
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 397–423  |  397 

Integrating Long Short-Term Memory and Reinforcement Learning in 

Federated Learning Frameworks for Energy-Efficient Signal 

Processing in UAV-Assisted Wireless Communication Networks 

 
Mahesh Y Sumthane*1, Dr. Kirti Saraswat2 

 

 Submitted: 06/02/2024    Revised: 14/03/2024     Accepted: 20/03/2024 

Abstract : This paper presents a comprehensive study of signal processing algorithms designed for enhancing the energy efficiency of 

UAV-aided wireless communication networks. We explore a sequence of advanced machine learning techniques, each tailored to 

address specific challenges within the network. We begin by detailing the application of Long Short-Term Memory (LSTM) networks, 

which are adept at uncovering patterns in data with unknown objectives or constraints. Echo-State Networks (ESNs) are then 

introduced for their proficiency in sequence and pattern detection, essential for classification and regression prediction problems in 

signal processing. We further examine the role of Reinforcement Learning (RL) in actively engaging with prediction problems and 

NP-hard problems, leveraging a reward-based system to facilitate active learning. In addressing the critical concerns of data privacy 

and excessiveness, Federated Learning (FL) is proposed as a decentralized solution that promotes local training on UAVs, significantly 

reducing the need for data centralization. Through the methods outlined, we achieve a novel optimization framework that integrates 

the aforementioned techniques, commencing with the identification and mitigation of unwanted vehicles in the network, which is 

processed into a Data Traffic Matrix. This feeds into an LTE DIC algorithm based on correlation and culminates in an optimization 

process that considers specific network parameters 'P' and 'B'. The results, derived from the comparative analysis using the established 

techniques, indicate a significant improvement in network efficiency. The proposed framework demonstrates a marked enhancement in 

energy efficiency, with an observed improvement percentage over existing methods. This substantiates the efficacy of the integrated 

approach, suggesting that the application of machine learning algorithms can lead to superior performance in UAV-assisted networks, 

providing a significant step forward in the development of autonomous and efficient wireless communication systems. 
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1. Introduction 

Unmanned Aerial Vehicles (UAVs) have become pivotal 

in modern wireless communication networks, offering 

agile deployment, dynamic network topology, and a 

unique vantage point for data collection and 

dissemination. The integration of UAVs into 

communication networks, however, introduces complex 

challenges, particularly in signal processing and energy 

efficiency. As UAVs typically operate on limited battery 

resources, optimizing their energy usage while ensuring 

robust signal processing capabilities is paramount. This 

paper focuses on harnessing the strengths of Long Short-

Term Memory (LSTM) networks, Reinforcement 

Learning (RL), and Federated  

 

Learning (FL) to improve the energy efficiency of signal 

processing in UAV-assisted wireless communication 

networks. 

The LSTM networks, known for their effectiveness in 

handling sequential data, are particularly suited for the 

time-dependent nature of signal processing tasks in UAV 

communications. They can model and predict complex 

temporal behaviors, which is crucial for tasks such as 

dynamic resource allocation, predictive maintenance, and 

adaptive signal filtering. On the other hand, RL's 

capability to make sequential decisions through trial and 

error makes it an ideal approach for adapting to the 

UAV's operational challenges in real-time, optimizing 

decisions for path planning, and resource management to 

enhance energy efficiency. 

Meanwhile, FL emerges as a novel learning paradigm that 

addresses the growing concerns over data privacy and the 

need for decentralized data processing. In UAV networks, 

FL can facilitate collaborative learning among distributed 

UAVs without sharing the raw data, thereby preserving 

privacy and reducing the communication overhead 

associated with centralized data processing. This 

decentralized approach also aligns with the need for 
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scalable and adaptive solutions in large-scale UAV 

deployments. 

The convergence of these advanced machine learning 

techniques—LSTM for its sequential data processing, RL 

for its decision-making prowess, and FL for its privacy-

preserving and decentralized nature—presents a unified 

framework that could revolutionize the way UAV 

networks process signals and manage energy resources. 

The proposed integrative approach aims to leverage the 

LSTM's ability to make accurate predictions, the RL's 

adaptability to environmental dynamics, and the FL's 

capacity for collaborative learning to substantially 

improve the overall efficiency of UAV-assisted wireless 

communication networks. 

 

The key points to consider: 

 

1. Machine Learning Techniques: Integration of Long 

Short-Term Memory (LSTM) networks and 

Reinforcement Learning (RL) has been identified as 

essential for handling the sequential data and decision-

making challenges in UAV-assisted wireless 

communication networks. 

2. Energy Efficiency: The primary goal of leveraging 

these advanced algorithms is to enhance energy 

efficiency within UAV networks, which is crucial 

given the limited power resources of UAVs. 

3. Signal Processing: LSTM is particularly noted for its 

pattern detection capabilities, which is a critical 

feature for complex signal processing tasks that are 

fundamental to UAV operations. 

4. Dynamic Optimization: RL is employed for its 

ability to learn and make decisions actively, which is 

beneficial for dealing with dynamic optimization 

problems and NP-hard problems within the network. 

5. Federated Learning: FL addresses challenges related 

to excessive data and privacy concerns through local 

training on distributed UAVs, reducing the need for 

central data collection. 

6. Problem Types and Solutions: The integration of 

these techniques provides solutions to a range of 

problem types, from unknown objectives and 

constraints to classification, regression prediction, and 

privacy issues. 

7. Performance Improvement: The proposed 

integration of LSTM, RL, and FL is shown to improve 

performance significantly, as indicated by the 

percentage improvement over existing methods. 

8. Framework for Optimization: A novel optimization 

framework is suggested that begins with the 

identification of unwanted vehicles and progresses 

through data traffic matrix analysis, LTE DIC based 

on correlation, and optimization based on specific 

parameters ('P' and 'B'). 

9. UAV Network Integrity: The framework seeks to 

maintain network integrity and performance in the 

presence of unwanted vehicles by optimizing vehicle 

performance within the network. 

The paper is structured into five sections: an introduction 

that sets the context, a literature review that surveys 

existing research, a proposed section detailing the new 

methodology, a results and discussion section that 

evaluates the findings, and a conclusion that summarizes 

the key takeaways. 

 

2. Literature Review 

 

According to Maheswar et al. (2024), there has been a 

dramatic increase in the use of wireless devices across a 

wide variety of industries. The post-COVID-19 period 

had a particularly significant influence, sparking a 

worldwide revolution in the use of wireless technologies. 

During this age, there have been tremendous 

developments in both the number of devices connected to 

networks and the variety of uses for these devices, which 

include sensors, IoT devices, mobile phones, and many 

more wireless electronic devices. In spite of the 

tremendous difficulties brought on by the epidemic, these 

technical developments have been critical in maintaining 

smooth worldwide communication. The massive use of 

wireless devices in the epidemic brought to light a serious 

issue—the enormous amount of energy that these gadgets 

use due to their widespread use in homes, schools, and 

businesses. Improving energy efficiency is a critical need 

since most wireless devices use batteries. If we want our 

gadgets and the networks they are a part of to last as long 

as possible, we need efficient methods of managing and 

controlling their energy use. [1]  

 

According to Jeganathan et al. (2023), the Internet of 

Things (IoT) is a key component of the fourth industrial 

revolution. Unlike speed in cellular communications, an 

essential metric in the Internet of things (IoT) is the 

freshness of the data provided by a sensor node (SN). In 

this study, we employ a novel performance metric called 

age of information (AoI) to measure how recent the data 

is. Power is derived from the FD-UAV's radio frequency 

communications by the SN, which is housed in the 

transportation infrastructure. The data sink receives real-

time sensor observations using FD-UAV. Once the 

battery is recharged, the SN uses the energy it has 

captured to broadcast an update. The average AoI may be 

expressed in a closed-form manner by varying the amount 
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of time that is set aside for energy collecting. We found 

the best way to divide up our energy collecting time so 

that our data is always up-to-date. To forecast the mean 

AoI, a deep learning method called long-short term 

memory is used. The simulation results show that the 

performance constraints are helpful when considering 

how recently updated the data. [2]  

 

According to Rose et al. (2024), NOMA wireless 

networks provide a reliable method for handling several 

customers requesting the same resource block at the same 

time. Using fifth-generation wireless networks' very 

efficient spectrum utilisation, unmanned aerial vehicles 

(UAVs) may use NOMA for line-of-sight (LOS) 

communication. Access equity, coverage, system capacity 

optimisation, and overall energy efficiency are just a few 

of the many facets of NOMA-UAV communication 

systems that have been the subject of much prior study. 

Nevertheless, optimising the EE of NOMA-UAV wireless 

networks while imposing QoS limits on users has 

received very little attention from academics. In order to 

optimise the energy economy of NOMA-UAV and user 

scheduling, this study suggests a crossover-based coati 

optimisation technique that is based on fuzzy logic. This 

model's primary goal is to provide an answer to the 

scheduling issue that involves both energy efficiency and 

user quality of service. In order to maximise NOMA-

UAV's energy efficiency (EE), the fuzzy decision-making 

approach chooses the most suitable power and time 

resources. And the subchannel allocation issue becomes a 

two-sided matching operation with the help of the 

crossover-based coati optimisation algorithm. Total 

residual energy, number of surviving nodes, and time 

consumption are used to assess the efficiency of the 

proposed method. The experimental results show that the 

suggested model can maximise the NOMA-UAV 

network's energy efficiency by determining the best 

combination of time and power resources to meet the 

quality of service requirements of the customers. [3]  

 

Drones, or unmanned aerial vehicles (UAVs), have seen a 

meteoric rise in popularity in recent years, according to 

Ghamari et al. (2022). The increasing demand for the 

use of such platforms, especially in civil applications, and 

the fast progress in their design and manufacture have led 

to this. UAVs that are both affordable and reliable have 

become more common. Unmanned Aerial Vehicles 

(UAVs) offer a lot of promise for use in wireless systems 

due to their inherent characteristics, such as their great 

mobility, quick deployment, and adjustable height. One 

the one hand, unmanned aerial vehicles (UAVs) may 

serve a range of tasks including remote sensing, search 

and rescue, precision agricultural monitoring, and 

commodities delivery by acting as mobile terminals in the 

air inside wireless and cellular networks. Conversely, 

unmanned aerial vehicles (UAVs) have the potential to 

serve as base stations in the sky, expanding the reach, 

capacity, and dependability of wireless networks without 

the need to install costly new infrastructure. In this piece, 

we will take a look at some of the current commercial and 

civic uses of unmanned aerial vehicles (UAVs). This 

research delves into the difficulties and necessary 

communication protocols for UAV-based communication 

systems. Several factors, including those affecting UAVs' 

ability to communicate, are used to categorise UAVs in 

the article. Following that, it delves into the topic of aerial 

networking and examines UAV routing protocols in 

particular, a problem area in UAV communication. 

Afterwards, the paper delves into the several civic 

applications of UAV networks, exploring the numerous 

obstacles and communication requirements associated 

with these uses. After that, we take a look at several 

simulation systems from a networking and 

communication perspective. In the end, it pinpoints places 

where more study is needed. [4]  

 

In order to accomplish the Sustainable Development 

Goals (SDGs), contemporary civilization relies on 

precision agriculture, often called smart farming 

(Massaoudi et al., 2023). The goal of precision 

agriculture is to increase yields while decreasing use of 

finite resources. In recent years, smart farming has 

expanded as a result of the incorporation of contemporary 

technology, such as the Internet of Things (IoT) and 

artificial intelligence (AI). In this study, we investigate 

the feasibility of using UAVs as part of an irrigation 

system for olive trees. In particular, UAVs guarantee 

remote sensing (RS), which has the benefit of gathering 

critical data on a massive geographical and temporal scale 

(unattainable with conventional technology). 

Nevertheless, there are many linked components that need 

sophisticated computational capabilities, large battery 

capacities, energy economy, and spectrum efficiency, 

which presents a significant barrier for UAV-based 

irrigation systems. An issue with UAV-based irrigation 

systems is the trade-off between energy efficiency and 

spectral efficiency, which is addressed in this research. 

