrypt the gradient using the private key of client n: grann

= DecPailli-er(Privatekey, Enc(gradn)).

 h. Update the model parameters: θn+1 = θn – learning rate (lr)

multiplied by gradnew.

4. End the iteration loop.

5. Return the final model with parameters θ final.

The local model is not updated immediately after the calculation

of the gradients by the learning client. The gradient data is

homomorphically encrypted and transmitted to the computing

server, following which the learning client waits for performing

operations. Once the learning client receives and decrypts the

gradient data, the model is updated. This ensures privacy of other

users’ data. The algorithm for the KMC in EPFMLP is given in

Table 3.

Table 3: Algorithm for EPFMLP in KMC

1. Continuously monitor incoming requests from clients.

2. Upon receiving a request:

 a. Create a fresh KeyPair.

 b. Provide the generated KeyPair to the requesting learning

client.

3. Continue listening for requests in an ongoing loop.

On demand, the computational server delivers the gradient data

returned by the computer's learning client after homomorphically

synthesizing the encrypted data that it received from the client.

Table 4 provides the algorithm for the compute server in

EPFMLP. In this case too, data privacy is ensured during model

training as the generated key pairs are not transmitted to the

computing server.

Table 4: Algorithm for EPFMLP in the computing server

1. Continuously monitor incoming requests from clients.

2. Set up and initialize a container for gradient data, denoted as

GradientData.

3. Upon receiving a request:

 a. Add the received encrypted data.

 b. If total number of received requests equals the number of

learning clients:

 i. Iterate through the learning clients:

 - Aggregate the encrypted data for each client and append it

to the GradientData.

 ii. Send the aggregated GradientData back to each respective

client.

 iii. Terminate the process.

4. Continue listening for requests in an ongoing loop.

Security analysis of the algorithm

The KMC cannot access the gradient data, nor can it access the

data that has been encrypted by the learning client using the key,

therefore it cannot be a part of security breach. The learning

client encrypts the ciphertext. To perform operations, the

computer server does not need to decipher the data. Because of

this, all of the data on the server itself remains secret, meaning

that hackers cannot access it regardless of whether they manage

to breach the server.

Following receipt of the key pairing by the KMC, a learning

client transmits the data that has been encrypted to the server

that's it analyses and returns the result with encryption to the

learning clients. This also ensures that a user cannot access the

data of other users. If hackers gain access to the computing

server, they can only access the ciphertext form of the data. Even

if the hackers can gain access to some of the intermediate results

sent by the server, key pairs can be altered in each iteration

process and so, hackers cannot access the final result sent by the

server.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1277

4. RESULTS AND DISCUSSIONS

In this section all the results and the discussions should be made.

4.1 Datasets and environment

Verification of the algorithm was performed using. Furthermore,

784 input layers are present in the neural network model along

with two hidden layers.

On the other hand, the metal fatigue strength dataset comprises of

437 records that are derived from the NIMS. MatNavi is a

materials database which encompasses alloys, ceramics,

polymers, composites, superconducting materials, and diffusion

samples. In this study, 437 samples were selected from MatNavi

and a regression model was generated for testing different metals

such as carburizing steel based on characteristics of the rolled

product and conditions of heat treatment.

There are 15 dimensional features and a single dimensional label

for each sample. The entire dataset is divided into four categories

(Table 5). Overall, the model that was used in our study

comprised of a single input layer comprising of 15 dimensions, a

single output layer comprising of four units, and three hidden

layers comprising of 64 units.

Table 5: Metal strength dataset for tasks of classification

Dataset_Name Range Count

Fatigue [200, 400] 56

[400, 500] 147

[500, 600] 148

[600, ∞] 86

Table 6: EPFMLP network structure

Dataset_Name Input (Layer) Hidden

(Layer)

Output (Layer)

MNIST 784 2(layers) 64 10 (units)

Fatigue 16 3(layers) 64 4 (units)

The value of denotes the value of the nth sample of

the dataset. The experiments performed to test the EPFMLP

algorithm and its optimization included assessing the prediction

accuracy of the FMLP and single-node MLP, time used in

training the model with varying key lengths, time used in training

the model using varying sizes of the units of hidden layers, and

influence of learning user count on the model's performance.

The environment used for the experiment was Windows 10, and

Python. A computing server, several learning clients, and a KMC

were deployed from the local area network, and Socket was used

to establish communication between the various machines. The

layout of the network that was used in the study is given in Figure

3.5.

