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Abstract: Fog computing (FC) has the potential to lower latency and boost speed. Internet of Things (IoT) networks have difficulties 

allocating resources efficiently. The approaches used are flexible, scalable, or optimized. To maximize performance indicators, new 

approaches that utilize real-time information, workload sequences, device accessibility and network circumstances are required. We 

investigate the allocation of resources and task scheduling for numerous devices in IoT systems in this research. IoT devices must 

properly choose which data to offload to FC nodes (FCNs) as they acquire enormous amounts of data. To tackle the problem of 

supporting multiple device connections and facilitating fast data transfers with constrained resources, we suggest executing non-

orthogonal multiple access (NOMA). Several devices can simultaneously send data spanning time, frequency and coding domains to an 

identical FCN because of NOMA. Together, we optimize power transmission and resource assignment for IoT devices, meeting QoS 

requirements and reducing network energy usage. In this research, a unique boosted atom search optimization (BASO) method is 

presented to tackle it because it is an NP-hard issue. According to the simulation results, the suggested strategy outperforms in terms of 

greatest throughput, minimum latency and optimal energy use.   

Keywords: Fog computing (FC), Internet of Things (IoT), resource allocation, energy usage, boosted atom search optimization (BASO) 

 

1. Introduction 

Fog computing (FC) is complicated and dynamic, making 

resource allocation (RA) difficult in smart environments 

and particularly in the IoT. As user demands evolve, 

resource allocation and management must become more 

dependable. Systems for managing and allocating 

resources effectively must be built to adapt the changing 

demands of its users [1]. Not all fog-specific software is 

executed by fog devices. The lack of wireless connectivity, 

device autonomy and centralized management in the fog 

environment might result in resource and connection 

problems.  

In response to the increased need for processing, network 

and storage capacity to be expanded nearby to end users, 

FC has emerged as a possible alternative that can 

complement cloud computing fragility [2]. Since this is a 

new paradigm, there are a number of outstanding research 

problems and obstacles to be solved. One of these 

difficulties is allocating computational resources, which 

attempts to give the service or application the resources it 

needs to meet the specified performance and Quality of 

Service (QoS) metrics acceptably [3]. Using the processing 

power of fog devices, the FC environment is a state-of-the-

art processing architecture that enables application services 

to be delivered to clients faster and more effectively. 

Certain convergent-structured devices can function as fog 

nodes (FNs), providing users with networking, 

computation and storage capabilities [4]. The shape, 

structure and functionality of convergent structured 

devices are different from those of classical computational 

devices. The dominant use of dynamic contexts, similar to 

the IoT, in a FC environment, can result in unpredictable 

events, like high response times, decreased reliability and 

unavailability of services, when combined with intense 

competition for limited computational resources [5]. 

Utilizing RA techniques from other computational 

paradigms, such as cloud computing, is not without its 

challenges. It is critical to comprehend the suggestions that 

have been made and the obstacles that need to be 

conquered [6]. In FC, different edge nodes can cooperate 

to share interactions, hiding and processing assets to do 
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certain computational assignments locally without 

requiring links to communicate with the cloud computing 

center. These FNs can be base stations (BSs), routers, 

relays and Wi-Fi access points (APs), among other devices 

[7]. In this study, we investigate the RA approach for fog 

computing in IoT systems. 

 

The rest of the paper organization is as follows: literature 

review, methodology, result as well as discussion and 

conclusion of the paper. 

2. Literature review 

The research [8] focused on the issue of RA and dynamic 

offloading in multi-tiered FC systems with traffic 

prediction. The goal was to minimize the time-average 

power consumption with a stability guarantee for every 

queue in the system by rephrasing the problem as a 

stochastic network optimization problem. Using special 

issue structures, they provide a distributed as well as 

effective predictive offloading and resource allocation 

(PORA) technique for multi-tiered FC systems called 

predictive offloading and RA, or PORA. The study [9] 

examined the candidate FNs technique for the FC 

networks' RA dilemma for energy-efficient (EE) 

applications. The study [10] presented an agreement index 

and robustness-maximizing fuzzy logical offloading 

approach for IoT presentations with unknown parameters. 