We recommend using M-MIMO technology, which 

stands for massive multiple input, multiple output, to 

guarantee wireless connection. Not only does this 

technology hold promise for improved energy and 

spectrum efficiency, but it also plays a key part in the 

next generation of wireless mobile networks, the sixth 

generation (6G). We develop a three-layer network model 

and calculate analytically the system's potential spectral 

and energy efficiency. We next utilise numerical methods 

to find the ideal quantity of Internet of Things (IoT) 

devices and ground base station antennas to achieve 
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optimum energy efficiency with high spectral efficiency 

guaranteed. Using the M-MMSE combiner, the numerical 

results show that the proposed UAV-based irrigation 

system achieves the optimum spectral and energy 

efficiency trade-off, and it also outperforms traditional 

systems. [5]  

 

Unmanned aerial vehicles (UAVs) and the Internet of 

Things (IoT) have seen tremendous technical progress, 

which has changed our lifestyle choices (Gupta et al., 

2022). Academics are interested in studying UAVs since 

they connect everything in the current world. Unmanned 

Aerial Vehicles (UAVs) have already shown to be a 

global blessing by providing air support during life-

threatening medical crises. Unmanned Aerial Vehicles 

(UAVs) are a kind of cutting-edge technology that will 

help humanity advance towards a smarter future by 

meeting a wide range of demands. Many sensors and 

flying nodes in UAV-assisted conventional networks 

require a lot of power, and gadgets allowed by Fifth 

Generation (5G) or beyond 5G release a lot of radiation, 

which might harm our society and the environment. 

Consequently, a better lifestyle can only be achieved by 

balancing environmental protection with the use of 

contemporary technology. This can only be sustained 

with ongoing efforts to lessen the load on nodes, cut down 

on data resource usage, and promote efficient energy-use 

practices. An intelligent world with better Quality of 

Services (QoS) may be built via the use of green UAV-

based fog computing, which offers a solution to 

environmental challenges while also providing energy-

efficient data processing and aerial-to-ground network 

connection. An extensive overview of environmentally 

friendly technologies and their potential uses for UAV-

Fog is presented in this article. In addition, we focus on 

research topics, present difficulties, lessons gained, and 

the UAV-Fog network's future plans. [6]  

 

A variety of scenarios may benefit from unmanned aerial 

vehicle (UAV) networks, including public safety, 

advertising, broadcasting, disaster management, and more 

(Alkanhel et al., 2023). The ever-changing nature of 

mobile users makes it difficult to provide them with 

reliable communication services. To enhance the 

coverage and energy efficiency of UAV-assisted 

transmission networks, it is essential to address the 

transmission issue of resource allocation, which 

encompasses subchannels, transmit power, and user 

service. In this study, we introduce ESMOL-RAA, an 

improved slime mould optimisation method for UAV-

enabled wireless networks that makes use of deep 

learning. Decisions that are both computationally and 

energy-effective may be effectively accomplished with 

the help of the ESMOML-RAA approach. Furthermore, 

the ESMOML-RAA method formulates a reward function 

with the goal of minimising weighted resource 

consumption and takes into account a UAV as a learning 

agent with the creation of a resource assignment choice as 

an action. The offered ESMOML-RAA method uses an 

HP-LSTM model, which is a hyperparameter optimizer 

for an ESMO algorithm, to distribute resources. To fine-

tune the HP-LSTM model's hyperparameters, the ESMO 

method is useful. A battery of simulations is used to 

validate the ESMOML-RAA technique's performance. 

The ESMOML-RAA method outperformed the 

competing ML models in this comparative analysis. [7]  

 

In order to improve network spectrum, energy efficiency, 

and data transfer rate, future 5G/6G communication will 

rely significantly on efficient and low-latency wireless 

cellular device-to-device communication (Luo and Fu, 

2023). Improving energy-efficient communication while 

considering latency is made possible by using modern 

technologies like swarm optimisation and deep learning. 

Intelligent and efficient data control and transmission 

technologies are necessary for networks of the fifth and 

beyond generations. In order to set up low-power, high-

transfer-rate data transmission between equipment, 

unmanned aerial vehicles (UAVs) are used. Emphasising 

the need of integration with potential solutions to improve 

network performance, this research also centres on 

integrating UAV-based D2D communication with other 

sophisticated technologies. To keep up with the ever-

increasing needs of wireless networks, researchers are 

working on 5G and 6G communication technologies to 

provide better device and application compatibility, 

higher data rates, reduced latency, and more reliable 

connections. On the other hand, in order to adapt to the 

impending digital landscape, the existing network 

advantages will need to be strengthened. Therefore, we 

provide a fresh strategy for UAV-based device-to-device 

communication that makes use of optimised deep learning 

models in three ways to tackle these challenges: 1. Hybrid 

Particle Swarm Optimisation with an Effective K-means 

Clustering Method (IHPSO-K) Version 2. In order to 

overcome the limitations that UAVs encounter while 

trying to fulfil the most recent technical standards, 

researchers have developed a Hybrid Fuzzy C Means 

(HFCM) technique and a three-greedy algorithm. We use 

two approaches—the device-centric approach and the 

network-centric approach—to carry out the efficient 

performance of the suggested algorithm, taking into 

account the qualities mentioned above. In UAV-based 

D2D communication, combining these methods may lead 

to more precise and efficient data clustering. Crucial 

aspects of such communication situations include 

throughput, latency, and energy usage; this may lead to 

better performance in all three areas. [8]  
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El-Gayar and Ajour (2023) discuss how important it is 

for communication systems to improve energy economy, 

content distribution, latency, and transmission speeds. To 

improve these KPIs, many access methods show a lot of 

potential. Within a single cell, with users dispersed at 

random and depending on relays for reliability, this 

publication assesses the efficacy of Orthogonal Multiple 

Access (OMA) and Non-Orthogonal Multiple Access 

(NOMA) systems. In this study, we provide a paradigm 

for single-cell NOMA and OMA communication systems 

that improves energy efficiency, content distribution, 

latency, and transmission speeds. In addition, the authors 

of this work suggest a caching technique that makes use 

of UAVs as mobile data centres above ground. By 

repositioning themselves and distributing cached material, 

these UAVs reduce the total latency of content requests 

from terrestrial users. We ran simulations with different 

cache capacity and user numbers associated with UAVs. 

In addition, we compared OMA and NOMA based on 

their achieveable rates and energy efficiency. Regardless 

of the total rate, number of mobility users, cache size, or 

amount of power allocated, the suggested model has 

improved significantly. [9]  

 

In the future, the services provided by the planned smart 

cities will be completely transformed by Unmanned 

Aerial Vehicles (UAVs) due to their nimbleness, 

adaptability, and low operating costs (Alharbi et al., 

2022). Unmanned Aerial Vehicles (UAVs) are seeing 

extensive deployment across a variety of industries, from 

surveillance and search and rescue to product delivery 

and the foundation of future wireless networks' aerial 

communications. Unmanned Aerial Vehicles (UAVs) 

have several potential applications, including precise 

position surveying, data collection from the ground (such 

as video feeds), and the generation and offloading of 

computational tasks to servers that are accessible. Here, 

we use the Mixed Integer Linear Programming (MILP) 

optimisation paradigm to create a multi-objective 

optimisation framework that can handle both the UAV 

trajectory planning issue and the allocation of network 

resources. Given the diversity of interests that could be 

present in a Cloud-Fog setting, we take into account all of 

the potential stakeholders and minimise the sum of a 

weighted objective function. This gives network operators 

the freedom to adjust the weights to prioritise certain cost 

functions, like EENPC, PPC, UAVTFD, and UAVTPC, 

among others. We thoroughly examine various limitations 

related to EENPC, PPC, UAVTFD, and UAVTPC, and 

our optimisation models and outcomes allow for the 

optimal offloading options to be made under these 

conditions. To illustrate, the optimal course of action is to 

offload data to the macro base station when the UAV's 

propulsion efficiency (UPE) reaches its lowest point of 

10%. This will result in a maximum power savings of 

34%. While many studies have focused on UAV coverage 

path planning (CPP) and computation offloading, no one 

has yet examined this in a real-world Cloud-Fog 

architecture that takes into account all aspects of the 

access, metro, and core layers when assessing service 

offloading in a distributed architecture such as Cloud-

Fog. [10]  

 

According to Alnakhli et al. (2024), UAVs have become 

more popular as useful wireless platforms to assist users 

in a variety of contexts, especially in inaccessible areas 

such as disaster relief operations. In order to optimise the 

spectral and energy efficiency of the UAV network, it is 

necessary to optimise the UAV-user association. This is 

because this research uses numerous UAVs to cover users 

in overlapping places. For this purpose, graph theory is 

used to create a linked bipartite graph including UAVs 

and users. Next, in order to maximise data rate 

considering user requests and UAV capabilities, an 

optimisation method called MwMaxFlow is suggested. 

Users' transmit powers are optimised and energy 

efficiency is improved by the use of power control based 

on the M-matrix theory. Through numerical simulations, 

the suggested approach is assessed and contrasted with 

other standard techniques. Results from the simulations 

show that the suggested method strikes a good balance 

between energy consumption and spectrum efficiency, 

making it applicable to a wide range of wireless UAV 

applications, such as monitoring, emergency response, 

and disaster management in the aftermath. the eleventh  

Unmanned aerial vehicles (UAVs) have seen widespread 

use as a data gathering platform to aid in the efficient 

collection of data from Internet of Things (IoT) devices 

[11]. 

Basset et al. (2024), The need to reduce energy 

consumption of UAVs and IoT devices has, however, 

made optimisation of UAV deployment difficult. There 

have been a number of algorithms suggested as solutions 

to this problem as of late, but their sluggish convergence 

time and memory-wasting issues mean that they are far 

from perfect. In order to optimise the whole deployment 

of UAVs in a way that minimises total energy usage, this 

research proposes a novel energy-aware strategy. The 

foundation of this method is the introduction of a novel 

encoding mechanism—specifically, an optimised 

population size mechanism—that effectively represents 

the position and quantity of stop points. Like in other 

research, this system holds the whole population to 

account for the deployment as a whole, with each person 

accountable for a specific milestone along the way. One 

innovative approach to optimising the amount of stop 

points is shown by this method. It uses an auxiliary 
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variable to decide whether a stop point will be deleted, 

introduced, or replaced in the newly created deployment. 

Throughout the optimisation process, optimisation 

algorithms will seek for the best option for each stop 

point that might lead to a better deployment by optimising 

this variable. By modifying the gradient-based optimizer 

(GBoPS) and differential evolution (DE), two popular 

optimisation methods, this mechanism introduces two 

new versions—DEoPS and GBoPS—that are more suited 

to solving the deployment optimisation issue. In this 

study, we examine the efficiency of DEoPS and GBoPS 

using two energy consumption models. On eleven 

separate occasions, researchers have tested DEoPS and 

GBoPS against a variety of algorithms to see how they 

fare. The results of the experiments demonstrate that 

GBoPS worked well with the first formulation and that 

DEoPS worked well with the second formulation. [12]  

 

Drones are a useful tool for gathering information from 

wireless sensor networks (WSNs), according to Ding et 

al. (2023). In this study, we explore the issue of energy-

efficient data gathering in a secure WSN that is enabled 

by UAVs, without knowing the eavesdropper's (Eve) 

immediate channel state knowledge. In particular, at the 

predetermined intervals, the UAV gathered data from all 

of the wireless sensors and sent it to the fusion centre, all 

the while Eve attempted to eavesdrop on this sensitive 

data. Our solution to this complex mixed-integer non-

convex problem involves minimising the maximum 

energy consumption of ground sensor nodes (GSNs) 

while taking into account constraints such as secrecy 

outage probability (SOP), connection outage probability 

(COP), minimum secure data, information causality, and 

UAV trajectory. This optimisation algorithm is iterative 

and uses the block coordinate descent (BCD) method. The 

numerical findings show that our suggested method 

outperforms previous strategies in terms of energy usage 

and secrecy rate. [13]  

 

In their study, Sugesh and Vairavel (2023) found that 

using ML solutions in UAV-assisted 5G communication 

may have a positive impact on both 5G and future 

generations of wireless networks. Concerning the use of 

machine learning in 5G communication with the help of 

UAVs, there is a dearth of research at all levels of 

education. Finding exact answers for UAV-assisted 5G 

communication is challenging due to what seems to be a 

lack of such research. Researching and understanding the 

use of machine learning to UAV-assisted 5G 

communication is so crucial. Several design and 

functional characteristics, including beamforming, 

resource allocation, dynamic deployment, and trajectory 

prediction, have been enhanced by applying machine 

learning (ML) methods to UAV-based wireless 

communication in this article's systematic study of 

important research activities. In this review, the studies 

were grouped into four themes: (1) the main machine 

learning algorithms used in UAV-assisted wireless 

communication; (2) the main categories of machine 

learning algorithms and frameworks; and (3) the process 

of UAV-assisted 5G communication using machine 

learning. The results show that the main algorithms and 

frameworks used in UAV-assisted wireless 

communication are: Q-Learning, MARL, K-means, 

AMSSA, genetic algorithm, support vector machine 

(SVM), support vector regression, artificial neural 

network (ANN), LSM, cross-entropy algorithm, DL 

algorithm, and reinforcement learning algorithm. [14]  

 

In this study, a new transmission strategy for UAV-

assisted air-to-ground (A2G) communication is suggested 

by Chen et al. (2023). The technique is both energy-

efficient and dependable. This method is designed to deal 

with transmission burst mistakes that occur as a result of 

interference, switching, or collisions in the network. To 

make A2G communication more reliable, the Application 

Layer Forward Error Correction (AL-FEC) method is 

suggested. Retransmissions have must be avoided at all 

costs in order to ensure energy efficiency. We 

mathematically analyse the suggested AL-FEC scheme's 

performance in depth using the Gilbert-Elliott channel 

model. A number of simulations have been conducted to 

investigate and verify the energy efficiency and packet 

delivery ratio. We compare the proposed approach to an 

application layer Automatic Repeat reQuest (AL-ARQ) 

protocol that relies on selective retransmission. In 

comparison to the baseline approach, the suggested AL-

FEC method assures the same or an even greater 

application packet delivery ratio while drastically 

reducing energy usage. The suggested strategy also shines 

in situations when the channel quality is low. Practical 

applications that depend on UAV-assisted A2G 

communication may benefit from our results, which 

outline the specifics of achieving dependable and energy-

efficient UAV-to-ground transmission in challenging 

wireless environments. [15]  

 

In their latest work on the RUBER system, which 

addresses the problems of sensor node and route failure in 

smart wireless livestock sensor networks, Bouchekara et 

al. (2024) build upon previous work on recoverable 

UAV-based energy-efficient reconfigurable routing. This 

study proposes a time-aware UAV-based energy-efficient 

reconfigurable routing (TUBER) strategy to address the 

temporal complexity and processing cost concerns 

associated with the RUBER approach. An approach to 

redundancy reduction, a minimum-hop neighbourhood 

recovery method, and synchronised clustering with 
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backup are all components of the TUBER system. 

