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Abstract: Software defect prediction is a field in software engineering that aims to identify and anticipate defects or bugs in software 

systems before they occur. The goal is to develop techniques and models that can help software development teams prioritize their testing 

efforts and allocate resources more effectively. For this purpose, various Machine learning techniques used and these algorithms can utilize 

various features, such as code metrics, historical defect data, and developer information, to build predictive models. This paper aims to 

develop a model for software defect prediction using various ML algorithms. Experiments were conducted using the proposed model on 

KC2 dataset from the NASA PROMISE repository. The Decision tree algorithm achieved 73.28%, Naïve Bayes 83.97%, KNN 80.15%, 

Support vector Machine 82.44% and Random Forest 80.92% for KC2 dataset. The results demonstrated that the different model succeeded 

in effectively predicting the defects in PROMISE datasets KC2. 
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1 Introduction 

Software defect prediction is of paramount importance in 

ensuring the delivery of high-quality software products. 

Early identification and prediction of defects during the 

software development process play a pivotal role in 

mitigating risks, enhancing software reliability, and 

minimizing the time and cost involved in resolving issues. 

Although manual testing remains valuable, it has inherent 

limitations in terms of efficiency and coverage. To address 

these challenges, software firms have increasingly 

adopted prediction models, especially those based on 

machine learning (ML), to bolster defect detection and 

reduce associated risks. ML-based defect prediction 

models capitalize on historical software datasets to 

categorize software instances as either defective or non-

defective. ML-based defect prediction models leverage 

historical software datasets to classify software instances 

as defective or non-defective.  

Machine Learning algorithms train and test the model 

using different software dataset. The ML classifier is 

trained by the training set, whereas the trained model's 

performance is assessed using the testing set. 

By using ML techniques for defect prediction, software 

developers can benefit from improved accuracy, 

efficiency, and scalability compared to manual testing. 

ML models can evaluate huge volumes of data and 

classify difficult patterns that may not be readily apparent 

to human testers. This approach helps developers allocate 

their testing efforts more effectively and prioritize areas 

that are more likely to contain defects (He et.al., 2015) 

The defect prediction models' accuracy can vary 

depending on factors such as the quality plus relevance of 

the dataset used for training Dataset, the choice of ML 

algorithms, and features used for prediction. Ongoing 

research and development in the field of software defect 

prediction aim to enhance the accuracy and applicability 

of these models, ultimately leading to more reliable and 

maintainable software products. 

In this paper, we have implemented different machine 

learning algorithms to train the dataset and then test the 

model to find out the accuracy of each model. In section 

2, we have discussed some closely related work. Basics of 

machine learning models are discussed in Section 3. In 

Section 4, we have implemented different machine 

learning algorithms to find the accuracy of each model for 

fault detection. Finally, Section 5 concludes the paper. 

2 Related work 

(Zhang et al.,2009) The reason of this study was to 

examine the connections between fault and lines of code. 

The author used nine NASA projects, three Eclipse system 

versions (2.0, 2.1, and 3.0) for this purpose. Numerous 

classifier techniques, including Multilayer Perceptron, 

Decision Tree, Spearman Correlation, Naive Bayes, and 

Logistic Regression have been used and performance 

measurement techniques like recall and precision for 

analysing the relationship. The findings indicated that 

there is a marginally favourable connection between 

defects and LOC. 
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(Stuckman et al.,2013) The objective of this paper was 

considering product metrics for predicting software 

defects. For this purpose, author has taken dataset from 19 

Apache projects and applied Correlation analysis 

algorithms used for evaluation. For the performance 

measurement of the above experiment used statistical 

methods. The result shows that different metrics appeared 

important under the different situation. 

(Xia et al.,2014) The objective of this paper was outlined 

a method for choosing effective software metrics for fault 

prediction. It is suggested to use a new approach that 

combines correlation analysis and the ReliefF feature 

selection algorithm. Three distinct classifiers are tested 

against two other well-known feature selection methods 

on the PROMISE repository's historical data sets. The 

ANOVA analysis demonstrates that a novel feature 

selection technique known as ReliefF-LC (a fusion 

algorithm based on ReliefF and linear correlation 

analysis) can enhance fault prediction effectiveness. 

(Ma et al., 2014) The objective of this paper was to 

evaluate requirement. metrics for fault prediction. For this 

purpose, author has taken dataset named CM1, PC1 and 

utilized numerous classifiers including the Logistic 

Regression, Random Forest, Naive Bayes, Bagging and 

AdaBoost algorithms. For the performance measurement 

of the above experiment used recall, precision, F-measure, 

and AUC techniques. Outcomes showed that using both 

requirement and design metrics together enhanced the 

results for fault prediction. 