The method of fuzzy offloading was meant to be learned 

and optimized from a variety of applications using an 

Estimation Distribution Algorithm (EDA) for estimation. 

Applications were divided into separate clusters by the 

algorithm, allowing each cluster to be sent to the 

appropriate tier for additional processing. Thus, scheduling 

decisions in a smaller search space saves system resources. 

The study [11] suggested two approaches, extended 

classifier system (XCS) and Best classifier memory-

extended classifier system (BCM-XCS) to balance the use 

of energy at the network edge and minimize processing 

delays in the workload. These methods were founded on 

learning classifier systems (LCS) and XCS. The outcomes 

demonstrate that BCM-XCS was better than the standard 

XCS-based approach. The paper [12] proposed the 

relationships between Authorised Data Service Subscribers 

(ADSSs) and Data Service Operators (DSOs) were 

modelled as an Equilibrium Problem with Equilibrium 

Constraints (EPEC) and large-scale optimization solutions 

were obtained through the use of the Alternating Direction 

Method of Multipliers (ADMM). The DSOs' optimized 

resource price and the ADSSs' estimated resource 

purchases. The paper [13] presented the challenge of using 

parked cars to distribute the scarce fog resources among 

vehicular apps in a way that minimized service delay. 

Next, they suggest utilizing a heuristic method to 

effectively identify the solutions for the issue formulation. 

The article [14] presented a QoS-aware RA scheme that 

consider the relationship between computational resources, 

transmission, FNs and ID allocations to enhance the choice 

of reducing network overhead while offloading. The 

system aimed to ensure multiple QoS specifications for 

different types of identification while minimizing the FC 

network's overhead, involving task procedure latency and 

consumption of electricity. The paper [15] examined the 

workloads predicted by the deep auto encoder (DAE) 

model throughout the analysis step as guidance and fog 

nodes were scrambled following the requirements of 

workloads for industrial IoT. The Crow Search Algorithm 

(CSA) was developed to increaseprice and latency goals 

were linked using the structure for optimum FN choice. 

The suggested plan was assessed and contrasted with the 

current optimization models concerning response time, 

throughput, request rejection ratio and execution cost. The 

study [16] addressed an RA method utilizing collaborative 

machine learning (CML) for Software defined Networking 

(SDN)-enabled FC. The RA method for the SDN-enabled 

fog-based computing environments was linked with the 

suggested CML model. Several performance evaluation 

criteria, including bandwidth utilization, energy 

consumption, latency, waiting and time to execution, were 

used to test the outcomes of the proposed methodology 

utilizing the FogBus and iFogSim. The work [17] 

introduced a novel approach for fog environments, called 

Methodology for Effective Prediction and Resource 

Allocation (EPRAM) that can be used in healthcare 

environments. With a variety of RAs, it was a difficult 

undertaking because of the resources and fog nodes 

required to do the computations required for IoT systems. 

3. Methodology 

This section presents the network model of the situation 

under consideration, together with the network, 

computation and communication models for the FC-based 

IoT use NOMA. 

 

 
 

Fig.1 Wireless IoT systems based on fog computing 
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3.1 System model 

3.1.1 Network model 

IoT device offloading services are provided by dedicated 

FNs. In actuality, routers, access points, network edge 

nodes, or switches are typically the ones that play these 

FNs. IoT networks contain a vast array of devices, such as 

smartphones, wearable technology, cameras, sensors and 

more. They can produce enormous volumes of information 

and facilitate several applications based on computation, 

each with specific deployment requirements. For FC-based 

IoT systems, we choose a broad system approach, as 

illustrated in Fig. 1. 

 

3.1.2 Communication model 

The communication framework for IoT networks using 

NOMA is presented in this section. A group of IoT devices 

would use varying power levels to deliver the FN on the 

same RB with their data in an uplink NOMA system. 

Assuming that the 𝑚𝑡ℎby sending a signal, an IoT device 

transfers compute work to the FN for processing. 𝑤𝑗
𝑙using 

transmissions power 𝑜𝑛
𝑙  on the 𝑙𝑡ℎFrom the RB to the FN. 