Figure 3.5: Network deployment

4.2 Comparison of prediction accuracy

Comparison between the EPFMLP and different algorithms was

carried out while using the same dataset and network structure

during training of the model.

For example, for the MNIST dataset, the first 4000 samples were

selected as the training data (Dmnist), which were divided into

two parts: and

. For the test data, 10,000

samples from the MNIST dataset were used.

Similarly, for the metal fatigue strength dataset, 400 samples

were selected (DFatigue) and were randomized [DFatigue’ =

random (DFatigue)]. This was divided into two subsets:

and .

Overall, 70% of the data was used for training and 30% was used

as test dataset. The results of the experiment are given in Table 7.

Table 7: Comparison table

Dataset_Name Data_Subset Algorithm Accuracy

MNIST MLP 0.8333

 MLP 0.9033

Dmnist MLP 0.9245

 EPFMLP 0.9252

 EPFMLP 0.9252

Fatigue MLP 0.9013

 MLP 0.7833

DFatigue’ MLP 0.8583

 EPFMLP 0.8833
 EPFMLP 0.8167

DFatigue’ EPFMLP 0.8500

Based on results, accuracy of the model is higher in case of

EPFMLP compared. The model that is trained by EPFMLP is

similar to model trained by MLP. An accuracy rate of 0.9252 was

reached, while an accuracy of 0.9245 was reached for the MLP

model, with a difference of just 0.007 between the two models. In

case of the metal fatigue strength dataset, a weighted average of

both experimental results was performed as the same EPFMLP

trained each client’s model. The prediction accuracy for the MLP

model was 0.858, with a difference of 0.008 between the two

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1278

models. Therefore, our findings indicate that both the EPFMLP

and MLP algorithms can train models with similar prediction

accuracies.

4.3 Comparison of time for model training

Network is vulnerable to attacks by hackers who may use the data

to train their shadow models. This not only breaches the model

security of the client to whom the data belongs, but also places

other clients’ data at risk. Therefore, in order to encrypt the data,

we used the Paillier homomorphic encryption in EPFMLP. This

encryption was operated during the transmission of data, and all

homomorphic operations were carried out in the server to tighten

the security of the data.

Optimal functioning of the Paillier encryption method is the key

length. Higher security is provided by longer keys in general.

However, the problem with using longer keys is that it increases

the time taken for both the datasets, three comparison runs were

carried out. Additionally, the structure of the model was fixed,

and the effect of various key lengths on the time and cost of

training the model was evaluated (Table 8 and Figure 3.6).

Table 8: Impact of differences in key lengths on model training

time

Encryption algorithm Dataset Keylength (bits) Time (s)

None MNIST - 7.92

Paillier 128 12,033.25

Paillier 256 45,467.44

Paillier 512 199,915.70

None Fatigue - 9.84

Paillier 64 2567.44

Paillier 128 4480.02

Paillier 256 13,428.92

Figure 3.6: Impact of differences in key lengths.

Our findings indicate that in Paillier encryption, the length of the

key directly impacts the time used for training the model. It

follows that with an increase in the key length, the time taken for

training the model will also increase. Therefore, an appropriate

length of the key can help achieve a balance between data

security and time consumption. Furthermore, if we want to

enhance the security.

From our experimental run, using the same key length and the

same model, 358.14 s is used for 4000 pieces of data, 733.69 s is

used for 8000 pieces of data, and 1284.06 s is used for 12,000

pieces of data for every iteration. Therefore, the amount of data

directly impacts the time used for model training. Furthermore,

the iterations to compare the time taken for data encryption and

decryption (Table 9 and Figure 3.7). It is evident from our results

that the improved Paillier algorithm showed a 25 to 28% better

performance compared to the native Paillier algorithm.

Table 9: Impact of differences in key lengths

Method Key length (bits) Time (s)

Paillier 128 1068.38

 256 6411.23

 512 35,930.83

Improved Paillier 128 779.37

 256 4716.37

 512 26,148.56

Figure 3.7: Impact of differences in model training for the Paillier

and improved Paillier algorithms.

4.4 Comparison

The time and performance for both the forward and backward

propagation is affected by the size of each layer. We tested this

relationship through our experimental runs on the two datasets

(Table 10 and Figure 3.8).

Table 10: Impact of differences in key lengths.

Dataset Size of hidden layer (units) Time (s)

MNIST 2 . 64 12,033.25

 2 . 128 23,981.02

 2 . 256 47,702.87

Fatigue 3 . 64 2615.42

 3 . 128 6941.04

 3 . 256 21,782.07

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1279

Figure 3.8: Impact of differences in key lengths of model training

for the MNIST and fatigue datasets.

