

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1281–1287 | 1281

Algorithmic Diversity in Maze Generation Comparative Study of

Backtracking, Kruskal's, Prim's, and Eller's Algorithms

Ivan Cahyakusuma 1, Wirawan Istiono*2

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: The creation of content using Procedural Content Generation or PCG is a common occurrence in game development. The

utilization of PCG can reduce game development costs and provide players with unique gaming experiences in each session. Among the

various existing PCG algorithms, each algorithm generates content with different levels of complexity. This research aims to compare

maps generated by the Backtracking Algorithm, Kruskal’s Algorithm, Prim’s Algorithm, and Eller’s Algorithm. Each algorithm will create

maze maps of sizes 5x5, 10x10, and 15x15, and their completion times will be measured using the A-Star maze-solver algorithm. Based

on the results of this study, mazes created by the Backtracking algorithm are the most complex, with an average completion time of 2.3803

seconds, which is 14.82% longer than the mazes generated by the Eller algorithm. The mazes created by the Eller algorithm come in second

as the most complex, with an average completion time of 2.0729 seconds, which is 4.27% longer than those generated by the Kruskal

algorithm. The mazes created by the Kruskal algorithm rank third in complexity, with an average completion time of 1.988 seconds, which

is 31.84% longer than the ones generated by the Prim algorithm. Lastly, the mazes created by the Prim algorithm are the least complex,

with an average completion time of 1.5078 seconds.

Keywords: Backtracking Algorithm, Eller’s Algorithm, Kruskal’s Algorithm, Maze, Prim’s Algorithm

1. Introduction

Video games have been rapidly growing as a form of

entertainment in recent years. With easy access to the

internet and an increasing number of devices capable of

playing games, their distribution has expanded rapidly.

According to data from We Are Social, a company

specializing in internet, social media, and data trends, out of

4.66 billion internet users worldwide, 3.77 billion are

gamers [1], [2].

Playing video games involves various tasks and challenges,

such as requiring agility and precision in pressing inputs,

logical thinking and problem-solving, or tasks related to

strategic planning [3]. Though social research on the appeal

of video games is still limited, there are indications that the

satisfaction derived from playing games is linked to

successfully completing these tasks and challenges [4], [5].

However, many games tend to offer the same content when

played repeatedly, leading to reduced player satisfaction

after multiple playthroughs. In modern game development,

the effort and time required to create game content represent

a significant portion of the development costs and time.

Some popular games, like Minecraft developed by Mojang,

utilize Procedural Content Generation (PCG) in creating

levels and other content such as in-game items [6].

PCG is a method used to generate game content

procedurally. It not only optimizes the game development

process and reduces development costs, but also enhances

replayability [7]. One of the applications of PCG is in maze

generation. Mazes are valuable in level and game design as

content that serves both as physical elements within the

level and as puzzles for players. Game designers aim to

create a well-balanced difficulty curve for their players. If a

game designer desires mazes in their game and different

maze algorithms produce mazes of varying complexity,

knowing which maze algorithm aligns with the game's

desired difficulty curve is crucial [8].

The first limitation of this research is that the maze created

is a two-dimensional grid maze with four directions, and the

level of maze complexity is determined by calculating the

time required to solve the maze using the A-Star algorithm.

The objective of this research, after successfully

implementing the Backtracking, Kruskal, Prim, and Eller

algorithms in creating levels for the maze game, is to

determine the comparison of maze level complexities

generated by the Backtracking, Kruskal, Prim, and Eller

algorithms when solved using the A-Star algorithm.