Researchers looked studied TUBER's network 

performance in comparison to RUBER and UAV-based 

UBER, two systems for energy-efficient reconfigurable 

routing. Cluster Survival Ratio (CSR), Network Stability 

(NST), Energy Dissipation Ratio (EDR), Network 

Coverage (COV), Packet Delivery Ratio (PDR), Fault 

Tolerance Index (FTI), Load Balancing Ratio (LBR), 

Routing Overhead (ROH), Average Routing Delay 

(ARD), Failure Detection Ratio (FDR), and Failure 

Recovery Ratio (FRR) are the metrics used for this 

comparison of performance. According to the best-

obtained data, TUBER outperformed RUBER and UBER 

by 36.25%, 24.81%, 34.53%, 15.65%, 38.32%, 61.07%, 

31.66%, 63.20%, 68.19%, 66.19%, and 78.63% in the 

following categories: CSR, NST, EDR, COV, PDR, FTI, 

LBR, ROH, ARD, FDR, and FRR, respectively. The 

experimental findings showed that TUBER was the more 

successful of the two routing methods that were 

examined. [16]  

 

By using digital twin (DT) technology inside unmanned 

aerial vehicle (UAV) networks, this research investigates 

the developments of drones within the framework of 

sixth-generation mobile communication technology (6G) 

green Internet of Things (IoT), according to Qi et al. 

(2023). Using task manager scheduling, we provide a 

paradigm for green IoT UAV applications based on 

digital twins, in which separate tasks in the digital twin 

communicate with UAVs in the actual world. Using 

UAV-based 3D millimeter-wave radar imaging, we 

describe the DT's radio frequency (RF) characteristics. To 

take advantage of multipath reflections and reduce 

transmission energy, the wireless channel modelling 

emphasises the alignment of RF domains between the DT 

and the physical UAV. This alignment is based on ray 

tracing. In order to intelligently operate and maintain 

green UAV networks based on the Internet of Things, our 

numerical results have validated the effectiveness of the 

drone-enabled DT platform in attaining accurate RF 

representation of UAVs. [17]  

 

In this study, Ejiyeh (2024) addresses the critical issues 

with 6G wireless communication networks by using 

UAVs' distinct characteristics. Innovative solutions are 

urgently needed due to the lofty 6G claims, including as 

ultra-low latency and ultra-reliable 1 Tbps data transfer. 

The integration of UAVs is prompted by the limits of 

traditional terrestrial base stations in situations that need 

ubiquitous connection. Despite their effectiveness, these 

limitations are apparent. We provide an all-encompassing 

answer to these problems. This requires UAVs to work 

together to obtain material from service providers, and 

then to set up secure connections with users so that 

information may be sent efficiently. For this reason, we 

provide two novel protocols: SeGDS, a method for group 

data downloading among UAVs; and SeDDS, a method 

for secure direct data sharing via out-of-band autonomous 

Device-to-Device (D2D) communication. These protocols 

provide lightweight, certificate-free solutions with 

characteristics like user revocation, non-repudiation, and 

mutual authentication by using certificateless signcryption 

and certificateless multi-receiver encryption. The 

suggested methods prioritise high availability and 

successfully identify free riding and Denial of Service 

(DoS) attacks. A comprehensive analysis highlights the 

efficiency and security advantages of the suggested 

protocols over current models; SeDDS reduces 

computation by 3x, making UAVs' communication loads 

lighter, and SeGDS satisfies the security needs of swarms 

of unmanned aerial vehicles (UAVs) by reducing 

communication costs by 4x while maintaining low 

computation costs. [18]  

 

According to Bajracharya et al. (2022), one of the main 

objectives of 6G network architecture is to provide 

constant connection for devices and users regardless of 

the quality of the service they get. Furthermore, in order 

to provide dependable and low-latency access for the 

ever-changing quantity of mobile user devices, future 6G 

networks must be very versatile. Conversely, most 

existing base stations (BSs) and distant relay antennas are 

set up in predetermined geographic areas according to 

long-term traffic patterns, leaving limited room for re-

deployment. Rigid radio access networks (RANs) can't 

keep everyone connected for 6G apps since data flows in 

both the space and time domains. Contrarily, cellular 

operators now have a once-in-a-lifetime chance to build 

airborne wireless infrastructure with the use of unmanned 

aerial vehicle (UAV) technology, which is known as 

wireless infrastructure UAV (WI UAV). WI UAV is 

capable of wireless communication and can self-stabilize 

to enhance end-user service quality, coverage, and 

spectrum efficiency. As a base station, relay, or data 

collector/disseminator, this study presents a 6G new radio 

in the unlicensed band (NR-U)-based WI UAV. 

Unmanned Aerial Vehicles (UAVs) are classified 

according to their features, functions, and uses. Moreover, 

this article delves into the many standardisation and 

regulatory efforts aimed at incorporating UAVs into the 

cellular network. We propose and describe a non-

standalone NR-U network architecture for WI UAVs, talk 

about the design problems and prospects of NR-U for WI 

UAVs, and show you what the future holds for WI UAVs. 

[19 ] 

 

Research on Wireless Sensor Networks (WSNs) assisted 

by Unmanned Aerial Vehicles (UAVs) has recently 
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gained a lot of attention (Liu et al., 2024). Data 

transmission in UAV-WSNs relies on the routing 

protocol. To solve the problems with current routing 

protocols, such as excessive energy consumption and the 

early failure of some sensor nodes (SNs), we provide an 

effective protocol for UAV-WSNs data collecting. First, a 

model for UAV communication coverage is constructed, 

and the framework for collecting data from UAV-WSNs 

is set up. Secondly, we first split the routing region into 

two parts: one for air-to-ground and one for ground-to-

ground, based on the data transmission connection. In 

light of this, we provide an unequal-sized clustering-

based multi-hop routing protocol to encourage clusters to 

use energy in a balanced manner. Afterwards, we provide 

a sector dynamic adjustment method that takes its cues 

from lottery turntable wheels. This method simulates a 

rotation to dynamically alter the member nodes inside 

each cluster, ensuring that the energy consumption of 

each SN is well balanced. Finally, simulation and 

comparison experiments are used to verify the feasibility 

and efficiency of the suggested approach.  [20] 

 

A lot of people have been paying attention to UAV 

swarms recently (Javed et al., 2024) because of how well 

they can complete complex tasks. Increased intelligence, 

coordination, flexibility, survivability, and 

reconfigurability are all benefits of UAV swarms. A 

number of sub-systems, such as optimum trajectory 

planning, localization, task coordination, etc., must work 

together tightly since the system is multi-disciplinary. 

Aspects such as swarm formation control, 

communication, swarm route planning, autonomy, 

coordination, and security are covered in this overview of 

UAV swarms. Furthermore, it delves into the latest 

technological developments in UAV swarm algorithms, 

which have enabled the creation of intricate UAV swarm 

systems. In addition to outlining potential military, 

civilian, and entertainment uses for UAV swarms, this 

article delves into their ethical considerations. In its last 

section, the article discusses the future of unmanned aerial 

vehicle swarm technology, the obstacles it may face, and 

the need of more study and development to fully use its 

capabilities. Ultimately, this research offers a thorough 

analysis of UAV swarm technology, discussing its 

capacity to transform several domains and bolster future 

progress. [21]  

 

Providing wireless access in distant, disaster-stricken 

regions without communication infrastructure has 

garnered substantial interest, according to Carvajal-

Rodriguez et al. (2023), since UAVs outfitted with 

communication technology provide a possible alternative. 

Still, a plethora of algorithms and technologies must be 

integrated to make UAVs capable of communications 

(like flying base stations) in practical situations. 

Particularly important for unmanned aerial vehicles 

(UAVs) operating alone or in networks is the 

development of 3D path planning algorithms that can 

identify the most obstacle-free routes that can cover a 

given area wirelessly. This work thoroughly examines 

current route-planning methods for UAVs in a 3D 

environment, taking into account that the majority of 

previous approaches only deal with 2D path planning. 

The solutions have used optimisation models, both 

optimum and heuristics. A search of the Scopus database 

yielded 37 articles out of 631 papers that are examined in 

this work. Along with the research goals and methods for 

the systematic mapping project, this article provides an 

overview of UAV-enabled communications systems. This 

study concludes with details on the 3D route planning 

problem's optimisation variables, algorithmic techniques, 

and the goals that should be minimised or maximised. 

[22]  

 

According to Xu et al. (2022), the significance of 

wireless communication technology in the growth of 

national economies has been more significant in recent 

years. Natural catastrophes, public security crises, and 

other threats are only a few of the hazards and difficulties 

that individuals may encounter as a result of the rapid 

development of communication technology. Most of the 

time, long-term data traffic and user dispersion determine 

the deployment of traditional ground communication. It is 

not always possible to relocate infrastructure since it is 

often fixed. A critical component of public network 

communication is emergency communication. What this 

implies is that emergency procedures and means are 

combined and unified. Emergency services and 

emergency assistance are the responsibilities that need to 

be fulfilled. Expanding network coverage and improving 

network dependability are the main foci of this article. In 

the event that local networks are paralysed as a result of 

terrorist attacks or earthquakes, the creation of a rapid and 

reliable emergency communication network using both 

air and ground dimensions is also discussed. [23]  

 

The Internet of Things (IoT), according to Sharma and 

Mehra (2023), has changed the world via its many uses 

in areas such as transportation, agriculture, home 

automation, and more. The Internet of Things (IoT) is 

revolutionising the way unmanned aerial vehicle (UAV) 

networks work. These networks bring together UAVs that 

are already in use and equip them with sensors, 

microcontrollers so they can share data, and a ground 

control station (GCS) that they can communicate with 

online. Surveillance, monitoring, payload delivery, and 

many other uses of UAV network systems based on the 

Internet of Things (IoT) produce a mountain of sensitive 
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data that attackers in the middle may access. Potential 

security risks posed by jamming and eavesdropping 

attacks might compromise the communication between 

UAVs and GCS. Because their communication is not 

encrypted, UAV and GCS are both susceptible to 

mistakes. One such attack is GPS spoofing, which 

involves providing the UAV's controller erroneous 

coordinates. Despite a lot of work going into UAV 

security. Secure communication in UAV networks based 

on the Internet of Things is an area that needs more 

detailed evaluations. Finding and analysing peer-reviewed 

literature that covers topics like physical and logical 

attacks, proposed solutions like trajectory planning and 

lightweight schemes, blockchain-based solutions, 

quantum cryptography, etc., and published within the last 

six years is the goal of this paper. Using the study's 

approach as a framework, this article examines the UAV 

secure communication network and provides methodical 

answers to research issues. The report concludes with a 

number of points and suggestions for further study. [24]  

 

Fathollahi et al. (2024), This study proposes a new 

architecture for the Internet of Things (IoT) networks that 

are powered by rotary-wing unmanned aerial vehicles 

(UAVs) and allow full-duplex (FD) wireless 

communication. In this setup, the UAV has an array of 

antennas for communication, whereas the randomly 

placed IoT sensors only have one antenna each. As a 

hybrid access point, the UAV charges the sensors and 

gathers data from them by transferring energy to them. 

