

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 834–840 | 834

Comparison of Machine Learning Models for Effective Software Fault

Detection

1Shikha Gautam, 2Ajay Khunteta, 3Debolina Ghosh

Submitted: 03/02/2024 Revised: 11/03/2024 Accepted: 17/03/2024

Abstract: Software defect prediction is a field in software engineering that aims to identify and anticipate defects or bugs in software

systems before they occur. The goal is to develop techniques and models that can help software development teams prioritize their testing

efforts and allocate resources more effectively. For this purpose, various Machine learning techniques used and these algorithms can utilize

various features, such as code metrics, historical defect data, and developer information, to build predictive models. This paper aims to

develop a model for software defect prediction using various ML algorithms. Experiments were conducted using the proposed model on

KC2 dataset from the NASA PROMISE repository. The Decision tree algorithm achieved 73.28%, Naïve Bayes 83.97%, KNN 80.15%,

Support vector Machine 82.44% and Random Forest 80.92% for KC2 dataset. The results demonstrated that the different model succeeded

in effectively predicting the defects in PROMISE datasets KC2.

Keywords: Machine learning, Software Defect Prediction, Debugging, PROMISE dataset

1 Introduction

Software defect prediction is of paramount importance in

ensuring the delivery of high-quality software products.

Early identification and prediction of defects during the

software development process play a pivotal role in

mitigating risks, enhancing software reliability, and

minimizing the time and cost involved in resolving issues.

Although manual testing remains valuable, it has inherent

limitations in terms of efficiency and coverage. To address

these challenges, software firms have increasingly

adopted prediction models, especially those based on

machine learning (ML), to bolster defect detection and

reduce associated risks. ML-based defect prediction

models capitalize on historical software datasets to

categorize software instances as either defective or non-

defective. ML-based defect prediction models leverage

historical software datasets to classify software instances

as defective or non-defective.

Machine Learning algorithms train and test the model

using different software dataset. The ML classifier is

trained by the training set, whereas the trained model's

performance is assessed using the testing set.

By using ML techniques for defect prediction, software

developers can benefit from improved accuracy,

efficiency, and scalability compared to manual testing.

ML models can evaluate huge volumes of data and

classify difficult patterns that may not be readily apparent

to human testers. This approach helps developers allocate

their testing efforts more effectively and prioritize areas

that are more likely to contain defects (He et.al., 2015)

The defect prediction models' accuracy can vary

depending on factors such as the quality plus relevance of

the dataset used for training Dataset, the choice of ML

algorithms, and features used for prediction. Ongoing

research and development in the field of software defect

prediction aim to enhance the accuracy and applicability

of these models, ultimately leading to more reliable and

maintainable software products.

In this paper, we have implemented different machine

learning algorithms to train the dataset and then test the

model to find out the accuracy of each model. In section

2, we have discussed some closely related work. Basics of

machine learning models are discussed in Section 3. In

Section 4, we have implemented different machine

learning algorithms to find the accuracy of each model for

fault detection. Finally, Section 5 concludes the paper.

2 Related work

(Zhang et al.,2009) The reason of this study was to

examine the connections between fault and lines of code.

The author used nine NASA projects, three Eclipse system

versions (2.0, 2.1, and 3.0) for this purpose. Numerous

classifier techniques, including Multilayer Perceptron,

Decision Tree, Spearman Correlation, Naive Bayes, and

Logistic Regression have been used and performance

measurement techniques like recall and precision for

analysing the relationship. The findings indicated that

there is a marginally favourable connection between

defects and LOC.

1School of Computer Engineering Poornima University, Jaipur
2School of Computer Engineering Poornima University, Jaipur
3Department of Information Technology Manipal University Jaipur

shikha683@gmail.com, dean.fce@poornima.edu.in,

debolina442@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 834–840 | 835

(Stuckman et al.,2013) The objective of this paper was

considering product metrics for predicting software

defects. For this purpose, author has taken dataset from 19

Apache projects and applied Correlation analysis

algorithms used for evaluation. For the performance

measurement of the above experiment used statistical

methods. The result shows that different metrics appeared

important under the different situation.

(Xia et al.,2014) The objective of this paper was outlined

a method for choosing effective software metrics for fault

prediction. It is suggested to use a new approach that

combines correlation analysis and the ReliefF feature

selection algorithm. Three distinct classifiers are tested

against two other well-known feature selection methods

on the PROMISE repository's historical data sets. The

ANOVA analysis demonstrates that a novel feature

selection technique known as ReliefF-LC (a fusion

algorithm based on ReliefF and linear correlation

analysis) can enhance fault prediction effectiveness.