The signals that were received 𝑧𝑛
𝑙  from the 𝑚𝑡ℎIoT gadget 

on the 𝑙𝑡ℎ RB can be expressed as equation (1). 

 

𝑧𝑛
𝑙 = √𝑜𝑛

𝑙 𝑔𝑛
𝑙 𝑤𝑛

𝑙 + ∑ √𝑜𝑗
𝑙𝑔𝑗

𝑙 𝑤𝑗
𝑙 + 𝑦𝑛

𝑙
𝑗≠𝑛,𝑗𝜖𝑁                      (1)                                                

 

The intended signal is represented by the first word, in 

which 𝑔𝑗
𝑙 indicates the channel strength for the 𝑚𝑡ℎFN on 

the IoT 𝑙𝑡ℎ RB devices from IoT on the same RB are 

represented by the second term. The final term 𝑦𝑛
𝑙 involves 

assuming a zero mean and variance when calculating 

additive white Gaussian noise (AWGN). In FC-based IoT 

systems employing NOMA, several IoT devices 

communicate their loading information same FN on 

identical RB. IoT gadgets on the 𝑙𝑡ℎRB connected to the 

same FB are grouped according to the channel gains in 

decreasing order, which can be shown as equation (2): 

 

|𝑜1
𝑙 |

2
≥ |𝑜1

𝑙 |
2

≥ ⋯ ≥ |𝑜1
𝑙 |

2
 ∀𝑙𝜖𝐿                      (2) 

                                                                     

These RB orderings suggest that the FN can correctly 

interpret the superposed signals. As a result, the FN that 

was acquired the 𝑚𝑡ℎdevice IoT on the𝑙𝑡ℎRB is provided 

by equation (3). 

                       

𝑆𝐼𝑁𝑅𝑛
𝑙 (𝑜) =

𝑜𝑛
𝑙 |𝑜𝑛

𝑙 |
2

𝛿2+∑ 𝑜𝑗
𝑙|𝑜𝑗

𝑙|
2

𝑁
𝑗=𝑛+1

                          (3) 

                                                                  

The matching information rate of the 𝑚𝑡ℎIoT gadget that 

communicates with the FN on the 𝑙𝑡ℎ RB is represented by 

equation (4). 

𝑄𝑛
𝑙 (𝑜) = 𝑙𝑜𝑔2(1 + 𝑆𝐼𝑁𝑅𝑛

𝑙 )         (4) 

 

Following this, the possible level of the data 𝑚𝑡ℎ IoT 

device is shown in equation (5). 

 

𝑄𝑛 = ∑ 𝑎𝑛
𝑙 ℛ𝑛

𝑙
𝑙𝜖𝐿           (5) 

        

Where 𝑎𝑛
𝑙 represents the outcome of the allocation of IoT 

device RBs, with 𝑎𝑛
𝑙 = 1 representative of the 𝑙𝑡ℎ the RB is 

designated to 𝑚𝑡ℎan offloading IoT device else 𝑎𝑛
𝑙 = 0. 

 

3.1.3 Computational model 

We consider that the computational the IoT device's 

attempt is separated into many jobs. These professions can 

be finished remotely or locally on the device by connecting 

wirelessly to the FN. Memory, networks and central 

processing units (CPUs) interface capabilities can be 

represented as multi-dimensional vectors in the generic 

computing resource model of the FN. We assess the 

computational cost for the FN and local computing modes 

respectively, regarding processing duration and energy 

consumption. 

 

➢ Compute locally 

Each IoT device employs its processing capacity to carry 

out computation assignments on-site when using the local 

computing technique. Computation execution time is the 

proportion of the entire amount of cycles on the CPU 

required for the task allocated to the nearby computer 

resources of the 𝑚𝑡ℎ task of the 𝑛𝑡ℎ local computing is 

used by an IoT device and it is decided by equation (6): 

 

𝑆𝑛𝑚
𝑘 =

𝐶𝑛𝑚

𝐷𝑛𝑚
, ∀𝑛 𝜖 𝑁, 𝑚𝜖𝑀           (6) 

       

The power needed to 𝑛𝑡ℎlocal task on the device 𝑀 

afterward, processing can be decided upon using the 

energy usage data. This can be stated as equation (7): 

 

𝜌𝑛𝑚
𝑘 = 𝜉𝐶𝑛𝑚𝐷𝑛𝑚

2 , ∀𝑛 𝜖 𝑁, 𝑚𝜖𝑀                  (7) 

     

Where 𝜉is the constant that displays the energy used up 

every CPU cycle. It is reliant on switching capacitance and 

average activity parameters. 