1,2 Universitas Multimedia Nusantara of Informatics

Department, Scientia Boulevard, Curug Sangereng, Kelapa. Dua,

Tangerang, Banten 15810, Indonesia

2 ORCID ID: 0000-0001-9568-1539

* Corresponding Author Email: wirawan.istiono@umn.ac.id

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1281–1287 | 1282

2. Materials & Methods

2.1. Backtracking algorithm

Backtracking in maze generation is a randomized version of

the Depth-First Search algorithm. This algorithm randomly

selects a cell until there are no neighboring cells left to be

chosen. Once there are no available neighboring cells, the

algorithm backtracks along the path until it finds a cell that

still has unvisited neighboring cells [9]. This process of

backtracking is repeated continuously until all cells have

been selected. The steps involved in the Backtracking

Algorithm are as follows [10], [11], [12]:

▪ Randomly select a starting cell.

▪ Randomly choose an adjacent cell that has not been

visited before. Connect the chosen cell with the

previous cell.

▪ If all adjacent cells have been visited, backtrack to the

previous cell until reaching a cell with unvisited

neighbors and repeat step two.

▪ The algorithm ends when the selected cell backtracks

to the starting point, and there are no unvisited

neighboring cells left.

2.2. Kruskal’s Algorithm

The Kruskal's algorithm was developed by mathematician

and computer scientist Joseph Kruskal in 1956 to create

minimal spanning trees. In a graph or grid, where each

connecting path between cells is assigned a cost, the

Kruskal's algorithm repeatedly selects the connecting paths

between 2 cells based on their costs to connect all cells

without forming a loop [13]. The steps involved in Kruskal's

Algorithm for creating a maze are as follows [14], [15]:

▪ Assign letters to all cells to indicate their respective

sets.

▪ Randomly choose one wall between two cells. If the

two cells belong to different sets, merge those two sets

into one and connect the two cells.

▪ Repeat step two until all cells are part of the same set.

2.3. Prim’s Algorithm

The Prim's algorithm was first developed in 1930 by the

Czech mathematician named Vojtěch Jarník, but it received

its name from Robert C. Prim, a computer scientist who

rediscovered it independently in 1957. In a graph or grid,

where each connecting path between cells is assigned a cost,

the Prim's algorithm randomly selects one cell and chooses

connecting paths based on the cost of connecting

neighboring cells to the selected cell [16]. Then, the Prim's

algorithm repeats the process of selecting connecting paths

from all previously selected cells until all cells are

interconnected. The steps involved in Prim’s Algorithm for

creating a maze are as follows [17]:

▪ Randomly choose a starting cell, which becomes part

of the maze set.

▪ Mark all neighboring cells of the maze set as border

cells.

▪ Randomly select one border cell and connect it to an

adjacent cell in the maze set. This newly selected cell

becomes part of the maze set.

▪ Repeat steps two and three until all cells are included

in the maze set.

2.4. Eller’s Algorithm

The Eller's algorithm was discovered by Marlin Eller in

1982. The Eller's algorithm works by creating rows one by

one, with each cell belonging to a different set. Then,

neighboring cells are randomly connected to form one set.

Next, at least one cell from each existing set is randomly

selected to be connected to cells in the new row below [18].

On the next row, all cells without a set will receive a new

set. The process of merging sets in each row is repeated

continuously until the desired grid size is reached, and on

the last row, all sets will be connected. The steps involved

in Eller’s Algorithm for creating a maze are as follows [19]:

▪ Assign letters to all cells in the first row to indicate

their respective sets.

▪ Randomly establish connections between adjacent

cells, resulting in the merger of the two connected sets

into a single set.

▪ Randomly connect cells to cells in the next row; the

connected cells will join the set of the cell above. Each

set must connect at least one cell.

▪ Assign letters to cells in the new row that are not

connected to different sets in the existing row.

▪ Repeat steps two, three, and four until reaching the last

row.

▪ On the last row, connect all cells in different sets,

leaving only one set throughout the entire maze.