(Ma et al., 2014) The objective of this paper was to

evaluate requirement. metrics for fault prediction. For this

purpose, author has taken dataset named CM1, PC1 and

utilized numerous classifiers including the Logistic

Regression, Random Forest, Naive Bayes, Bagging and

AdaBoost algorithms. For the performance measurement

of the above experiment used recall, precision, F-measure,

and AUC techniques. Outcomes showed that using both

requirement and design metrics together enhanced the

results for fault prediction.

(Kamei et al.,2011) The objective of this paper was to look

into the capabilities of code clone metrics for fault

prediction. For this purpose, author has done experiment

on 3 versions of the Eclipse tool (3.0, 3.1 and 3.2) by using

classifier called Logistic Regression as evaluation method

and performance measurement done by Recall, Precision

and F1-measure techniques. The results showed that clone

measurements did not enhance fault prediction and that

relationship between clone metrics and fault prediction

varied with dissimilar module sizes.

(Krishnan et al.,2011) This study's goal was to assess

change indicators for fault prediction across several

software project versions. For this purpose, author has

done experiment on three releases of Eclipse by using

classifier called J48 algorithm as evaluation method and

performance measurement done by Accuracy, Recall,

FPR techniques. It was discovered that all change

measures were reliable fault predictors.

(Rahman et al.,2013) The objective of this paper was to

do investigation of the defect prediction potential of

process and code metrics. For this purpose, author has

done experiment on 12 projects developed by Apache by

using various classifier named Logistic regression, J48,

SVM, and Naive Bayes as evaluation method and

performance measurement done by Accuracy, Precision

and Recall techniques. It was discovered that process

metrics consistently outperformed code metrics.

3 Basic Concepts

The various machine learning models for foretelling

software system flaws are briefly discussed in the

preceding section. Software engineers and academics

continue to face a difficult challenge with forecast

accuracy (Dada et.al.,2021) and overall performance. For

this purpose, the different machine-learning algorithms

are covered in this section.

3.1 Decision Tree

Among the most well-liked and frequently utilized

machine learning algorithms is the decision tree that is

part of the supervised learning family. It is a versatile and

interpretable method that can be applied to applications

requiring regression and classification. Each internal node

represents a characteristic or attribute, each branch

represents a decision rule, and each leaf node represents a

class label or a predicted value. Decision trees are built

utilizing this tree-like flowchart structure. The

construction procedure of a decision tree involves

partitioning recursively the data based on the values of the

features. At each step, the algorithm selects the feature

that provides the most significant information gain or

decrease in impurity, depending on the specific criteria

used. This allows the decision tree to learn complex

decision boundaries and capture nonlinear relationships

between the features and the target variable. Decision

trees interpretability is one of their key benefits. The

resulting tree structure can be easily visualized and

understood, making it useful for explaining the reasoning

behind the predictions (Malhotra. 2015). Over fitting is a

problem with decision trees, especially when the tree is

overly deep and complicated. To address this, various

techniques have been developed, such as pruning, setting

a maximum depth, or limiting the number of samples

required to split a node. Additionally, ensemble methods

like Gradient Boosting and Random Forests can be used

to combine multiple decision trees and improve overall

prediction performance (Phuong Ha.,2019)

3.2 Naive Bayes

An efficient machine learning approach for classification

tasks is called Naive Bayes. It is founded on the ideas of

the Bayes theorem and this presupposes that, given the

class variable, the features are conditionally independent

of one another. The algorithm gets its name from the

Bayes' theorem, which defines how to update the

likelihood of a hypothesis constructed on new evidence.

In the context of classification, Naive Based on the feature

values of an instance, Bayes determines the likelihood that

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 834–840 | 836

it belongs to a specific class (Dejaeger et.al.,2012) Here's

a high-level overview of how Naive Bayes works:

Training Phase

Naive Bayes requires a labelled training dataset where the

class labels are known. The procedure determines each

class's prior probability, which is the probability of

encountering a data point belonging to that class in the

training dataset. For each feature, Naive Bayes calculates

the conditional probability of that feature given each class.

This involves estimating the probability distribution of

each feature for each class. The choice of probability

distribution (e.g., Gaussian, Bernoulli, and Multinomial)

depends on the type of feature (continuous, binary, and

discrete).

 Prediction Phase:

Given a new, unlabelled instance, Naive Bayes calculates

the posterior probability of each class using Bayes'

theorem. The category with the maximum posterior

probability is predicted as the output class for the instance.

It is computationally efficient and scales well with large

datasets. It performs well even with a small amount of

training data (Prabha et.al. 2020).