There is also an increase in the data that is transmitted over the

network. Therefore, if we want to reduce the time, we should also

reduce the layers.

4.5 Comparison of number of learning clients

Multi-party machine learning is possible through the use of

EPFMLP algorithm. Theoretically, with increase in the number of

learning clients.

Table 11: Accuracy of EPFMLP on fatigue dataset with various

learning clients

Method Dataset Local_Accuracy Logical_Accuracy

MLP

0.858 -

MLP

0.833 -

MLP

0.783 -

2-Client-

EPFMLP

0.867 0.850

2-Client-

EPFMLP

0.833 0.850

MLP

0.767 -

MLP

0.933 -

MLP

0.800 -

MLP

0.600 -

4-Client-

EPFMLP

0.833 0.850

4-Client-

EPFMLP

0.967 0.850

4-Client-

EPFMLP

0.867 0.850

4-Client-

EPFMLP

0.733 0.850

The prediction accuracy was significantly improved when using

the multi-client EPFMLP algorithm. However, the logical

accuracy was similar when using two or four clients. The local

accuracy for the EPFMLP algorithm was also significantly

improved and was amplified in extreme cases, for instance, in the

4-Client run, the last client had outlier data despite which

EPFMLP is having higher accuracy than the accuracy of MLP.

The local accuracy for the second client was 93.3% which was

improved by 3.4% when using EPFMLP. Rather, it is similar to

the model performance in case of MLP. As the model

performance depends on batch expansion, if each client transmits

lesser amount of data, then the learning per round will also reduce

thereby reducing the time.

5. CONCLUSION & FUTURE WORK

In this research, we offer a multi-party confidentiality-protected

learning algorithm that uses data modification-based

confidentiality and machine learning to ensure that various

individuals are able to utilize it without jeopardizing the safety

and confidentiality of their personal information. When

considering data security, our proposed algorithm can train

models in multiple rounds in a way that is similar to the model

being trained in a single round using all data together. All users

transmit their respective data over the network and data

modification is performed on the data over the server. The new

data thus obtained forms the basis for updating the model.

However, data modification affects the model performance by

increasing the workload involved in encryption and decryption,

which in turn affects the efficiency of training the model. Also,

the final model performance is also affected by the structure of

the network, length of the key, and replacement frequency of the

key.

In future, machine learning can be made more efficient and

scalable by using vertical federated learning algorithms which

can divide the features among the users. Secondly, the model

performance should be improved by increasing the efficiency of

the encryption process. Finally, other privacy-protected learning

algorithms can be considered that are more robust such as anti-

malicious attack client algorithms and hybrid algorithms.

Author contributions

Pinkal Jain1: Conceptualization, Methodology, Software, Field

study

Dr. Vikas Thada2: Data curation, Writing-Original draft

preparation, Software, Validation., Field study

Shailesh Kumar Vyas3: Visualization, Investigation, Writing-

Reviewing and Editing.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Ning, Z., Dong, P., Wang, X., Hu, X., Guo, L., Hu, B., Guo, Y., Qiu,

T., & Kwok, R. (2020). Mobile edge computing enabled 5g health

monitoring for internet of medical things: A decentralized game

theoretic approach. IEEE Journal on Selected Areas in

Communications, 39, 463–478.

[2] Liao, H., Zhou, Z., Zhao, X., Zhang, L., Mumtaz, S., Jolfaei, A.,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1272–1280 | 1280

Ahmed, S. H., & Bashir, A. K. (2020). Learning-based context-aware

resource allocation for edge-computing-empowered industrial IoT.

IEEE Internet of Things Journal, 7(5), 4260–4277.

[3] Petropoulos, A., Sikeridis, D., & Antonakopoulos, T. (2020).

Wearable smart health advisors: An imuenabled posture monitor.

IEEE Consumer Electronics Magazine.

[4] Rahmani, A. M., Gia, T. N., Negash, B., Anzanpour, A., Azimi, I.,

Jiang, M., & Liljeberg, P. (2018). Exploiting smart e-health gateways

at the edge of healthcare internet-of-things: A fog computing

approach. Future Generation Computer Systems, 78, 641–658.

[5] Tuli, S., Tuli, S., Wander, G., Wander, P., Gill, S. S., Dustdar, S.,

et al. (2020). Next generation technologies for smart healthcare:

challenges, vision, model, trends and future directions. Internet

Technology Letters, 3(2), e145.