 

➢ FN Computing 

Using wireless connectivity, the IoT device transfers its 

workload to the approved FN in the context of the FN 

computing strategy. Subsequently, the FN, with ample 

computational and capacity for storing, would handle these 

assignments regarding the IoT and transmit the calculation 

outcomes as needed. There would be an additional time 

and energy cost associated with using wireless networks to 

transfer the relevant information between the FN and the 

IoT devices during the process. We concentrate on the 
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uplink offloading communications in this study since it 

should be noted that IoT device uplink broadcasts to the 

FNs typically include enormous amounts of data. The FN's 

computational capacity for carrying out job 𝑀, expressed 

in terms of seconds per CPU cycle, is called 𝐷0𝑚. 

Assuming that the 𝑛𝑡ℎ IoT device loads its calculation job 

𝐸𝑛𝑚the transmission time of the data to the FN 𝑛𝑡ℎIoT 

device offloading the 𝑚𝑡ℎ task is determined by dividing 

the offloaded task sizes by the data rate of transmission, 

denoted by equation (8): 

𝑆𝑛𝑚,𝑠
𝑑 =

𝐵𝑛𝑚

𝑄𝑛
, ∀𝑛 𝜖 𝑁, 𝑚𝜖𝑀                  (8)                                                                            

In the same way, the calculation execution duration of the 

𝑚𝑡ℎtask of the 𝑛𝑡ℎthe FN's IoT gadget is provided by 

equation (9): 

 

𝑆𝑛𝑚,𝑓
𝑑 =

𝐶𝑛𝑚

𝐷0𝑚
, ∀𝑛 𝜖 𝑁, 𝑚𝜖𝑀       (9) 

Conversely, the energy required to outsource the work 𝑀 

of IoT device 𝑁 is specified by equation (10): 

 

𝜌𝑛𝑚
𝑑 = ∑ 𝑆𝑛𝑚,𝑠

𝐿
𝑙=1 𝑂𝑛

𝑙 + 𝜂𝐶𝑛𝑚𝐷0𝑚
2 , , ∀𝑛 𝜖 𝑁, 𝑚𝜖𝑀   (10) 

     

Here 𝜂 is the FN's CPU cycle's energy efficiency 

coefficient. It is based on switching capacitance and 

average activity factors. The first and second components, 

correspondingly, indicate the energy consumption of 

transmission and computing energy consumption. 

 

3.2 Optimising the problem of heterogeneous RA 

We look at the issue of computation and communication 

resource optimization based on the above-mentioned 

system model. The optimization objective is set as system 

energy consumption and the restrictions take into account 

the QoS needs of the IoT devices. We achieve QoS 

standards as well as minimize network energy 

consumption by optimizing power transmission and 

resource assignment for IoTs. Because it is an NP-hard 

problem, a novel boosted atom search optimization 

(BASO) approach is provided in this study to address it. 

 

3.2.1 Resource Allocation Problem  

 

As the research showed, some several problems and 

restrictions need to be considered to enable 

computationally demanding applications in IoTs. The 

issues include where to do the computation work, how to 

compute the results effectively and the resources needed 

for the procedure and the system's energy consumption. A 

novel boosted atom search optimization (BASO) approach 

is provided in this study to address these problems. 

 

3.2.2 Boosted Atom Search Optimization (BASO)  

 

In this work, we introduced the BASO approach for the 

lowest latency and best energy consumption. Boosted 

Atom search optimization (BASO), a new optimization 

approach motivated by molecular dynamics, is presented. 