(Kamei et al.,2011) The objective of this paper was to look 

into the capabilities of code clone metrics for fault 

prediction. For this purpose, author has done experiment 

on 3 versions of the Eclipse tool (3.0, 3.1 and 3.2) by using 

classifier called Logistic Regression as evaluation method 

and performance measurement done by Recall, Precision 

and F1-measure techniques. The results showed that clone 

measurements did not enhance fault prediction and that 

relationship between clone metrics and fault prediction 

varied with dissimilar module sizes.  

(Krishnan et al.,2011) This study's goal was to assess 

change indicators for fault prediction across several 

software project versions. For this purpose, author has 

done experiment on three releases of Eclipse by using 

classifier called J48 algorithm as evaluation method and 

performance measurement done by Accuracy, Recall, 

FPR techniques. It was discovered that all change 

measures were reliable fault predictors. 

(Rahman et al.,2013) The objective of this paper was to 

do investigation of the defect prediction potential of 

process and code metrics. For this purpose, author has 

done experiment on 12 projects developed by Apache by 

using various classifier named Logistic regression, J48, 

SVM, and Naive Bayes as evaluation method and 

performance measurement done by Accuracy, Precision 

and Recall techniques. It was discovered that process 

metrics consistently outperformed code metrics. 

3 Basic Concepts 

The various machine learning models for foretelling 

software system flaws are briefly discussed in the 

preceding section.  Software engineers and academics 

continue to face a difficult challenge with forecast 

accuracy (Dada et.al.,2021) and overall performance. For 

this purpose, the different machine-learning algorithms 

are covered in this section. 

3.1 Decision Tree 

Among the most well-liked and frequently utilized 

machine learning algorithms is the decision tree that is 

part of the supervised learning family. It is a versatile and 

interpretable method that can be applied to applications 

requiring regression and classification. Each internal node 

represents a characteristic or attribute, each branch 

represents a decision rule, and each leaf node represents a 

class label or a predicted value. Decision trees are built 

utilizing this tree-like flowchart structure. The 

construction procedure of a decision tree involves 

partitioning recursively the data based on the values of the 

features. At each step, the algorithm selects the feature 

that provides the most significant information gain or 

decrease in impurity, depending on the specific criteria 

used. This allows the decision tree to learn complex 

decision boundaries and capture nonlinear relationships 

between the features and the target variable. Decision 

trees interpretability is one of their key benefits. The 

resulting tree structure can be easily visualized and 

understood, making it useful for explaining the reasoning 

behind the predictions (Malhotra. 2015). Over fitting is a 

problem with decision trees, especially when the tree is 

overly deep and complicated. To address this, various 

techniques have been developed, such as pruning, setting 

a maximum depth, or limiting the number of samples 

required to split a node. Additionally, ensemble methods 

like Gradient Boosting and Random Forests can be used 

to combine multiple decision trees and improve overall 

prediction performance (Phuong Ha.,2019) 

3.2 Naive Bayes 

An efficient machine learning approach for classification 

tasks is called Naive Bayes. It is founded on the ideas of 

the Bayes theorem and this presupposes that, given the 

class variable, the features are conditionally independent 

of one another. The algorithm gets its name from the 

Bayes' theorem, which defines how to update the 

likelihood of a hypothesis constructed on new evidence. 

In the context of classification, Naive Based on the feature 

values of an instance, Bayes determines the likelihood that 
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it belongs to a specific class (Dejaeger et.al.,2012) Here's 

a high-level overview of how Naive Bayes works: 

Training Phase 

Naive Bayes requires a labelled training dataset where the 

class labels are known. The procedure determines each 

class's prior probability, which is the probability of 

encountering a data point belonging to that class in the 

training dataset. For each feature, Naive Bayes calculates 

the conditional probability of that feature given each class. 

This involves estimating the probability distribution of 

each feature for each class. The choice of probability 

distribution (e.g., Gaussian, Bernoulli, and Multinomial) 

depends on the type of feature (continuous, binary, and 

discrete). 

 Prediction Phase: 

Given a new, unlabelled instance, Naive Bayes calculates 

the posterior probability of each class using Bayes' 

theorem. The category with the maximum posterior 

probability is predicted as the output class for the instance. 

It is computationally efficient and scales well with large 

datasets. It performs well even with a small amount of 

training data (Prabha et.al. 2020). 