Next, the sensors are grouped into N equal parts so that 

the UAV with MIMO technology can service each set of 

sensors during the whole period, which helps with energy 

optimisation and time management. By using the time 

division multiple access (TDMA) system to collect 

information from users, we provide a straightforward 

implementation of the wireless power transfer protocol in 

the sensors. That is to say, when the UAV flies over one 

set of sensors to another, or when it hovers over sensors 

in one set to another, the sensors in each set get energy 

from the UAV. When the UAV flies over each group, the 

sensors in each group relay data to the drone. Our two 

optimisation problems are the sum throughput 

maximisation and total time minimization issues, both of 

which are formulated under these assumptions. The 

numerical findings demonstrate that compared to the 

current networks, our ideal network offers superior 

performance. Compared to traditional networks, our 

innovative architecture actually uses more antennas to 

service more sensors [25].  

 

In a recent study by Yang et al. (2023), the authors found 

that the proliferation of IoT communication devices has 

greatly improved people's daily lives. On the other hand, 

rescue efforts and the well-being of those impacted are 

profoundly damaged when communication infrastructure 

is destroyed during emergencies, which often causes 

interruptions in communication and makes it difficult to 

disseminate information. Key components of the answer 

to this problem have arisen as internet of things (IoT) big 

data analytics and unmanned aerial vehicle (UAV) 

technology. Internet of Things (IoT) big data analytics 

may aid decision-making during communication 

reconstruction after a catastrophe by assessing massive 

amounts of data from sensors, user actions, and data sent 

via networks. This allows for the forecast of 

communication demands in real-time and the 

development of strategies to optimise networks. A UAV-

assisted communication coverage approach grounded on 

IoT big data analytics is proposed in this research, taking 

into consideration the specifics of post-disaster scenarios. 

Using unmanned aerial vehicles (UAVs) in a cruising 

mode, this approach divides the target region into several 

cells, each of which provides the bare minimum of data 

needed for user communication. Support for 

communication is selectively provided via flight-

communication or hover-communication protocols, 

depending on the distribution patterns of users. A 

proposed algorithm called Inner Spiral Cruise 

Communication Coverage (IS-CCC) can optimise the 

UAV's flight speed while taking the mission's target area's 

coverage index, fairness index, and average energy 

efficiency into account. This algorithm can plan the 

UAV's cruising trajectory and achieve communication 

coverage without human intervention. This technique may 

reduce energy consumption in UAV-based 

communication, as shown in simulation findings, and 

enable energy-efficient cruise communication coverage in 

areas with complicated user distributions. [26]  

 

A revolutionary shift in data collecting and 

communication systems has begun in a variety of fields 

with the integration of internet of things (IoT) 

technologies with unmanned aerial vehicles (UAVs), 

according to Azadur et al. (2024). This paper presents a 

novel effort that utilises the Pareto-based genetic ant 

colony optimisation (PGA) method to integrate multi-

UAV route planning for integrated sensing and 

communication (ISAC) into ground-based CAT-M1 

Internet of Things (IoT) sensor networks. Because of its 

speed, flexibility, and ability to incorporate domain 

knowledge smoothly, the PGA algorithm is very good in 

UAV route planning. We achieve multi-objective 

optimisation by minimising UAV travel distance and 

optimising energy consumption using the PGA algorithm. 

Improved situational awareness and real-time data 

collecting are made possible by a convex optimisation 

resource allocation technique, which works in tandem 
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with ground-based IoT sensors and smooth UAV 

connectivity. In order to make the most efficient use of 

ground-based sensor data gathering, we have developed a 

UAV path planning PGA algorithm that allocates 

resources. With this innovative method, we are leading 

the charge to improve multi-UAV data gathering systems, 

which will lead to more efficient and resilient systems as 

well as game-changing solutions in many other fields. 

Impressively, the suggested ISAC system can reach 

throughputs of up to 95% of their capacity. [27]  

 

The value of the Internet of Things (IoT) has grown in 

relation to fifth-generation (B5G) networks, according to 

Xu (2023), thanks to developments in network slicing 

technology and the widespread use of intelligent gadgets. 

Disasters make communication more important and 

difficult since the main power source can become 

unstable and IoT devices might be insecure. In this 

research, we take into account UAVs as mobile base 

stations (BS) for the 5G mMTC network slicing 

emergency communication system in an effort to improve 

service quality. Efficiency in managing UAV trajectories, 

power consumption, and time slots are all improved by 

the proposed method. Optimising the UAV trajectory 

with different numbers of base stations is the first step. In 

the second stage, we apply the Dinkelbach method to the 

problem of non-convex fractional power allocation. We 

also create a system for distributing time slots that, by 

distributing them equitably among all users, improves the 

energy efficiency rating. Based on the idea of Markov 

Decision Processes (MDPs), the system model is then 

converted into a stochastic optimisation problem. We 

provide an approach for resource allocation based on 

Dueling-Deep-Q-Networks (DDQN) that maximises 

energy efficiency using the Reinforcement Learning (RL) 

technique. By solving the suggested sum-rate 

maximisation issue by optimising trajectories, allocating 

power, and allocating resources, the numerical results 

reveal that the efficiency of the UAV-based network and 

the base station has been substantially enhanced. Efficient 

optimisation reduces energy consumption by 1500 to 

2200 joules while using fewer resources. [28]  

 

The rapid advancement of 5G and beyond networks 

combined with UAVs has unleashed a plethora of new 

possibilities for various applications and state-of-the-art 

technologies, according to Banafaa et al. (2024). This 

has completely transformed the way digital connections, 

communications, and innovations take place. In this 

article, we take a look at all the angles of unmanned aerial 

vehicle (UAV) usage in 5G and beyond networks, 

including potential deployment scenarios, potential 

applications, new technology, regulations, research 

trends, and problems. A brief introduction and purpose set 

the stage for the systematic categorization of UAVs and 

the subsequent examination of pertinent literature. Both 

single- and multi-UAV setups are included in the survey. 

We provide the classification of UAV 5G applications 

and look into new innovation that may improve UAV 

communications. We talk about privacy, safety, spectrum 

allotment, and flying rules as they pertain to regulations. 

There is also a synopsis of important results and 

contributions, as well as illumination of current research 

trends and unresolved problems in the area, as well as the 

identification of encouraging avenues for future studies. 

Researchers, practitioners, and policymakers in the fields 

of unmanned aerial vehicles (UAVs) and communication 

will find this survey to be an invaluable resource. Better 

yet, it lays the groundwork for smart decision-making, 

encourages teamwork, and propels progress in unmanned 

aerial vehicle (UAV) and communication technology to 

meet the changing demands of our linked world. [29]  

 

The cellular ground base station (GBS) is crucial for 

wireless communication, according to Khan et al. (2024). 

During catastrophes, whether natural or man-made, there 

might be a communication gap if the cellular GBS fails, 

even partly. Life, property, and the nation's infrastructure 

might be spared in such calamities by use of public safety 

communication (PSC). The PSC is able to provide vital 

communication and video transmission services to the 

impacted region during catastrophes. In particular, PSC 

services benefit from the mobility, flexibility, and ease of 

deployment offered by unmanned aerial vehicles (UAVs) 

operating as flying base stations (UAV-BSs). An 

observational UAV in this publication takes video feeds 

from AGUs in the impacted region and sends them to a 

nearby GBS via a relay UAV as part of a multi-UAV-

assisted PSC network. The suggested research is to find 

the optimal path for the AGU-generated video streams to 

take in order to achieve maximum average utility once 

they reach the GBS. The goal is to maximise the 

efficiency of the system within the constraints imposed by 

the design of the system, which include the transmission 

rate, the probability of rate outages, the budget for 

transmit power, and the available bandwidth, all while 

optimising the positions of the observational and relay 

UAVs and the distribution of communication resources 

like bandwidth and transmit power. Therefore, a 

mathematical formulation of a simultaneous UAV 

deployment and resource allocation issue is provided. It 

will be quite difficult to find a solution to the given issue. 

A very effective iterative approach is suggested, taking 

into account the block coordinate descent and successive 

convex approximation methods. Lastly, we provide 

simulation results that demonstrate the superior 

performance of our suggested strategy compared to the 

current methodologies. [30] 
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Aiming to deliver seamless all-area, all-time coverage, 

space-air-ground integrated networks (SAGINs) have 

garnered great attention in light of the fast growth of 5G 

and 6G communications in recent years (Lu et al., 2023). 

In recent years, flying ad hoc networks (FANETs), which 

are an integral part of SAGINs, have seen extensive 

application in the transportation and agricultural 

industries. Efficient routing algorithms are necessary for 

SAGINs to ensure reliable communication. We examine 

the special communication design of FANETs in SAGINs 

in this research. Concurrently, we provide and group 

together preexisting routing methods. Furthermore, we 

survey the most recent developments in routing algorithm 

research throughout the last five years. By delving into 

the algorithms and drawing comparisons between the 

routing experiments and the features of UAVs, we 

conclude by elucidating the future directions of FANET 

routing algorithms in SAGINs research. [31]  

 

According to Al Amin et al. (2023), the basic 

components of smart cities—the efficient and continuous 

electricity supply—depend on a smart grid that is in good 

working order. A faultless wireless communication 

system that offers secure, huge connection, low latency, 

flexibility, dependability, and adaptation to changing 

demands is necessary for smart grid operation 

management. This paper provides a current overview of 

how smart grids are making use of 6G wireless 

communication for their primary applications, particularly 

in the areas of highly connected and monitored systems, 

protected communication for managing operations and 

resources, and time-sensitive tasks. The essay begins by 

outlining the smart city's essential enablers and how the 

smart grid is essential to them. 6G wireless connectivity, 

smart grid technology, and smart cities are all laid forth in 

this study. Furthermore, the essay also expresses the 

reasons to include 6G wireless connectivity into the smart 

grid system. In order to fill a need in the existing 

literature, this study presents a review of the relevant 

literature and highlights its originality. In order to carry 

out the smart grid applications under consideration, we 

detail the innovative 6G wireless communication 

technologies. When compared to the previous generation 

of wireless communication system, the main performance 

metrics have been substantially enhanced by the novel 

technologies of 6G wireless communication. The modern 

overview of the principal uses of a 6G-served smart grid 

is a substantial portion of this text. Furthermore, this 

essay also discusses in detail the expected difficulties and 

intriguing avenues for future study. To learn more about 

how 6G wireless connectivity might improve smart grid 

applications and deal with new problems, this article is a 

great resource. [32]  

3. Learning-based methods for solving 

optimization problems 

 

Learning-based methods for solving optimization 

problems in signal processing algorithms for energy-

efficient UAV-aided wireless communication networks 

encompass a wide range of techniques that adaptively 

improve performance with experience or data. These 

methods involve the application of various branches of 

artificial intelligence, such as machine learning and deep 

learning, to optimize signal processing tasks like resource 

allocation, routing, and power control to enhance energy 

efficiency. 

 

Key methods include: 

 

1. Supervised Learning: Using labeled data to train 

models that can predict future outcomes based on 

historical data. For UAV networks, this could mean 

predicting optimal flight paths or signal routing 

strategies that minimize energy consumption. 

2. Unsupervised Learning: Finding hidden patterns or 

intrinsic structures in input data. Clustering 

algorithms, for example, could be used to group 

nearby devices for more efficient communication. 

3. Reinforcement Learning (RL): Learning to make 

decisions by taking actions in an environment to 

maximize a cumulative reward. RL can be used for 

dynamic decision-making in UAVs to adjust their 

paths or communication strategies in real-time for 

better energy savings. 

4. Deep Learning: Leveraging neural networks with 

many layers (deep architectures) to model complex 

relationships in data. Convolutional neural networks 

might be employed for image and signal processing 

tasks related to UAV navigation and communication. 

5. Federated Learning: A machine learning setting 

where the model is trained across multiple 

decentralized devices holding local data samples. This 

can be beneficial for UAV networks, where data 

privacy is essential, and the network's energy is 

preserved by avoiding the need to transmit large data 

sets. 

6. Transfer Learning: Applying knowledge gained 

from solving one problem to a different but related 

problem. For UAVs, knowledge from one network's 

optimization could inform energy efficiency strategies 

in another network. 

7. Evolutionary Algorithms: These are inspired by the 

process of natural selection and used for global 

optimization. They can be particularly useful for 

solving non-convex or complex optimization 

problems that arise in UAV path planning and 

resource allocation. 
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A. Neural Networks 

 

1. Signal Processing with Neural Networks: Neural 

networks can be applied to various signal processing 

tasks such as noise reduction, channel estimation, and 

signal classification, which are crucial for maintaining 

the integrity of the communication signals in a UAV 

network. 

2. Energy Efficiency: One of the significant challenges 

with UAVs is the limited energy available for long-

duration flights. Neural networks can predict optimal 

flight paths, manage communication protocols, and 

adjust signal processing tasks in real-time to minimize 

energy consumption. 