An improved solution denotes a heavier mass and the 

opposite is true, according to BASO, which uses the 

location of every atom inside the search space as a measure 

of its mass. The population of atoms will all either attract 

or repel one another depending on how far apart they are 

from one another, which will cause them to go in the 

direction of the heavier atoms. Because they accelerate 

more slowly, heavier atoms actively look for more 

effective solutions nearby. When lighter atoms accelerate 

more quickly, they examine a wider area of the search 

space to discover new, promising places. The definition of 

the generic unconstrained optimization issues is in 

equation (11) and (12). 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑤 𝑒(𝑤), 𝑤 = (𝑤1, … , 𝑤𝐶)              (11) 

                                                                 

 

𝐾𝑎 ≤ 𝑤 ≤ 𝑉𝑎, 𝐾𝑎 = [𝑘𝑎1, … , 𝑘𝑎𝐶], 𝑉𝑎 =

[𝑉𝑎1, … , 𝑘𝑎𝐶]                                         (12) 

 

Where 𝑤𝑐  (𝑐 = 1, … , 𝐶) is the 𝑐𝑡ℎelement in the search 

area, 𝑘𝑎𝐶  and 𝑘𝑎𝐶  are the 𝑐𝑡ℎelements of the 

corresponding lower and upper bounds and 𝐶 is the search 

space's dimension. Considering that there are 𝑁 to solve 

this unconstrained optimization, atoms in the atom 

population. The appearance of the 𝑗𝑡ℎlocation of the atom 

is presented in equation (13). 

 

𝑤𝑗 = [𝑤𝑗
1, … , 𝑤𝑗

𝐶], 𝑗 = 1, … , 𝑀   (13) 

      

Where 𝑤𝑗
𝑐(𝑐 = 1, … , 𝐶) is the 𝑐𝑡ℎcomponent of the 

position of the 𝑗𝑡ℎan atom in a spatial dimension.  

Each atom interacts with others in the early stages of 

BASO through attraction or repulsion and repulsion can 

prevent atom over concentration and premature algorithm 

convergence, improving the capacity to explore the whole 

search space. The attraction progressively grows stronger 

and the repulsion gradually becomes less as the iterations 

go by, indicating a decline in exploration and an increase 

in exploitation. Fig. 2 shows the flowchart of the BASO. 

Every atom interacts with every other atom in the final 

iterations by attraction, proving the algorithm's strong 

exploitation capabilities.  
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Fig. 2 Flow diagram of the BASO 

 

4. Result and discussion 

This section, we evaluate the effectiveness of the suggested 

optimisation strategy for resource allocation in FC-based 

IoT networks that use NOMA. Table 1 lists the significant 

simulation parameters. 

 

Table 1. Parameters for simulation 

Simulation parameters Value 

The bandwidth 10MHz 

Frequency of carrier centers 2.5GHz 

Fading Rayleigh flat 

The radius of the FN 100m 

Noise's power spectral density -174dBm/Hz 

Path loss exponent 4 

The number of required CPU 

cycles for task 𝑔𝑛𝑚 
[0.1-1]GHz 

The FN's computational 

capabilities 
20GHz 

The data size for task 𝑔𝑛𝑚 [0.1-1]Mbits 

Computation capacity of the IoT 

device 
[0.7-1] GHz 

The energy usage computed by 

the FN 
1*10-11 J/cycle 

 

Three computational techniques are chosen for comparing 

the complete computation offloading scheme, which refers 

to all jobs reloaded at the FN on IoT networks, labelled as 

everyone offloads and the local computation scheme, 

which refers to all tasks handled locally at the IoT device. 

Next, the conventional OMA scheme also known as the 

"OMA scheme" is used as the benchmark to assess 

NOMA's performance in cases where many IoT devices 

are unable to send signals on the same resource block (RB) 

to the same FN. First, we look at the suggested BASO 

solution's convergence. The energy consumption of the 

suggested BASO in comparison to the iterations for 

various populations is shown in Fig. 3. We have chosen the 

exhaustive search (ES) scheme as the standard for 

comparison. It is evident that the suggested approach 

converges quickly. As the number of iterations increases, 

the BASO method rapidly becomes closer to the ES 

scheme. 