3. Methodology

The research methodology used in comparing the maze

levels created by the Backtracking, Kruskal, Prim, and Eller

algorithms in the maze game is as follows. The first step is

literature review, where the researcher conducts theoretical

research on mazes and the algorithms to be used in maze

generation. The sought-after theories include Maze,

Procedural Content Generation, Backtracking Algorithm,

Kruskal’s Algorithm, Prim’s Algorithm, Eller’s Algorithm,

and A-Star Algorithm. Next is the design phase, where the

program design for maze comparison, the workflow for

maze generation using each algorithm, and the workflow for

the A-Star algorithm used to compare maze complexity are

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1281–1287 | 1283

established [20]. The subsequent step is implementation,

where a program is developed based on the designed

algorithms for maze generation, using the Unity game

engine.

Then, the next step is testing, where the mazes created by

the algorithms are tested using the A-Star algorithm. The A-

Star algorithm is employed to solve mazes of various sizes

generated by each algorithm. The A-Star algorithm

measures the number of steps and time required to solve

each maze [21]. This is followed by the evaluation phase,

where a comparison is made between the number of steps

and time obtained from the previous testing stage. The

results of testing each algorithm are compared to measure

the relative complexity of the mazes created by each

algorithm.

The final step is report writing, where a detailed report is

written, describing the entire research process and the

findings obtained from this study. In this research, a

program is designed to serve as a platform for algorithms to

create a maze. Within this program, users can choose the

size of the maze to be generated and the algorithm to be used

in maze generation. Users can also observe the maze-

solving process using the A-Star algorithm and obtain

information about the time required to solve the maze

created by each algorithm.

In Fig. 1, the workflow of the Maze Generation scene is

depicted, which appears after selecting an algorithm from

the main menu. Within the maze generation scene, the

program displays three buttons: Menu, Generate Maze, and

Solve Maze. When the Generate Maze button is pressed, the

program executes the algorithm previously chosen in the

main menu to create a maze and displays it on the screen.

When the Solve Maze button is pressed, the program runs

the A-Star algorithm to solve the existing maze and displays

the solved maze and the time taken to solve it on the screen.

Fig. 1. Flowchart Maze Generation Scene

Fig. 2 depicts the sequential steps of the Backtracking

method. Prior to the commencement of the algorithm, the

computer generates cells for the maze according to the

specified maze size. To begin with, the method employs a

random selection process to designate one cell as the Start

cell. The adjacent cells to the selected cell are examined, and

any unvisited cells among them are identified as potential

cells for visitation. From the candidate cells, the algorithm

randomly chooses one cell to visit. This cell is then

connected to the previous cell, and the previous cell is noted

as the source. This visiting process is repeated until the

algorithm reaches a cell that has no more unvisited target

cells. If there are no more target cells to visit, the algorithm

will backtrack towards the source cell until it reaches a cell

with unvisited target cells and then perform the visiting

process again. If the Backtracking algorithm returns to the

Start cell and there are no more cells that can be visited, it

means that all cells in the maze are connected, and the

algorithm is complete.

Fig. 2. Modified Backtracking Algorithm Flowchart For

Maze Generation

Fig. 3 illustrates the workflow of the Kruskal algorithm.

Before the algorithm begins, the program creates cells for

the maze based on the desired maze size. Firstly, this

algorithm assigns different set numbers to all cells and keeps

track of the number of sets present. The algorithm then

randomly selects two adjacent cells. If these two cells

belong to different sets, the algorithm connects them and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1281–1287 | 1284

merges the two sets into one. This random selection and

merging process are repeated until there is only one set

remaining throughout the entire maze, indicating that all

cells in the maze are connected, and the algorithm is

complete.

Fig. 3. Modified Kruskal Algorithm Flowchart For Maze

Generation

The flowchart in Fig. 4 illustrates the workflow of the Prim

algorithm. Before the algorithm starts, the program creates

cells for the maze based on the desired maze size. Firstly,

this algorithm designates all cells as outside cells. The

algorithm then randomly selects one cell to be the first inside

cell. All outside cells adjacent to any inside cell will be

converted into edge cells. The algorithm selects one existing

edge cell to connect with an inside cell and transforms that

edge cell into an inside cell. This process of changing and

merging edge cells is repeated until all edge cells are used

up, indicating that all cells in the maze are connected, and

the algorithm is complete.