3.3 K-Nearest Neighbor 

KNN (K-Nearest Neighbours) is an easy and powerful 

algorithm for machine learning algorithm utilized for both 

regression and classification problem (Malhotra et.al., 

2015). Being non-parametric, it makes no assumptions 

regarding the distribution of the underlying data. KNN is 

predicated on the concept that similar cases frequently 

share a class or have comparable target values. An 

overview of how KNN functions is given below: 

Training Phase: 

In the training phase, KNN simply stores the feature 

vectors and corresponding class labels (in the case of 

classification) or target values (in the case of regression) 

of the training instances. It does not perform any explicit 

model building or parameter estimation (Koru et.al., 

2005). 

Prediction Phase: 

Given a new, unlabelled instance that needs to be 

classified or predicted, KNN finds the k nearest neighbors 

to that instance according to Euclidean distance or any. 

The number of neighbors to take into account is 

determined by the value of the user-defined hyper 

parameter k. The category label with the maximum count 

is chosen as the projected category for the new instance 

via KNN, which uses a majority vote among the class 

labels of the k nearest neighbors. 

3.4 Support Vector Machine 

SVMs are effective and flexible machine learning 

algorithms that are frequently used for both types of 

applications like Regression and Classification. SVMs 

remain effective when dealing with complex datasets with 

clear margin or separation between classes. Here's a brief 

introduction to how Support Vector Machines work: 

SVMs aim to find an optimal hyper plane in a high-

dimensional feature space that maximally separates the 

instances of different classes. In a binary classification 

setting, instances are divided into two classes by the hyper 

plane, which serves as a decision boundary (Shanthini, 

A.,2012). Finding the hyper plane with the highest margin 

is the objective. The instances adjoining to the decision 

boundary are named support vectors and play a critical 

role in defining the hyper plane. 

Using a kernel function, SVMs convert the initial feature 

set into a higher-dimensional space. This allows SVMs to 

learn nonlinear decision boundaries in the original feature 

space. Nonlinear SVMs employ kernel functions, such as 

RBF (radial basis function), Sigmoid, or polynomial, in 

order to linearly separate the instances by mapping them 

onto a higher-dimensional space. The kernel function 

calculates the similarity or distance between instances in 

the transformed space. By using different kernel 

functions, SVMs can capture different types of nonlinear 

relationships between features. 

Training and Prediction: 

During the training phase, SVMs learn the optimal hyper 

plane by solving the optimization problem. This involves 

finding the support vectors and determining the 

parameters that define the decision boundary. In the 

prediction phase, SVMs use the learned model to classify 

new instances. The new instances are mapped into the 

feature space, and their position relative to the decision 

boundary determines their class assignment (Rathore 

et.al.2019). 

3.5 Random Forest 

A well-liked and effective machine learning technique 

called RF is used for both regression and classification 

problems. Multiple decision trees were combined in this 

ensemble method to produce predictions. The robustness, 

precision, and capability of Random Forests to handle 

high-dimensional data are well established (Catal 

et.al.,2009). Here's an introduction to how Random Forest 

works: Ensemble of Decision Trees:An ensemble of 

decision trees, each trained tree using a random subset of 

the training data and the features, makes up a Random 

Forest. The addition of randomization during training 

decreases over fitting and improves the generalizability of 

the model. 

Random Subsampling: 
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During the training phase, Random Forest randomly 

selects subsets of the original training data through a 

process called bootstrapping or sampling with 

replacement. This means that every tree is trained on a 

dissimilar data subset, allowing for diversity in the 

ensemble (Hammouri et.al.,2018) 

Additionally, only a random subset of the features is taken 

into account for every split in the decision tree. This 

advancement enhances the diversity and reduces 

correlation among the trees. 

Majority Voting or Averaging:For classification tasks, 

each tree in the Random Forest predicts the class label of 

a given input. The class that receives the most votes from 

the trees is chosen as the final prediction by majority vote. 

4. Experimental Setup 

As seen in Figure 1, the Software repository dataset is split 

into two categories: a training set for creating learners 

using the provided learning schemes, and a test set for 

assessing the learners' performances. The performance 

report states which learning scheme is chosen and utilised 

to create a prediction model and forecast software defect 

(P. Kumudha et.al.,2016). 

There is open access given to the datasets used in many 

software projects so that researchers can utilize them for 

experiments and study. The capacity of a certain dataset 

to serve the desired function is one of the elements that 

may influence the prediction accuracy of a model. A 

model's capacity to forecast defects is influenced by the 

design process. The effectiveness of the predictive 

outcomes might not be the similar at all times. Different 

kind of performance measures metrics were used like F 

Score, Accuracy, Recall and Precision. Table-1: 

Explanation of Metrics used in Software Fault Prediction. 