 

 
 

Fig.3 Energy consumption 

 

4. 1 NOMA'S performance 

We discuss how the tasks, RBs, number of devices and 

impact the performance of convergence in Fig. 4. There are 

100 people in the population. The graphs shows that 

additional devices correspond to increased energy usage 

for convergence when RBs and tasks are the same. In a 

similar vein, as the number of tasks increases, devices and 

RBs are equal, so it is the energy required for convergence. 

Additional RBs translate into additional transmissions 

offloading of resources, which enhance the performance of 

convergence even when the devices and workloads remain 

the same. 

 
Fig.4 Convergence of performance across tasks, devices, 

and RBs 

 

We use NOMA to assess the suggested scheme's efficacy. 

We use a standard OMA scheme as the benchmark for 

comparison. Fig.5 displays the various maximum 

transmission powers. The growing trends are caused by the 

multi-connectivity advantage; by enabling several IoT 
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devices on a single RB, the suggested approach offers a 

more significant diversity gain. When the maximum 

transmit power grows, so does the system throughput. 

Because of the increasing interference between several IoT 

devices, the system rate in every instance grows more 

slowly as the transmit power increases. 

 

 

Fig. 5 Transmit power 

 

4.2 Latency performance 

We concentrate on the suggested scheme's average latency. 

Improving resource utilization and satisfying the demands 

of Internet of Things applications are dependent on the 

average latency of compute processes. The average delay 

performance is shown in Fig. 6(a), 6(b) and 6(c) about 

varying task counts, FN computation capacities and RB 

counts, accordingly. These numbers show that the 

suggested design performs better than the schemes that 

were compared. 

 

 

 

 

 

 

 

 

 

Fig. 6 (a) Average latency vs number of tasks(b) Average 

latency vs FN's computational capability(c) Average 

latency vs number of RBs 

 

Fig 6(a), (b), (c) shows that when comparing the suggested 

plan to the complete loading strategy, the average delay is 

less. Finally, by transferring information by connecting 

several IoT devices to the FN and decreasing on time of 

the transmission, the suggested BASO scheme can achieve 

superior capacity gain compared to the OMA scheme. 

 

4.3 Energy consumption performance 

 

We concentrate on the suggested scheme's performance in 

terms of energy usage. The energy usage with varying 

numbers of tasks, FN calculation capacity and RBs is 

compared in Fig. 7(a), 7(b) and 7(c), respectively. These 

numbers show that the suggested scheme performs better 

than other comparative schemes in FC-based IoT networks 

with NOMA. 

 

  

 

 

 

 

 

 

Fig. 7 (a) Energy consumption vs number of tasks (b) 

Energy consumption vs FN's computational capacity (c) 

Energy consumption vs number of RBs 

 

Fig. 7 (a) illustrates how the quantity of assignments rises 

together by the energy usage. When related to another 

system, the one that completes all tasks locally has the 

highest energy usage. The FN's far superior computing 

efficiency of energy than those of IoT devices is the cause. 

The other three examined schemes the suggested scheme, 

every offloading and the equivalent system that uses OMA 

can reduce the consumption of energy use by using the 

FN's powerful computing and storage resources. Fig.7 (b) 

and 7(c) shows that comparing the other systems, the 

proposed BASO scheme reduced the number of RBs and 

FNs' computational capability.   

   

5. Conclusion 

The study has concentrated on the distribution of resources 

in the IOT systems that utilize FC. We have modeled the 

price and power usage for FN for both local processing and 

the delegation of computing activities, considering a 

general situation with a large number of IoT devices. We 

achieve QoS standards and minimise network energy 

consumption by optimising power transmission and 

resource assignment for IOT. A unique boosted atom 
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search optimisation (BASO) was conducted.  We have 

discovered that the various computing modes can influence 

the average latency and system energy consumption. A 

decent performance might be attained by using the 

suggested strategy, which would make the best selection 

when selecting the appropriate computing mode. In the 

future analyse how to use machine learning and edge 

intelligence to optimize and allocate resources proactively 

in FC developments. Algorithms for machine learning can 

evaluate past data, forecast future needs for resources and 

modify resource allocation plans accordingly. 
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