3. Adaptive Algorithms: NNs can adapt to changing 

network conditions (like node mobility, interference, 

and signal degradation) by learning from data. This 

adaptability is essential in dynamic environments 

where UAVs operate. 

4. Distributed Processing: UAVs in a network can 

share the computational load of running neural 

networks, thus reducing the processing burden on 

individual UAVs and saving energy. 

5. Predictive Maintenance: NNs can process data from 

UAV sensors to predict component failures before 

they occur, reducing downtime and saving energy by 

avoiding unnecessary flights. 

6. Communication Network Optimization: By 

analyzing communication patterns, NNs can optimize 

the network topology, reducing the energy required 

for transmission and improving the overall efficiency 

of the wireless communication network. 

 
Figure 1. Neural networks 

 

The figure 1 depicts a schematic representation of a multi-

layered neural network architecture, which includes an 

input layer, multiple hidden layers, and an output layer. 

The input layer consists of 'N' nodes, each representing an 

input feature xi. The network comprises several hidden 

layers (Layer 1, Layer 2, ..., Layer L), with each layer 

containing a number of neurons. One neuron is 

highlighted in Layer 2, emphasizing its role in processing 

inputs from the previous layer through weighted 

connections. The hidden layers perform various 

transformations on the input data, extracting features and 

patterns necessary for learning tasks. The final layer, 

known as the output layer, contains 'M' nodes, each 

producing an output yi. This output represents the neural 

network's prediction or decision, based on the learned 

patterns from the input data. The architecture signifies a 

feedforward process, where data flows from the input to 

the output layer, and each neuron contributes to the form 

of learned representations at each stage, ultimately 

leading to the final output. 

1) Perceptron Model 

 

 
 

Figure 2. Fundamental workings of a single neuron 

 

The figure 2 illustrates the fundamental workings of a 

single neuron within a neural network. Inputs x1,x2,...,xn 

are fed into the neuron, each multiplied by a 

corresponding weight w1,w2,...,wn. Additionally, there is 

a bias term 'b' associated with the neuron. These inputs 

and bias are combined in a weighted sum, representing 

the weighted combination of inputs plus bias. This sum is 

then passed through a non-linear function denoted by σ, 

which is typically an activation function like a sigmoid, 

ReLU, or tanh. The activation function introduces non-

linearity to the neuron's output, enabling the network to 

learn and model complex relationships. The result of the 

non-linear function is the output 'Y' of the neuron, which 

can then be used as an input to subsequent layers in a 

neural network or as a final output in the case of a single-

layer network. This structure allows the neural network to 

perform complex mappings from inputs to outputs, 

forming the basis for tasks such as classification, 

regression, and more. 

The Perceptron model is a type of artificial neuron 

originally proposed by Frank Rosenblatt in 1957. It's one 

of the simplest forms of a neural network, often used in 

binary classification problems (classifying inputs into one 

of two categories). Here's how the Perceptron model 

works: 
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1. Input Values: The Perceptron receives multiple input 

signals, each represented by numerical values. These 

inputs might represent different features of the data 

point being evaluated. 

2. Weights: Each input is assigned a weight that 

represents its relative importance. Weights are 

adjusted during the learning process. 

3. Summation Function: The Perceptron computes a 

weighted sum of the inputs. 

𝑧 =  𝑤1𝑥1 + 𝑤2𝑥2 + ⋯ + 𝑤𝑛𝑥𝑛 

where wi is the weight and xi is the input value. 

4. Activation Function: The sum is then passed through 

an activation function to produce the output. In the 

case of the Perceptron, this is often a step function that 

outputs either 1 or 0: 

𝑜𝑢𝑡𝑝𝑢𝑡 =  ∫
𝑖𝑓 𝑧 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

1

0
 

5. Learning Rule: The Perceptron is trained using the 

Perceptron learning rule, which updates the weights 

based on the error of the prediction. The rule is 

applied iteratively over the training set: 

𝑤𝑖 =  𝑤𝑖 + Δ𝑤𝑖  

where Δwi =η(target−output) xi   and η is the learning rate, 

a small positive value that determines the size of the 

weight update. 

6. Bias: Often, a bias term is added to the summation to 

allow the decision boundary to be offset from the 

origin. 

The simplicity of the Perceptron makes it fast and 

efficient for certain tasks, but it also has limitations. For 

example, it can only classify data that is linearly 

separable, meaning the data can be separated into classes 

using a single straight line. It cannot solve non-linear 

problems, which led to the development of multi-layer 

networks and more complex learning algorithms capable 

of handling more complex tasks. 

 

2) Backpropogation 

 

Backpropagation for signal processing algorithms in 

energy-efficient UAVs (Unmanned Aerial Vehicles) 

aided wireless communication networks can significantly 

enhance performance and efficiency. Here's a breakdown 

of how backpropagation can be applied to this context: 

1. Optimizing Communication Protocols: 

Backpropagation can be used to train neural networks 

that optimize UAV communication protocols, 

minimizing energy consumption while maximizing 

data transmission rates. By learning the most efficient 

pathways and signal processing methods, these 

networks can adapt to changing conditions, such as 

interference and signal attenuation, to maintain high-

quality communication with minimal energy use. 

2. Adaptive Beamforming: For UAVs utilizing 

beamforming techniques to focus the transmission and 

reception of signals, backpropagation can optimize the 

weights of the antenna arrays. This optimization can 

enhance the signal-to-noise ratio, leading to more 

efficient use of energy and improved communication 

range and quality. 

3. Dynamic Routing and Network Configuration: In a 

UAV-aided wireless network, UAVs may act as 

mobile base stations or relay nodes. Backpropagation 

can help in dynamically adjusting the network 

configuration and routing protocols based on real-time 

data, such as UAV location, battery levels, and traffic 

demand, to ensure energy-efficient operation and 

maintain service quality. 

4. Signal Denoising and Interference Mitigation: 

Backpropagation algorithms can train neural networks 

to perform advanced signal processing tasks, such as 

denoising and interference mitigation. By learning 

from past transmissions, these networks can 

effectively filter out noise and interference, reducing 

the power required to achieve clear communication. 

5. Predictive Maintenance and Energy Management: 

Neural networks trained via backpropagation can 

predict system failures or identify suboptimal 

operation before they lead to significant energy waste. 

Predictive maintenance can ensure UAVs operate 

efficiently for longer periods, while energy 

management algorithms can make real-time decisions 

about power use, such as when to switch between 

communication modes or adjust transmission power 

based on the quality of service requirements. 

6. Learning and Adapting to Environmental 

Changes: Backpropagation enables neural networks 

to learn from and adapt to environmental changes that 

affect signal propagation, such as weather conditions, 

obstacles, and varying landscapes. By continuously 

updating the model based on real-world operating 

conditions, UAV networks can maintain optimal 

performance without manual recalibration. 

3) Deep Learning 

 

Deep Learning for signal processing in energy-efficient 

UAVs (Unmanned Aerial Vehicles) aided wireless 

communication networks is a cutting-edge approach 

aimed at enhancing the capabilities and efficiency of such 

networks. This technique leverages deep neural networks 

(DNNs) to process complex signal data and make 

intelligent decisions, optimizing various aspects of UAV 

operation and communication. Here's an exploration of 

how deep learning can be applied to this domain: 
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1. Channel Estimation and Modeling: Deep learning 

models can be trained to accurately estimate and 

predict wireless communication channels' behavior. 

These models can handle non-linear and high-

dimensional data, improving the reliability of UAV 

communications in dynamic environments. By 

accurately modeling the channel, UAVs can adapt 

their transmission power and modulation schemes to 

maintain efficient and robust communication links. 

2. Spectrum Sensing and Management: Deep learning 

can significantly enhance spectrum sensing 

capabilities, enabling UAVs to identify and exploit 

available communication frequencies dynamically. 

This is particularly useful in crowded spectral 

environments or in scenarios where UAVs need to 

coexist with other wireless services without causing 

interference. By efficiently managing the spectrum, 

UAV networks can ensure high data rates and low-

latency communications while conserving energy. 

3. Traffic Prediction and Network Optimization: 

Deep learning algorithms can predict traffic patterns 

and optimize network resource allocation accordingly. 

This ensures that the UAV network can handle 

varying data demands efficiently, allocating 

bandwidth and energy resources where they are 

needed most, thereby improving the overall energy 

efficiency of the network. 

4. Energy-Efficient Routing: UAVs often serve as 

aerial base stations or relay nodes in wireless 

networks. Deep learning models can optimize routing 

decisions based on the current network state, including 

UAV positions, battery levels, and data demands. By 

predicting the most energy-efficient routes for data 

packets, these models can significantly reduce the 

energy consumption of UAV networks. 

5. Signal Denoising and Enhancement: Deep learning 

models excel at extracting useful information from 

noisy signals. In UAV communication networks, these 

models can be applied to denoise received signals, 

improving the quality of the communication even in 

adverse conditions. This capability allows UAVs to 

maintain reliable communication links without 

increasing the transmission power, thus saving energy. 

6. Anomaly Detection and Security: Deep learning 

models can be trained to detect anomalies in 

communication patterns, identifying potential security 

threats or system malfunctions early. By addressing 

these issues promptly, UAV networks can avoid 

energy wastage due to malicious attacks or faulty 

operation. 

7. Adaptive Beamforming: For UAV networks utilizing 

beamforming techniques, deep learning can optimize 

the beam patterns in real-time, focusing the energy in 

the desired directions while minimizing interference. 

This approach enhances communication quality and 

energy efficiency, especially in highly dynamic 

environments where conventional beamforming 

techniques may fall short. 

The integration of deep learning into UAV-aided wireless 

communication networks represents a significant step 

forward in achieving high-efficiency, reliable, and 

intelligent communication systems. The ability of deep 

learning models to learn from data, adapt to new 

scenarios, and make optimized decisions in real-time 

makes them ideal for managing the complex and dynamic 

environments in which UAV networks operate. As 

research progresses, we can expect to see increasingly 

sophisticated applications of deep learning that push the 

boundaries of what's possible in UAV communications 

and signal processing. 

 

B. FEATURES OF HARD OPTIMIZATION 

PROBLEMS 

Hard optimization problems in the context of signal 

processing algorithms for energy-efficient UAVs 

(Unmanned Aerial Vehicles) aided wireless 

communication networks present several distinct features. 

These characteristics often make the optimization tasks 

computationally intensive and challenging to solve with 

traditional methods. Understanding these features is 

crucial for developing effective solutions. Here are some 

notable features of hard optimization problems in this 

context: 

1. High Dimensionality: Many optimization problems 

in UAV networks involve high-dimensional parameter 

spaces. For example, optimizing the flight path for 

multiple UAVs while considering energy efficiency, 

signal coverage, and interference minimization 

involves a vast number of variables and constraints, 

leading to a high-dimensional optimization problem. 

2. Non-Convexity: The objective functions in these 

problems are often non-convex, meaning they do not 

have a single global optimum. Instead, there may be 

many local optima, making it difficult to find the best 

solution. Non-convexity arises in problems like 

beamforming design, power allocation, and dynamic 

routing. 

3. Dynamic and Uncertain Environment: UAV-aided 

networks operate in dynamic environments where 

factors such as UAV positions, energy levels, user 

demand, and channel conditions can change rapidly. 

The uncertainty and variability in these parameters 
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add complexity to the optimization problem, requiring 

adaptive and robust solutions. 

4. Multi-Objective Optimization: Often, there is more 

than one objective to consider, such as maximizing 

network coverage, minimizing energy consumption, 

and ensuring reliable communication. These 

objectives can be conflicting, leading to a multi-

objective optimization problem where trade-offs 

between different goals must be carefully balanced. 

5. Discrete and Continuous Variables: The 

optimization problems can involve both discrete (e.g., 

selecting UAVs for specific tasks) and continuous 

variables (e.g., determining the optimal power level 

for signal transmission), adding another layer of 

complexity to finding a solution. 

6. Scalability Issues: As the number of UAVs and users 

in the network increases, the size of the optimization 

problem grows exponentially. Scalability becomes a 

significant challenge, requiring efficient algorithms 

that can provide solutions within reasonable 

computational times. 

7. Interdependency of Variables: The variables in these 

optimization problems are often interdependent. For 

example, the optimal position of a UAV can depend 

on the power allocation strategy, which in turn may 

affect and be affected by the routing protocol. This 

interdependency complicates the optimization process, 

as changes to one variable can have cascading effects 

on others. 

8. Constraints: There are typically numerous constraints 

to consider, such as energy limitations, 

communication bandwidth, UAV flight regulations, 

and safety considerations. These constraints further 

limit the feasible solution space and add complexity to 

the optimization problem. 