 

1 LOC Number  of  McCabe's line count of code 

2 v(g) Number  of  McCabe “Cyclomatic Complexity” 

3 ev(g) Number  of  McCabe “ essential complexity” 

4 iv(g) Number  of  McCabe “design complexity" 

5 n Number  of  Halstead total operators + operands 

6 v Number  of  Halstead "volume" 

7 l Number  of  Halstead "program length" 

8 d Number  of  Halstead "difficulty" 

9 i Number  of  Halstead "intelligence" 

10 e Number  of  Halstead "effort" 

11 b Number  of  Halstead 

12 t Number  of  Halstead's time estimator 

13 LOCode Number  of  Halstead's line count 

14 LOComment Number  of  Halstead's count of lines of comments 

15 LOBlank Number  of  Halstead's count of blank lines 

16 LOCodeAndComment Number   

17 uniq_Op Number  of  unique operators 

18 uniq_Opnd Number  of  unique operands 

19 total_Op Number  of  total operators 

20 total_Opnd Number  of  total operands 

21 branchCount Number  of  the flow graph 

22 Problems module has/has not one or more reported %Defects 

 

Table-2:  Different models with their performance measure 

 

 

 

 

 

 

Model Accuracy Precision Recall F Measure 

Decision Tree 73.28 36 32 33.9 

Navie Bayes 83.97 70.58 42.85 53.33 

KNN 80.15 54.54 42.85 48 

SVM 82.44 85.71 21.42 34.28 

RF 80.92 57.14 42.85 48.98 
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 Fig-1 Model of Software Defect Prediction 

4.1 Dataset Description 

In this section, we have considered an open-source 

Promise Repository Dataset named KC2 which includes 

total 522 instances and 22 attributes to evaluate the 

accuracy of each algorithm. The dataset with attributes is 

presented in Table 1. Attributes include 8 derived 

Halstead metrics, 5 unlike LOC measure, 4 base Halsted 

measures, 3 McCabe metrics and 1 branch count with 1 

target feature (Singh et.al.,2015) 

4.2 Result analysis 

The dataset's software faults were categorized using the 

experiment's findings. The training set (75%) and test set 

(25%), respectively, of the dataset utilized for the study 

were separated. The dataset was trained using a Random 

Forest, Support Vector machine, Decision Tree, Naïve 

Bayes and KNN Classifier.(Jing et.al.2017) Classification 

accuracy was used as the primary metric to evaluate the 

performance of the algorithms, which is calculated by 

dividing the number of correct prediction by the total 

number of predictions made. We have also calculated 

Precision, Recall and F1-Score of each model. The 

formula for Accuracy Precision, Recall and F1 Score are 

presented in Equation 1-4. Table 2 represents the 

performance measure of each model. The implementation 

results are also represented in graphical format, as shown 

in Figure 2. In Figure 3, we represent the accuracy of each 

model. From Figure 3, it is clear that Naïve Bayes 

outperforms other four machine learning models. 

   Accuracy = 
TP+TN 

Total Sample 
(1) 

Precision = 
TP 

TP+FP 
(2) 

Recall = 
TP 

TP+FN 
(3) 

F1 = 
2*Precision*Recall 

Precision +Recall 
(4) 

 

Where, TP represents True Positive. 

TN represents True Negative 

FP represents False Positive 

FN represents False Negative 

5. Conclusion & Future Scope 

The outcomes demonstrate that the model is capable of 

properly handling PROMISE datasets, which are 

renowned for their noisy features and high dimensions. In 

terms of Accuracy, the performance of the dataset KC2 

was evaluated with the use of five different machine 

learning algorithms. The experimental results show that 

Naive Bayes and SVM performed better than KNN, 

Decision Tree and Random forest in predicting software 

defects(Jiang et.al.,2008). This experiment was very 

helpful for me to know how the machine learning 

algorithm will be implemented and what kind of dataset 

have to prepare for further experiments. In conclusion, it 

is anticipated that this research will have advanced 

knowledge in the area of software fault prediction. It is 

thought that this will make it easier and more accurate for 

software engineers to find faults in software systems. This 

could facilitate the creation of a high-quality software 

bundle. Future investigations can draw some interesting 

conclusions from this work based on the generated results 

(Madeyski et.al.,2015). 
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Fig 2: Performance Comparison of various Model for Dataset KC2 

 

 Fig 3: Accuracy Graph for different Model 
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