3.3 K-Nearest Neighbor

KNN (K-Nearest Neighbours) is an easy and powerful

algorithm for machine learning algorithm utilized for both

regression and classification problem (Malhotra et.al.,

2015). Being non-parametric, it makes no assumptions

regarding the distribution of the underlying data. KNN is

predicated on the concept that similar cases frequently

share a class or have comparable target values. An

overview of how KNN functions is given below:

Training Phase:

In the training phase, KNN simply stores the feature

vectors and corresponding class labels (in the case of

classification) or target values (in the case of regression)

of the training instances. It does not perform any explicit

model building or parameter estimation (Koru et.al.,

2005).

Prediction Phase:

Given a new, unlabelled instance that needs to be

classified or predicted, KNN finds the k nearest neighbors

to that instance according to Euclidean distance or any.

The number of neighbors to take into account is

determined by the value of the user-defined hyper

parameter k. The category label with the maximum count

is chosen as the projected category for the new instance

via KNN, which uses a majority vote among the class

labels of the k nearest neighbors.

3.4 Support Vector Machine

SVMs are effective and flexible machine learning

algorithms that are frequently used for both types of

applications like Regression and Classification. SVMs

remain effective when dealing with complex datasets with

clear margin or separation between classes. Here's a brief

introduction to how Support Vector Machines work:

SVMs aim to find an optimal hyper plane in a high-

dimensional feature space that maximally separates the

instances of different classes. In a binary classification

setting, instances are divided into two classes by the hyper

plane, which serves as a decision boundary (Shanthini,

A.,2012). Finding the hyper plane with the highest margin

is the objective. The instances adjoining to the decision

boundary are named support vectors and play a critical

role in defining the hyper plane.

Using a kernel function, SVMs convert the initial feature

set into a higher-dimensional space. This allows SVMs to

learn nonlinear decision boundaries in the original feature

space. Nonlinear SVMs employ kernel functions, such as

RBF (radial basis function), Sigmoid, or polynomial, in

order to linearly separate the instances by mapping them

onto a higher-dimensional space. The kernel function

calculates the similarity or distance between instances in

the transformed space. By using different kernel

functions, SVMs can capture different types of nonlinear

relationships between features.

Training and Prediction:

During the training phase, SVMs learn the optimal hyper

plane by solving the optimization problem. This involves

finding the support vectors and determining the

parameters that define the decision boundary. In the

prediction phase, SVMs use the learned model to classify

new instances. The new instances are mapped into the

feature space, and their position relative to the decision

boundary determines their class assignment (Rathore

et.al.2019).

3.5 Random Forest

A well-liked and effective machine learning technique

called RF is used for both regression and classification

problems. Multiple decision trees were combined in this

ensemble method to produce predictions. The robustness,

precision, and capability of Random Forests to handle

high-dimensional data are well established (Catal

et.al.,2009). Here's an introduction to how Random Forest

works: Ensemble of Decision Trees:An ensemble of

decision trees, each trained tree using a random subset of

the training data and the features, makes up a Random

Forest. The addition of randomization during training

decreases over fitting and improves the generalizability of

the model.

Random Subsampling:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 834–840 | 837

During the training phase, Random Forest randomly

selects subsets of the original training data through a

process called bootstrapping or sampling with

replacement. This means that every tree is trained on a

dissimilar data subset, allowing for diversity in the

ensemble (Hammouri et.al.,2018)

Additionally, only a random subset of the features is taken

into account for every split in the decision tree. This

advancement enhances the diversity and reduces

correlation among the trees.

Majority Voting or Averaging:For classification tasks,

each tree in the Random Forest predicts the class label of

a given input. The class that receives the most votes from

the trees is chosen as the final prediction by majority vote.

4. Experimental Setup

As seen in Figure 1, the Software repository dataset is split

into two categories: a training set for creating learners

using the provided learning schemes, and a test set for

assessing the learners' performances. The performance

report states which learning scheme is chosen and utilised

to create a prediction model and forecast software defect

(P. Kumudha et.al.,2016).

There is open access given to the datasets used in many

software projects so that researchers can utilize them for

experiments and study. The capacity of a certain dataset

to serve the desired function is one of the elements that

may influence the prediction accuracy of a model. A

model's capacity to forecast defects is influenced by the

design process. The effectiveness of the predictive

outcomes might not be the similar at all times. Different

kind of performance measures metrics were used like F

Score, Accuracy, Recall and Precision. Table-1:

Explanation of Metrics used in Software Fault Prediction.