Addressing these features requires sophisticated 

optimization techniques, including machine learning and 

deep learning approaches, evolutionary algorithms, and 

other heuristic methods. These techniques can help 

navigate the challenges presented by hard optimization 

problems, providing efficient and practical solutions for 

enhancing the energy efficiency and performance of 

UAV-aided wireless communication networks. 

 

1) RANDOMNESS 

Incorporating randomness into signal processing 

algorithms for energy-efficient UAVs (Unmanned Aerial 

Vehicles) aided wireless communication networks can 

significantly enhance algorithm performance, particularly 

in dynamic and uncertain environments. Randomness can 

help in exploring the solution space more effectively, 

avoiding local optima, and adapting to changes in the 

network. Below is a stepwise algorithm that utilizes 

randomness in its operations: 

Step 1: Initialization 

• 1.1 Initialize the positions of UAVs randomly 

within the allowed airspace, ensuring they 

comply with safety regulations and operational 

constraints. 

• 1.2 Randomly assign initial communication 

channels and power levels to each UAV, within 

the permissible ranges. 

Step 2: Objective Function Evaluation 

• 2.1 For the current UAV positions, channel 

assignments, and power levels, calculate the 

objective function. This function could measure 

network coverage, signal quality, energy 

consumption, or a combination of these and 

other factors. 

• 2.2 Use randomness to introduce small 

perturbations in UAV positions, channel 

assignments, and power levels to evaluate 

potential improvements in the objective function. 

Step 3: Solution Exploration 

• 3.1 Employ a randomized algorithm, such as 

Simulated Annealing, Genetic Algorithm, and 

Particle Swarm Optimization, to explore the 

solution space. These algorithms use randomness 

to escape local optima and explore globally. 

• 3.2 Update the positions of UAVs, channel 

assignments, and power levels based on the 

exploration results, following the algorithm's 

rules. 

Step 4: Adaptation to Dynamic Changes 

• 4.1 Monitor the environment for changes, such 

as user demand shifts, UAV energy levels, and 

channel conditions. 

• 4.2 Introduce randomness to adjust UAV 

positions, channel assignments, and power levels 

dynamically, aiming to maintain or improve the 

network performance in response to these 

changes. 

Step 5: Local Search and Optimization 

• 5.1 Within the vicinity of the current solution, 

perform a local search using randomness to fine-

tune UAV positions, channel assignments, and 

power levels. 
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• 5.2 Evaluate the objective function for these 

slightly varied solutions and adopt changes that 

lead to performance improvement. 

Step 6: Convergence Check 

• 6.1 Check if the algorithm has converged to a 

solution, which could be based on a set number 

of iterations, a target objective function value, or 

minimal changes in the objective function over 

several iterations. 

• 6.2 If convergence criteria are met, proceed to 

Step 7. Otherwise, return to Step 3. 

Step 7: Finalization and Deployment 

• 7.1 Finalize the optimized UAV positions, 

channel assignments, and power levels. 

• 7.2 Deploy the final configuration in the UAV-

aided wireless communication network. 

Step 8: Continuous Monitoring and Adjustment 

• 8.1 Continuously monitor network performance 

and environmental conditions. 

• 8.2 Periodically reintroduce randomness to 

adjust the network configuration, ensuring 

ongoing optimization in response to any 

changes. 

2) MATHEMATICAL INTRACTABILITY AND 

COMPUTATIONAL COMPLEXITY 

 

Addressing mathematical intractability and computational 

complexity in signal processing algorithms for energy-

efficient UAVs (Unmanned Aerial Vehicles) aided 

wireless communication networks is crucial for designing 

efficient and practical systems. The following stepwise 

algorithm outlines a methodology to tackle these 

challenges, focusing on achieving an optimal balance 

between algorithmic performance and computational 

resources. 

Step 1: Problem Formulation 

• 1.1 Define the signal processing tasks (e.g., 

detection, estimation, filtering) and network 

objectives (e.g., energy efficiency, coverage, 

throughput). 

• 1.2 Formulate the optimization problem, 

identifying variables, constraints, and the 

objective function, recognizing that the problem 

may be mathematically intractable due to its 

complexity or non-linearity. 

Step 2: Complexity Analysis 

• 2.1 Analyze the computational complexity of the 

formulated problem, identifying parts that 

contribute to intractability (e.g., NP-hardness, 

high dimensionality, non-convexity). 

Step 3: Approximation and Heuristics 

• 3.1 Develop and select approximation methods 

and heuristics that simplify the problem while 

retaining essential characteristics (e.g., greedy 

algorithms, local search methods). 

• 3.2 Implement these approaches, ensuring they 

significantly reduce computational complexity 

without severely compromising solution quality. 

Step 4: Decomposition and Modularity 

• 4.1 Decompose the problem into smaller, more 

tractable modules that can be solved 

independently. 

• 4.2 Solve each module using the most 

appropriate algorithms, considering trade-offs 

between performance and complexity. 

Step 5: Algorithm Selection and Customization 

• 5.1 Choose algorithms that are known to handle 

the specific types of complexity present in the 

problem efficiently (e.g., convex optimization 

for convex sub-problems, dynamic programming 

for problems with overlapping subproblems). 

• 5.2 Customize these algorithms to the specific 

context of UAVs and wireless networks, 

incorporating domain knowledge to improve 

performance and reduce complexity. 

Step 6: Exploit Parallelism and Distributed 

Computing 

• 6.1 Identify opportunities for parallel processing, 

either within a single UAV's computing platform 

or across multiple UAVs and ground stations. 

• 6.2 Implement parallel and distributed versions 

of the algorithms to leverage multiple processors 

and UAVs, reducing overall computation time. 

Step 7: Iterative Refinement and Scalability 

• 7.1 Employ iterative refinement techniques that 

start with coarse, approximate solutions and 

iteratively improve them, balancing 

computational load with solution accuracy. 

• 7.2 Ensure that the algorithm scales well with the 

number of UAVs, the size of the area covered, 

and the complexity of the signal processing 

tasks. 

Step 8: Performance Evaluation and Optimization 

• 8.1 Evaluate the performance of the 

implemented algorithms in simulated 
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environments and real-world conditions, 

focusing on metrics such as computational time, 

energy efficiency, and the quality of signal 

processing. 

• 8.2 Optimize the algorithms based on 

performance evaluations, adjusting parameters, 

and making refinements to improve efficiency 

and effectiveness. 

3) LEARNING FOR HARD OPTIMIZATION 

PROBLEMS 

Addressing hard optimization problems in signal 

processing for energy-efficient UAV (Unmanned Aerial 

Vehicles) aided wireless communication networks 

through learning involves developing adaptive, intelligent 

systems capable of handling complex, dynamic 

environments. The following steps outline a learning-

based algorithmic approach to tackle these challenges 

effectively. 

 

Step 1: Problem Definition and Decomposition 

• 1.1 Define the Optimization Problem: Clearly 

outline the hard optimization problem, including 

objectives (e.g., energy efficiency, signal 

coverage) and constraints (e.g., battery life, 

bandwidth). 

• 1.2 Decompose Complex Problems: Break 

down the overarching problem into smaller, 

more manageable sub-problems that can be 

addressed individually. 

Step 2: Data Collection and Preprocessing 

• 2.1 Gather Data: Collect data relevant to the 

problem, such as signal characteristics, UAV 

positions, energy consumption rates, and 

environmental factors. 

• 2.2 Preprocess Data: Clean and preprocess the 

data to facilitate learning, including 

normalization, feature selection, and 

dimensionality reduction. 

Step 3: Model Selection 

• 3.1 Choose Learning Models: Select 

appropriate machine learning or deep learning 

models based on the problem characteristics, 

such as neural networks, reinforcement learning. 

• 3.2 Customize Models: Tailor the chosen 

models to the specific aspects of the UAV 

network and signal processing tasks, considering 

the unique challenges and requirements. 

 

Step 4: Feature Engineering and Representation 

Learning 

• 4.1 Engineer Features: Identify and engineer 

features that are most relevant to the 

optimization objectives and constraints. 

• 4.2 Employ Representation Learning: Use 

deep learning techniques to learn efficient 

representations of the data that capture the 

underlying patterns and dependencies related to 

the optimization problem. 

Step 5: Learning and Optimization 

• 5.1 Train Models: Train the selected models on 

the preprocessed data, using historical data to 

learn the relationships between actions (e.g., 

UAV routing, power allocation) and outcomes 

(e.g., energy efficiency, signal quality). 

Step 6: Incorporation of Domain Knowledge 

• 6.1 Integrate Expert Knowledge: Incorporate 

domain-specific knowledge into the learning 

process to guide the search space and improve 

learning efficiency. 

• 6.2 Adaptive Learning: Develop models that 

can adapt to new data and changing conditions, 

ensuring that the system remains effective over 

time. 

Step 7: Validation and Testing 

• 7.1 Cross-Validation: Employ cross-validation 

techniques to evaluate the models' performance 

and avoid overfitting. 

 

C. DEEP AND INTERACTIVE LEARNING 

TECHNIQUES 

Deep and interactive learning techniques represent a 

cutting-edge approach in optimizing signal processing 

algorithms for energy-efficient UAVs (Unmanned Aerial 

Vehicles) aided wireless communication networks. By 

harnessing the power of deep learning, these techniques 

can automatically extract complex features and patterns 

from vast amounts of data, leading to more accurate and 

efficient signal processing methods. Interactive learning, 

or learning with human-in-the-loop, further enhances this 

by incorporating expert knowledge and feedback into the 

training process, enabling the models to adapt to nuanced 

scenarios and constraints not easily captured through data 

alone. Together, deep and interactive learning can 

significantly improve the adaptability and performance of 

UAV networks, optimizing resource allocation, reducing 

energy consumption, and enhancing communication 

reliability. These techniques allow for dynamic 

adjustment to changing network conditions, user 

demands, and environmental factors, ensuring optimal 
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operation of the UAV network with minimal human 

intervention. The synergy between deep learning's 

capability to handle complex, high-dimensional data and 

interactive learning's adaptability to incorporate expert 

insights creates a robust framework for addressing the 

challenges of signal processing in energy-efficient UAV 

networks. 

 

1) DEEP NEURAL NETWORKS (LSTM) 

Implementing Deep Neural Networks, specifically Long 

Short-Term Memory (LSTM) networks, for signal 

processing in energy-efficient UAVs (Unmanned Aerial 

Vehicles) aided wireless communication networks 

involves several steps. These networks are particularly 

suited for processing time-series data or any data with 

temporal sequences, making them ideal for dynamic 

environments like UAV communications. Here's a 

stepwise approach: 

Step 1: Problem Definition 

• 1.1 Define the Signal Processing Task: Identify 

the specific signal processing tasks (e.g., noise 

filtering, signal detection, prediction of signal 

quality) relevant to the UAV network. 

• 1.2 Determine the Goals: Specify the 

objectives, such as improving energy efficiency, 

enhancing signal quality, and minimizing 

latency. 

Step 2: Data Collection and Preparation 

• 2.1 Collect Data: Gather temporal data relevant 

to the task, including signal measurements, UAV 

flight patterns, and environmental conditions. 

• 2.2 Preprocess Data: Clean and preprocess the 

data for training. This includes normalizing data, 

handling missing values, and possibly 

segmenting sequences into manageable sizes. 

Step 3: Designing the LSTM Network 

• 3.1 Select Network Architecture: Decide on the 

configuration of the LSTM network, including 

the number of layers and the number of units in 

each layer. 

• 3.2 Feature Selection: Identify which features 

of the data will be used as inputs to the LSTM 

network. 

Step 4: Training the LSTM Network 

• 4.1 Split the Data: Divide the data into training, 

validation, and test sets. 

• 4.2 Define the Loss Function and Optimizer: 

Choose a loss function that matches the objective 

of the signal processing task and an optimizer to 

update the network weights. 

• 4.3 Train the Model: Use the training data to 

train the LSTM network, adjusting weights to 

minimize the loss function. Employ the 

validation set to tune hyperparameters and 

prevent overfitting. 

Step 5: Model Evaluation and Testing 

• 5.1 Evaluate Performance: Assess the model's 

performance using the test set and relevant 

metrics (e.g., accuracy for classification tasks, 

mean squared error for regression tasks). 

• 5.2 Refine the Model: Based on performance, 

refine the model by adjusting its architecture, 

tuning hyperparameters, or providing more 

training data. 

2) RECURRENT NEURAL NETWORKS AND 

ECHO-STATE NETWORKS (ESNs) 

Implementing Recurrent Neural Networks (RNNs) and 

Echo-State Networks (ESNs) for signal processing in 

energy-efficient UAVs (Unmanned Aerial Vehicles) 

aided wireless communication networks involves 

leveraging their unique capabilities to handle sequential 

data and dynamic environments. Here’s a stepwise 

algorithmic approach tailored for these networks: 

Step 1: Problem Identification 

• 1.1 Define Signal Processing Challenges: 

Clearly identify the signal processing tasks 

needed for the UAV network, such as real-time 

signal filtering, prediction, or anomaly detection 

in communication signals. 