[6] Ud Din, I., Guizani, M., Hassan, S., Kim, B., Khurram Khan, M.,

Atiquzzaman, M., & Ahmed, S. H. (2019). The internet of things: A

review of enabled technologies and future challenges. IEEE Access,

7, 7606–7640.

[7] Gill, S. S., Xu, M., Ottaviani, C., Patros, P., Bahsoon, R., Shaghaghi,

R., et al. (2022). AI for next generation computing: Emerging trends

and future directions. Internet of Things, 19, 100514.

[8] Tariq, N., Asim, M., Al-Obeidat, F., Zubair Farooqi, M., Baker, T.,

Hammoudeh, M., & Ghafr, I. (2019). The security of big data in fog-

enabled IoT applications including blockchain: a survey. Sensors,

19(8), 1788.

[9] Moqurrab, S. A., Anjum, A., Manzoor, U., Nefti, S., Ahmad, N., &

Ur Rehman Malik, S. (2017). Differential average diversity: An

efcient privacy mechanism for electronic health records. Journal of

Medical Imaging and Health Informatics, 7(6), 1177–1187.

[10] Li, J., Sun, A., Han, J., & Li, C. (2020). A survey on deep learning

for named entity recognition. IEEE Transactions on Knowledge and

Data Engineering

[11] Moqurrab, A., Ayub, U., Anjum, A., Asghar, S., & Srivastava, G.

(2021). An accurate deep learning model for clinical entity

recognition from clinical notes. IEEE Journal of Biomedical and

Health Informatics.

[12] Ma, J., Huang, X., Mu, Y., & Deng, R. H. (2020). Authenticated

data redaction with accountability and transparency. IEEE

Transactions on Dependable and Secure Computing.

[13] Tariq, N., Khan, F. A., & Asim, M. (2021). Security challenges and

requirements for smart internet of things applications: A

comprehensive analysis. Procedia Computer Science, 191, 425–430.

[14] Tariq, N., Asim, M., Khan, F. A., Baker, T., Khalid, U., & Derhab,

A. (2021). A blockchain-based multi-mobile code-driven trust

mechanism for detecting internal attacks in internet of things.

Sensors, 21(1), 23.

[15] Shukla, S., Thakur, S., Hussain, S., Breslin, J. G., & Jameel, S. M.

(2021). Identification and authentication in healthcare internet-of-

things using integrated fog computing based blockchain model.

Internet of Things, 15, 100422.

[16] Buyya, R. H., Calheiros, R. N., & Dastjerdi, A. V. (2016). Big Data:

Principles and Paradigms. Morgan Kaufmann.

[17] Iwendi, C., Moqurrab, S. A., Anjum, A., Khan, S., Mohan, S., &

Srivastava, G. (2020). N-sanitization: A semantic privacy-preserving

framework for unstructured medical datasets. Computer

Communications.

[18] Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., & Leser, U.

(2017). Deep learning with word embeddings improves biomedical

named entity recognition. Bioinformatics, 33(14), i37–i48.

[19] Unanue, I. J., Borzeshi, E. Z., & Piccardi, M. (2017). Recurrent

neural networks with specialized word embeddings for health-domain

named-entity recognition. Journal of Biomedical Informatics, 76,

102–109.

[20] Zhu, H., Paschalidis, I. C., & Tahmasebi, A. (2018). Clinical

concept extraction with contextual word embedding. arXiv preprint

arXiv:1810.10566.

[21] Si, Y., Wang, J., Xu, H., & Roberts, K. (2019). Enhancing clinical

concept extraction with contextual embeddings. Journal of the

American Medical Informatics Association, 26(11), 1297–1304.

[22] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J.

(2020). Biobert: A pre-trained biomedical language representation

model for biomedical text mining. Bioinformatics, 36(4), 1234–1240.

[23] Batet, M., & Sánchez, D. (2014). Privacy protection of textual

medical documents. In: IEEE Network Operations and Management

Symposium (NOMS). IEEE, pp. 1–6.

[24] Sanchez, D., & Batet, M. (2017). Toward sensitive document release

with privacy guarantees. Engineering Applications of Artificial

Intelligence, 59, 23–34.

[25] Batet, M., & Sánchez, D. (2019). Leveraging synonymy and

polysemy to improve semantic similarity assessments based on

intrinsic information content. Artificial Intelligence Review, 53,

2023–2041.