1 LOC Number of McCabe's line count of code

2 v(g) Number of McCabe “Cyclomatic Complexity”

3 ev(g) Number of McCabe “ essential complexity”

4 iv(g) Number of McCabe “design complexity"

5 n Number of Halstead total operators + operands

6 v Number of Halstead "volume"

7 l Number of Halstead "program length"

8 d Number of Halstead "difficulty"

9 i Number of Halstead "intelligence"

10 e Number of Halstead "effort"

11 b Number of Halstead

12 t Number of Halstead's time estimator

13 LOCode Number of Halstead's line count

14 LOComment Number of Halstead's count of lines of comments

15 LOBlank Number of Halstead's count of blank lines

16 LOCodeAndComment Number

17 uniq_Op Number of unique operators

18 uniq_Opnd Number of unique operands

19 total_Op Number of total operators

20 total_Opnd Number of total operands

21 branchCount Number of the flow graph

22 Problems module has/has not one or more reported %Defects

Table-2: Different models with their performance measure

Model Accuracy Precision Recall F Measure

Decision Tree 73.28 36 32 33.9

Navie Bayes 83.97 70.58 42.85 53.33

KNN 80.15 54.54 42.85 48

SVM 82.44 85.71 21.42 34.28

RF 80.92 57.14 42.85 48.98

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 834–840 | 838

 Fig-1 Model of Software Defect Prediction

4.1 Dataset Description

In this section, we have considered an open-source

Promise Repository Dataset named KC2 which includes

total 522 instances and 22 attributes to evaluate the

accuracy of each algorithm. The dataset with attributes is

presented in Table 1. Attributes include 8 derived

Halstead metrics, 5 unlike LOC measure, 4 base Halsted

measures, 3 McCabe metrics and 1 branch count with 1

target feature (Singh et.al.,2015)

4.2 Result analysis

The dataset's software faults were categorized using the

experiment's findings. The training set (75%) and test set

(25%), respectively, of the dataset utilized for the study

were separated. The dataset was trained using a Random

Forest, Support Vector machine, Decision Tree, Naïve

Bayes and KNN Classifier.(Jing et.al.2017) Classification

accuracy was used as the primary metric to evaluate the

performance of the algorithms, which is calculated by

dividing the number of correct prediction by the total

number of predictions made. We have also calculated

Precision, Recall and F1-Score of each model. The

formula for Accuracy Precision, Recall and F1 Score are

presented in Equation 1-4. Table 2 represents the

performance measure of each model. The implementation

results are also represented in graphical format, as shown

in Figure 2. In Figure 3, we represent the accuracy of each

model. From Figure 3, it is clear that Naïve Bayes

outperforms other four machine learning models.

 Accuracy =
TP+TN

Total Sample
(1)

Precision =
TP

TP+FP
(2)

Recall =
TP

TP+FN
(3)

F1 =
2*Precision*Recall

Precision +Recall
(4)

Where, TP represents True Positive.

TN represents True Negative

FP represents False Positive

FN represents False Negative

5. Conclusion & Future Scope

The outcomes demonstrate that the model is capable of

properly handling PROMISE datasets, which are

renowned for their noisy features and high dimensions. In

terms of Accuracy, the performance of the dataset KC2

was evaluated with the use of five different machine

learning algorithms. The experimental results show that

Naive Bayes and SVM performed better than KNN,

Decision Tree and Random forest in predicting software

defects(Jiang et.al.,2008). This experiment was very

helpful for me to know how the machine learning

algorithm will be implemented and what kind of dataset

have to prepare for further experiments. In conclusion, it

is anticipated that this research will have advanced

knowledge in the area of software fault prediction. It is

thought that this will make it easier and more accurate for

software engineers to find faults in software systems. This

could facilitate the creation of a high-quality software

bundle. Future investigations can draw some interesting

conclusions from this work based on the generated results

(Madeyski et.al.,2015).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 834–840 | 839

Fig 2: Performance Comparison of various Model for Dataset KC2

 Fig 3: Accuracy Graph for different Model

References

[1] Kamei, Y., Sato, H., Monden, A., Kawaguchi, S.,

Uwano, H., Nagura, M., ... & Ubayashi, N. (2011,

November). An empirical study of fault prediction

with code clone metrics. In 2011 Joint Conference of

the 21st International Workshop on Software

Measurement and the 6th International Conference

on Software Process and Product Measurement (pp.

55-61). IEEE.

[2] Krishnan, S., Strasburg, C., Lutz, R. R., & Goševa-

Popstojanova, K. (2011, September). Are change

metrics good predictors for an evolving software

product line?. In Proceedings of the 7th international

conference on predictive models in software

engineering (pp. 1-10).

[3] Rahman, F., & Devanbu, P. (2013, May). How, and

why, process metrics are better. In 2013 35th

International Conference on Software Engineering

(ICSE) (pp. 432-441). IEEE.