• 1.2 Set Objectives: Establish specific objectives 

like enhancing signal clarity, predicting network 

load, or reducing energy consumption for signal 

processing tasks. 

Step 2: Data Collection and Preparation 

• 2.1 Data Acquisition: Gather historical and real-

time data relevant to the UAV’s signal 

processing tasks, including signal strength, noise 

levels, and communication interruptions. 

• 2.2 Preprocessing: Standardize the data to a 

consistent format, normalize values, and possibly 

segment data into sequences suitable for RNN 

and ESN training. 

Step 3: Selection of Network Type 

• 3.1 Choose Between RNN and ESN: Based on 

the task complexity and computational 

resources, decide whether a traditional RNN or 

an ESN is more appropriate. ESNs might be 

preferable for tasks requiring faster training 

times and fewer resources. 
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• 3.2 Define Architecture: For RNNs, outline the 

layers and neurons. For ESNs, define the 

reservoir size and sparsity. 

Step 4: Model Training and Development 

• 4.1 Initialize Model Parameters: For RNNs, 

initialize weights and biases. For ESNs, 

randomly generate the reservoir weights and 

define input and output weights. 

• 4.2 Train the Model: Use the prepared dataset 

to train the model. RNNs require 

backpropagation through time or variants 

thereof. ESN training involves adjusting the 

output weights based on the reservoir states. 

Step 5: Model Optimization 

• 5.1 Hyperparameter Tuning: Experiment with 

different settings for learning rate, number of 

hidden units (for RNNs), reservoir size (for 

ESNs), and sparsity to find the optimal 

configuration. 

• 5.2 Validation: Use a separate validation dataset 

to evaluate the model and prevent overfitting. 

Step 6: Evaluation and Testing 

• 6.1 Performance Metrics: Assess the model 

using appropriate metrics such as Mean Squared 

Error (MSE) for prediction tasks or accuracy for 

classification tasks. 

• 6.2 Test on Real-World Data: Evaluate the 

model’s effectiveness on unseen real-world data 

to ensure it generalizes well beyond the training 

dataset. 

3) Reinforcement Learning 

Implementing Reinforcement Learning (RL) for signal 

processing in energy-efficient UAVs (Unmanned Aerial 

Vehicles) aided wireless communication networks 

involves training models to make decisions that maximize 

some notion of cumulative reward. This approach is 

particularly suited for dynamic environments where 

UAVs must adapt to changing conditions. Here's a 

stepwise algorithmic approach: 

Step 1: Define the Environment 

• 1.1 Identify State Space: Define the state space 

that represents all possible situations the UAV 

network can encounter, including parameters 

like UAV positions, battery levels, signal 

quality, and environmental conditions. 

• 1.2 Define Action Space: Determine the set of 

actions available to the UAVs, such as adjusting 

positions, changing communication frequencies, 

and modifying power levels for signal 

transmission. 

• 1.3 Outline Reward Structure: Design a 

reward function that quantifies the success of 

taken actions, focusing on objectives like energy 

efficiency, signal coverage, and communication 

reliability. 

Step 2: Select the Reinforcement Learning Model 

• 2.1 Choose RL Algorithm: Select an 

appropriate RL algorithm based on the problem 

complexity and available computational 

resources. Options include Q-learning, Deep Q-

Networks (DQN), for continuous action spaces. 

• 2.2 Define Model Architecture: For deep RL, 

outline the neural network architecture that will 

approximate the policy (action selection) and 

value function (estimating future rewards). 

Step 4: Training the RL Model 

• 4.1 Initialize Parameters: Start with random or 

heuristic-based parameters for the policy or 

value function models. 

• 4.2 Interaction with Environment: Let the RL 

agent interact with the environment by taking 

actions based on its current policy, observing the 

next state and reward, and updating its model 

accordingly. 

• 4.3 Policy Update: Use the collected experience 

(state, action, reward sequences) to update the 

policy and value function, aiming to maximize 

cumulative rewards. 

Step 5: Model Evaluation and Refinement 

• 5.1 Evaluate Performance: Regularly test the 

RL agent's performance in the simulation 

environment using separate test scenarios not 

encountered during training. 

• 5.2 Refinement: Adjust the RL model, reward 

structure, or training process based on 

performance evaluations to improve outcomes. 

4) Federated Learning 

 

Federated Learning (FL) offers a decentralized approach 

to train machine learning models across multiple devices 

(or nodes) like UAVs (Unmanned Aerial Vehicles), 

without needing to share data centrally. This method is 

particularly advantageous for energy-efficient UAVs 

aided wireless communication networks, as it respects 

privacy, reduces communication overhead, and leverages 

distributed data. Here’s a stepwise algorithmic approach 

to implement FL in this context: 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 397–423  |  416 

Step 1: Define the Learning Task and Model 

• 1.1 Specify the Signal Processing Task: Clearly 

define the signal processing task(s) to be 

improved with FL, such as noise reduction, 

signal detection, and predictive maintenance. 

• 1.2 Select a Model Architecture: Choose a 

suitable machine learning model for the task, 

considering the computational constraints of 

UAVs. 

Step 2: Initialize Federated Learning Environment 

• 2.1 Deploy the Initial Model: Distribute the 

initial model to all participating UAVs in the 

network. This model acts as the starting point for 

local training. 

• 2.2 Establish Communication Protocol: Set up 

a secure and efficient communication protocol 

for model updates exchange between the UAVs 

and the central server (if present). 

Step 3: Local Model Training on UAVs 

• 3.1 Collect Local Data: Each UAV collects 

local signal processing data relevant to the 

defined task. 

• 3.2 Train Locally: Every UAV trains the shared 

model architecture on its collected data, 

adjusting the model weights to better perform the 

signal processing task based on local data. 

Step 4: Model Aggregation 

• 4.1 Aggregate Models: After a predefined 

training period, model updates (weights or 

gradients) are sent to a central server and 

aggregated in a decentralized manner among 

UAVs, depending on the FL architecture. 

• 4.2 Update Global Model: Use an aggregation 

algorithm (e.g., Federated Averaging) to 

combine the local updates into an updated global 

model. 

Step 5: Distribute the Updated Model 

• 5.1 Broadcast Global Model: The updated 

global model is distributed back to all 

participating UAVs. 

• 5.2 Local Update: Each UAV updates its local 

model with the new global model, synchronizing 

the learning across the network. 

Step 6: Iteration and Convergence 

• 6.1 Repeat Training Cycles: Steps 3 through 5 

are repeated for multiple rounds until the model 

converges or meets the performance criteria. 

• 6.2 Monitor Convergence: The central server or 

a designated UAV monitors the learning 

progress and convergence of the global model. 

Table 1. Summary table of when to utilize each learning-

based technique in solving optimization problems. 

Technique Problem type Main Feature 

LSTM Unknown objective, 

constraint 

Pattern detection 

ESN Classification and 

regression predication 

problems 

Sequence and 

pattern detection 

RL Predicition problems, 

NP-hard Problems 

Active learning 

FL Excessive data, 

privacy concerns 

Local training 

 

The table summarizes various techniques applied to 

different problem types in signal processing algorithms 

for energy-efficient UAVs aided wireless communication 

networks, highlighting their main features: 

• Long Short-Term Memory (LSTM) networks are 

suited for scenarios with unknown objectives or 

constraints, excelling in pattern detection within data 

sequences. Their ability to remember information over 

long periods makes them ideal for complex signal 

processing tasks where patterns unfold over time. 

• Echo-State Networks (ESN) are primarily used for 

classification and regression prediction problems. Like 

LSTMs, ESNs are adept at sequence and pattern 

detection but are particularly noted for their efficient 

training processes, making them suitable for tasks 

where rapid model adaptation is required. 

• Reinforcement Learning (RL) is applied to 

prediction problems and NP-hard problems, featuring 

active learning as its main characteristic. RL 

algorithms learn optimal policies through trial and 

error, adjusting actions based on rewards to solve 

problems where direct solutions are computationally 

infeasible. 

• Federated Learning (FL) addresses challenges 

related to excessive data and privacy concerns by 

enabling local training on devices. It is particularly 

relevant in scenarios where data cannot be centralized 

due to privacy or bandwidth constraints, allowing 

models to learn from distributed data sources without 

compromising user privacy. 

Each technique offers unique advantages for specific 

problem types within UAV networks, from pattern 

detection in temporal data to privacy-preserving 

distributed learning, showcasing the diversity of 
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approaches in optimizing signal processing for enhanced 

network efficiency and effectiveness. 

 

 
Figure 3.  Block Diagram of Fully Recursive Long Short 

Term Memory (FR-LSTM) Method 

 

The figure 3 presents a layered approach for optimizing 

UAV positioning in a wireless network cluttered with 

unwanted vehicles. It begins with the identification of 

unwanted vehicles in the network, utilizing a process 

designated as DIC (possibly "Detection of Intruding Cars" 

or a similar concept). The information gleaned from DIC 

feeds into a "Deep Influencing Learning" system, which 

likely uses deep learning techniques to understand and 

mitigate the influence of these vehicles on network 

performance. Subsequently, this process optimizes 

resources for a "Resource optimized vehicle," which 

could refer to the UAV or a dedicated vehicle within the 

network responsible for efficient resource management. 

The next stage involves an "Error Criterion" that 

evaluates the performance and accuracy of the system, 

feeding into a "Fully Recursive Perceptron-based LTE" 

algorithm. This suggests a learning mechanism that uses 

perceptron models, potentially to adaptively fine-tune 

LTE (Long-Term Evolution) communication parameters. 

The culmination of this process is the "Optimal UAV 

positioning," indicating that the system's output is the 

ideal placement of UAVs to ensure efficient network 

operation despite the presence of unwanted vehicles. This 

approach signifies a comprehensive system aimed at 

maintaining robust wireless network performance through 

adaptive learning and strategic placement of UAVs. 

 

 
 

Figure 4.  Block Diagram of Deep Influencing Learning-

based LTE Model 

 

The provided figure 4 outlines a framework for 

addressing the issue of unwanted vehicles in a wireless 

network, aiming to achieve optimal vehicle performance. 

Initially, the network identifies unwanted vehicles, which 

could be non-authorized users or potential sources of 

interference. This information is then processed to create 

a Data Traffic Matrix, likely capturing the communication 

patterns and traffic caused by these vehicles. The next 

stage involves LTE DIC (which could stand for 

"Detection, Identification, and Cancellation") based on 

correlation, suggesting a method to detect and mitigate 

interference or unauthorized access by analyzing the 

correlation within the data traffic. Following this, an 

optimization process is applied, which considers 

parameters 'P' and 'B'—potentially referring to power and 

bandwidth, or other network resources. The ultimate goal 

of this process is to determine the Optimal vehicle, which 

could be the best configuration or positioning of an 

authorized vehicle in the network to ensure efficient and 

secure communication. This systematic approach 

emphasizes data-driven decision-making to maintain 

network integrity and performance. 

4. Experimental results and discussion 

 

4.1 Simulation setup involves a wireless network 

 

Table 2. Simulation setup involves a wireless network 

Simulation 

Parameter Value 

Network area 2000m * 2000m 

Number of unmanned 

vehicles 

50, 100, 150, 200, 250, 300, 

350, 400, 450, 500 

Vehicle distribution Uniform random 

Initial energy in each 

unmanned vehicle 4J 

Control packet size 64bytes 

Data packet size 1024bytes 

Simulation time 100s 
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Pause time 20s 

Mobility model Random Way Point 

Transmission range 500m 

Number of runs 20 

UAV-UAV range 300m 

UAV-Ground range 300m 

Propagation mode Free space 

Trans/Receive antenna Omnidirectional 

Medium Access 

Control Time Division Multiple 

(MAC) protocol Access (TDMA) 

Constant Bit Rate 

(CBR) 512 bytes 

UAV-UAV link 

bandwidth 5 Mbps 

UAV-Ground link 10 Mbps 

Packet Type 

User Datagram Protocol 

(UDP) 

Channel Type Wireless 

Wi-Fi version 802.11b 

 

This simulation setup table 2  involves a wireless network 

over a 4 square kilometer area, testing various numbers of 

unmanned vehicles (UAVs) from 50 to 500, distributed 

randomly. Each UAV starts with an energy reserve of 4 

Joules. The simulation sends control packets of 64 bytes 

and data packets of 1024 bytes over a 100-second 

simulation period, with a 20-second pause. The mobility 

is modeled using a Random Way Point model with a 500-

meter transmission range. Twenty simulation runs are 

conducted to ensure statistical relevance. Communication 

is facilitated through a Time Division Multiple Access 

(TDMA) protocol with omnidirectional antennas, and 

data is transmitted at a constant bit rate of 512 bytes. The 

UAV-to-UAV and UAV-to-ground communication 

ranges are set to 300 meters with bandwidths of 5 Mbps 

and 10 Mbps, respectively, using the User Datagram 

Protocol (UDP) over a wireless channel and conforming 

to the 802.11b Wi-Fi standard. 

 

4.2 Result and discussion 

 

Table 3. Packet delivery ratio  

No of Nodes  50 100 150 200 250 

INSBCA 70 75 78 78 78 

TEEN 75 78 78 78 79 

PEGASIS 81 85 85 86 87 

EEMDCHS

P 85 86 85 88 89 

ML-

SOPCSPRP 98 98 97 98 98 

 

 
Figure 5. Packet delivery ratio 

 

The table 3 and figure 5 presents packet delivery ratios 

for various routing protocols across different numbers of 

network nodes. As the number of nodes increases from 50 

to 250, the Intersect Node Selection Based Clustering 

Algorithm (INSBCA) shows slight improvement from 

70% to 78%. The Threshold-sensitive Energy-Efficient 

sensor Network protocol (TEEN) performs similarly, 

starting at 75% and increasing to 79%. The Power-

Efficient Gathering in Sensor Information Systems 

(PEGASIS) and the Energy Efficient and Mobility-based 

Dynamic Cluster Head Selection Routing Protocol (EE-

MDCHSRP) show more substantial improvements, with 

PEGASIS going from 81% to 87% and EE-MDCHSRP 

from 85% to 89%. The Machine Learning-Based for 

Solving Optimization Problems in Communications and 

Signal Processing routing protocol (ML-SOPCSPRP) 

consistently outperforms the others, maintaining a high 

packet delivery ratio of 97% to 98% regardless of the 

number of nodes. 

 

Table 4. End-to-end delay (ms) 

No of Nodes  50 100 150 200 250 

INSBCA 0.7 0.7 0.7 0.8 0.8 

TEEN 0.4 0.6 0.6 0.7 0.7 

PEGASIS 0.2 0.3 0.4 0.3 0.4 

EEMDCHSP 0.1 0.1 0.2 0.2 0.2 

ML-SOPCSPRP 

0.0

1 

0.0

2 

0.0

2 

0.0

3 0.3 

 

 
Figure 6. End-to-end delay (ms) 
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The table 4 and figure 6 of the end-to-end delay in 

milliseconds across different numbers of nodes for 

various routing protocols is as follows: INSBCA shows a 

consistent delay of 0.7 ms for 50 to 150 nodes, which 

slightly increases to 0.8 ms for 200 to 250 nodes. TEEN 

starts with a delay of 0.4 ms for 50 nodes and gradually 

increases to 0.7 ms as the number of nodes reaches 250. 

PEGASIS demonstrates the best performance among the 

traditional protocols with a delay starting at 0.2 ms for 50 

nodes and fluctuating slightly between 0.3 ms and 0.4 ms 

for up to 250 nodes. EEMDCHSP maintains the lowest 

delay among them, starting at 0.1 ms for 50 to 100 nodes 

and only marginally increasing to 0.2 ms as the network 

size grows. ML-SOPCSPRP outperforms all with an 

impressively low delay, beginning at 0.01 ms for 50 

nodes and only rising to 0.03 ms for 200 nodes, but 

showing a significant increase to 0.3 ms for 250 nodes. 

 

Table 5. Throughput  (%) 

No of Nodes  50 100 150 200 250 

INSBCA 93 92 91 89 85 

TEEN 94 94 93 91 89 

PEGASIS 95 94 93 92 91 

EEMDCHSP 97 96 95 94 93 

ML-SOPCSPRP 98 98 97 96 96 

 

 
Figure 7. Throughput (%) 

 

The table 5 and figure 7 provided data reflects the 

throughput performance of various network protocols 

across different numbers of nodes. The throughput 

decreases as the number of nodes increases for each 

protocol. INSBCA starts with 93% throughput for 50 

nodes and drops to 85% for 250 nodes. TEEN and 

PEGASIS also show a declining trend, with TEEN 

dropping from 94% to 89%, and PEGASIS from 95% to 

91%. EEMDCHSP starts at 97% for 50 nodes and reduces 

to 93% for 250 nodes. ML-SOPCSPRP maintains the 

highest throughput, starting at 98% and only slightly 

declining to 96% as the number of nodes increases. This 

indicates that while all protocols experience a reduction in 

throughput as the network scales up, ML-SOPCSPRP 

remains the most efficient throughout. 

Table 6. Network lifetime (Sec) 

NO of Nodes  50 100 150 200 250 

INSBCA 80 79 78 77 76 

TEEN 83 82 81 79 78 

PEGASIS 85 84 83 82 81 

EEMDCHSP 89 88 86 85 84 

ML-SOPCSPRP 92 92 91 90 90 

 

 
Figure 8. Network lifetime (Sec) 

 

The table 6 and figure 8 data presents the network 

lifetime in seconds of different routing protocols with an 

increasing number of nodes from 50 to 250. INSBCA 

shows a decreasing lifetime from 80 to 76 seconds, 

indicating a decline as the network grows. TEEN displays 

slightly better longevity, starting at 83 seconds and 

reducing to 78 seconds with the increase of nodes. 

PEGASIS provides a more stable lifetime ranging from 

85 to 81 seconds. EEMDCHSP outperforms the previous 

with lifetimes from 89 down to 84 seconds, suggesting 

efficient energy usage. ML-SOPCSPRP offers the highest 

and most stable network lifetimes, maintaining 92 

seconds up to 100 nodes and only decreasing to 90 

seconds at 250 nodes, reflecting optimal performance in 

terms of network longevity. 

Table 7. Energy consumption (J) 

NO of Nodes  50 100 150 200 250 

INSBCA 24 23 22 21 21 

TEEN 18 19 19 20 20 

PEGASIS 17 16 15 14 14 

EEMDCHSP 15 13 14 12 13 

ML-SOPCSPRP 12 12 12 11 11 

 

 
Figure 8. Energy consumption (J) 

The table 7 and figure 9 provided data illustrates the 

energy consumption in Joules of various routing protocols 

across networks of different sizes, ranging from 50 to 250 
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nodes. INSBCA's energy consumption slightly decreases 

from 24J to 21J as the number of nodes increases, 

indicating a conservative energy profile at larger scales. 

TEEN starts with a lower consumption of 18J at 50 nodes 

and gradually increases to 20J as the network size grows 

to 250 nodes. PEGASIS demonstrates a more efficient 

energy use, starting at 17J and decreasing to 14J with the 

addition of more nodes, showing better energy 

management with scale. EEMDCHSP shows an irregular 

pattern but maintains a low energy use, ranging between 

15J and 12J. ML-SOPCSPRP exhibits the most energy-

efficient pattern, maintaining a consistent consumption of 

12J up to 150 nodes and reducing further to 11J at larger 

sizes, thus showing the highest energy efficiency among 

the protocols tested. 

Table 8. Overall performance  

  INSBCA TEEN PEGASIS EEMDCHSP ML-SOPCSPRP 

Accuracy(%) 87 89 91 93 98 

 

 

 
Figure 9. Overall performance 

 

The table 8 and figure 9 data represents the overall 

performance of various routing protocols, measured by 

their accuracy percentage. INSBCA has an accuracy of 

87%, indicating a moderate level of precision. TEEN 

slightly improves on this, achieving an 89% accuracy 

rate. PEGASIS further increases the accuracy to 91%, 

while EEMDCHSP stands at 93%, showing a high degree 

of accuracy. ML-SOPCSPRP tops the chart with an 

impressive 98% accuracy, indicating the highest level of 

performance among the protocols listed. 

 

Table 9. Impact of Root Mean Square Error (%) 

NO of Nodes  50 100 150 200 250 

INSBCA 3.4 3.6 3.8 3.9 4.3 

TEEN 2.5 2.6 2.8 2.9 2.9 

PEGASIS 1.2 1.3 1.4 1.6 1.8 

EEMDCHSP 0.8 0.89 0.9 0.94 0.99 

ML-SOPCSPRP 0.2 0.25 0.29 0.35 0.39 

 

 
Figure 10. Impact of Root Mean Square Error (%) 

 

The table 9 and figure 10 shows the impact of Root Mean 

Square Error (RMSE) as a percentage across five routing 

protocols with increasing network sizes, from 50 to 250 

nodes. INSBCA's RMSE rises from 3.4% to 4.3%, 

suggesting a degradation in accuracy as the network 

expands. TEEN maintains a lower RMSE, starting at 

2.5% and slightly increasing to 2.9%, which indicates a 

moderate impact on accuracy with scaling. PEGASIS 

demonstrates a better performance with a lower starting 

RMSE of 1.2% and a gentle rise to 1.8%, reflecting a 

stable accuracy profile. EEMDCHSP shows even greater 

accuracy with RMSE starting at 0.8% and gradually 

increasing to just below 1%. ML-SOPCSPRP stands out 

with the lowest RMSE, beginning at 0.2% and marginally 

increasing to 0.39%, showcasing the highest accuracy and 

least impact from scaling within the tested protocols. 

Table 10. Latency  milliseconds (ms) 

No of Nodes  50 

10

0 150 200 250 

INSBCA 

5.

2 6.3 7.4 8.4 9.1 

TEEN 

4.

3 4.6 4.8 5.2 5.6 

PEGASIS 

3.

7 3.9 4.2 4.5 5 

EEMDCHSP 

2.

4 3.1 3.4 4 4.3 

ML-SOPCSPRP 1 2 2.5 3.8 4 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 397–423  |  421 

 
Figure 11. Latency  milliseconds (ms) 

 

The table 10 and figure 11 data depicts latency in 

milliseconds for different numbers of nodes using five 

routing protocols. With INSBCA, latency worsens as 

nodes increase, starting at 5.2 ms for 50 nodes and rising 

to 9.1 ms for 250 nodes. TEEN maintains lower latency, 

beginning at 4.3 ms and reaching 5.6 ms, suggesting 

better scalability. PEGASIS offers improved latency, 

starting at 3.7 ms and moderately increasing to 5 ms. 

EEMDCHSP shows significant efficiency with latency 

starting as low as 2.4 ms and only rising to 4.3 ms. ML-

SOPCSPRP demonstrates the lowest latency figures, 

starting at an impressive 1 ms for 50 nodes and only 

climbing to 4 ms for 250 nodes, indicating it's highly 

effective in maintaining low latency even as the network 

size increases. 

 

5. Conclusion 

 

The application of various machine learning and signal 

processing techniques to optimize UAV-aided wireless 

communication networks, it is evident that each method 

brings distinct advantages to address complex challenges. 

The LSTM excels in pattern detection for problems with 

unknown objectives or constraints, leveraging its capacity 

for long-term dependency modeling. Echo-State 

Networks (ESNs) offer efficient training for sequence and 

pattern detection, making them suitable for classification 

and regression prediction problems. Reinforcement 

Learning (RL) stands out in actively learning from 

interactions with the environment, effectively navigating 

prediction and NP-hard problems through a system of 

rewards. Federated Learning (FL) emerges as a 

particularly innovative approach, enabling local training 

across distributed networks, addressing excessive data 

and privacy concerns. By processing data locally and only 

sharing model updates, FL ensures privacy and reduces 

the need for extensive data transmission, which is crucial 

for energy-constrained UAV networks. The integration of 

FL within the framework for optimizing the performance 

of UAVs in wireless networks was further explored. It 

starts with unwanted vehicles' identification and 

mitigation through a Data Traffic Matrix, progressing to 

LTE DIC based on correlation, followed by optimization 

techniques tailored to the network's specific 'P' and 'B' 

parameters, culminating in the determination of the 

optimal vehicle within the network. The diagrammatic 

representation of a neural network's architecture 

emphasizes the importance of structure in machine 

learning. A multi-layered network, with its input, hidden, 

and output layers, enables the learning of complex 

functions, with each neuron contributing to the overall 

decision-making process. The schematic detailing the 

operation of a single neuron within a network showcases 

the fundamental process of information transformation in 

neural networks. Inputs are weighted and combined, then 

passed through a non-linear function, resulting in the 

output. This process is at the core of neural networks' 

ability to model complex, non-linear relationships. The 

sequential examination of these techniques and models, 

we gain a comprehensive insight into the multifaceted 

strategies for enhancing signal processing in UAV 

networks. Each method contributes to the overarching 

goal of achieving efficient, robust, and secure wireless 

communication facilitated by UAVs, with the final aim of 

optimizing UAV positioning to ensure an effective 

network operation. This holistic approach underscores the 

synergy between different machine learning strategies and 

the complex requirements of contemporary wireless 

communication networks. 
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