[4] Ma, Y., Zhu, S., Qin, K., & Luo, G. (2014).

Combining the requirement information for software

defect estimation in design time. Information

Processing Letters, 114(9), 469-474.

[5] Xia, Y., Yan, G., Jiang, X., & Yang, Y. (2014, May).

A new metrics selection method for software defect

prediction. In 2014 IEEE International Conference

on Progress in Informatics and Computing (pp. 433-

436). IEEE.

[6] Stuckman, J., Wills, K., & Purtilo, J. (2013,

October). Evaluating software product metrics with

synthetic defect data. In 2013 ACM/IEEE

International Symposium on Empirical Software

Engineering and Measurement (pp. 259-262). IEEE.

[7] Zhang, H. (2009, September). An investigation of

the relationships between lines of code and defects.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 834–840 | 840

In 2009 IEEE international conference on software

maintenance (pp. 274-283). IEEE.

[8] Dada, E. G., Oyewola, D. O., Joseph, S. B., &

Duada, A. B. (2021). Ensemble machine learning

model for software defect prediction. Adv. Mach.

Learn. Artif. Intell, 2, 11-21.

[9] Dejaeger, K., Dejaeger, K., Verbraken, T., &

Baesens, B. (2012). Toward comprehensible

software fault prediction models using bayesian

network classifiers. IEEE Transactions on Software

Engineering, 39(2), 237-257.

[10] Singh, P., & Verma, S. (2015). S22-Cross Project

Software Fault Prediction at Design Phase.

International Journal of Computer, Electrical,

Automation, Control and Information Engineering,

9(3), 800–8005.

[11] Malhotra, R. (2015). A systematic review of

machine learning techniques for software fault

prediction. Applied Soft Computing Journal, 27,

504–518.

[12] Phuong Ha, T. M., Hung Tran, D., Le, M. H., &

Thanh Binh, N. (2019). Experimental study on

software fault prediction using machine learning

model. In Proceedings of 2019 11th International

Conference on Knowledge and Systems

Engineering, KSE 2019. Institute of Electrical and

Electronics Engineers Inc.

[13] Shanthini, A. (2012). Applying Machine Learning

for Fault Prediction Using Software Metrics.

International Journal of Advanced Research in

Computer Science and Software Engineering, 2(6),

274–278.

[14] Prabha, C. L., & Shivakumar, N. (2020). Software

Defect Prediction Using Machine Learning

Techniques. In Proceedings of the 4th International

Conference on Trends in Electronics and

Informatics, ICOEI 2020 (pp. 728–733).

[15] Jing, X. Y., Wu, F., Dong, X., & Xu, B. (2017). An

Improved SDA Based Defect Prediction Framework

for Both Within-Project and Cross-Project Class-

Imbalance Problems. IEEE Transactions on

Software Engineering, 43(4), 321–339.

[16] Jiang, Y., Cukic, B., & Ma, Y. (2008). Techniques

for evaluating fault prediction models.

EmpiricalSoftwareEngineering, 13(5), 561–595.

[17] Catal, C., & Diri, B. (2009). Investigating the effect

of dataset size, metrics sets, and feature selection

techniques on software fault prediction problem.

Information Sciences,179(8), 1040-1058.

[18] P. Kumudha and R. Venkatesan, “Cost-Sensitive

Radial Basis Function Neural Network Classifier for

Software Defect Prediction,” vol. 2016, 2016.

[19] Hammouri, A., Hammad, M., Alnabhan, M., &

Alsarayrah, F. (2018). Software Bug Prediction

using machine learning approach. International

Journal of Advanced Computer Science and

Applications, 9(2), 78–83.

[20] Rathore, S.S., Kumar, S. A study on software fault

prediction techniques. Artif Intell Rev 51, 255–327

(2019).

[21] Malhotra, R., & Jain, A. (2012). Fault prediction

using statistical and machine learning methods for

improving software quality. Journal of Information

Processing Systems, 8(2), 241-262.

[22] Koru, A. G., & Liu, H. (2005, May). An

investigation of the effect of module size on defect

prediction using static measures. In Proceedings of

the 2005 workshop on Predictor models in software

engineering (pp. 1-5).

[23] Madeyski, L., & Jureczko, M. (2015). Which

process metrics can significantly improve defect

prediction models? An empirical study. Software

Quality Journal, 23(3), 393-422.

[24] He, P., Li, B., Liu, X., Chen, J., & Ma, Y. (2015). An

empirical study on software defect prediction with a

simplified metric set. Information and Software

Technology, 59, 170-190.