Fig. 4. Modified Prim's Algorithm Flowchart for Maze

Generation

Fig. 4 illustrates the workflow of the Eller algorithm. Before

the algorithm starts, the program creates a maze based on

the desired maze size. Firstly, the algorithm initiates the

process from the first row. It assigns different set numbers

to cells in this row. Then, random connections are made

between two cells with different sets, and those sets are

merged. For each existing set, one cell is connected to a cell

in the next row. This process of assigning sets, connecting

cells, and merging sets is repeated until reaching one row

before the last row. In the last row, sets are continuously

merged until only one set remains, indicating that all cells

in the maze are connected, and the algorithm is complete.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1281–1287 | 1285

4. Results & Discussion

An application was designed to visualize the comparison of

the backtracking, Kruskal, Prim, and Eller algorithms, based

on the completed study methods and flowchart design.

In this research, mazes created by the Backtracking,

Kruskal, Eller, and Prim algorithms will be tested in various

sizes. The tested maze specifications include 30 mazes of

size 5x5, 30 mazes of size 10x10, and 30 mazes of size

15x15 for each algorithm. The variables taken into

consideration in these tests are as follows:

▪ No: The sequence number of the maze.

▪ Maze Node: The total number of nodes present in the

maze.

▪ Maze Length: The exact length of the path from the

starting point to the ending point.

▪ Total Step: The number of steps taken by the A-Star

algorithm to solve the maze.

▪ Solve Time: The amount of time in seconds taken by

the A-Star algorithm to solve the maze, measured in

seconds.

The program is developed by using C# programming

language with Unity game engine. The mazes cells and

passages are shown with simple rectangle sprites with the

start cell colored green and end cell colored red as shown in

Fig. 5.

Fig. 5. An example of maze generated by Backtracking

Algorithm

The labyrinth solution procedure using the A-Star

Algorithm is depicted in Fig. 6. Each cell traversed by the

algorithm will be labeled with a white color and a numerical

value indicating its cost. The designated route from the

starting point to the destination will be indicated by a color

spectrum ranging from green to red.

Fig. 6. An example of maze traversed by A-Star Algorithm

After the A-Star Algorithm finishes solving the maze, the

data of the maze will be recorded and shown in the screen

as shown in Fig. 7.

Fig. 7. Recorded data shown after maze is successfully

solved

The comparison of each algorithms is done by generating 30

mazes of each size of each algorithms. The average solve

time on each algorithm is then calculated and compared to

other algorithm in the same size category. The average

results of the mazes generated is shown in Table 1.

Table 1. Average results of 30 mazes of each size of each

algorithms

Maze

Average

Maze

Length

Average

Total

Step

Average

Solve

Time

Backtracking

5x5
17.9 23.6333 0.2299s

Backtracking

10x10
61.3 98.5333 1.0014s

Backtracking

15x15
114.467 221.233 2.3803s

Kruskal 5x5 10.7 18.3 0.1719s

Kruskal

10x10
25.467 78.2 0.7854s

Kruskal

15x15
46.333 188.4 1.9880s

Prim 5x5 9.7333 18.2666 0.1721s

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1281–1287 | 1286

Prim 10x10 21.633 67.9 0.6840s

Prim 15x15 32.167 141.733 1.5078s

Eller 5x5 12.633 21.4333 0.2041s

Eller 10x10 30.133 91.2333 0.9223s

Eller 15x15 47.766 194.033 2.0729s

Fig. 8 displays the comparative analysis of maze-solving

algorithms in the 15x15 size category.

Fig. 8. Average maze solve time of each algorithm in the

15x15 size category

By analyzing the average time it takes for each algorithm to

solve a maze, we may determine that the ranking of maze

difficulty is as follows: Backtracking, Eller's, Kruskal's, and

Prim's. On average, solving backtracking mazes required

14.82% more time compared to Eller's mazes. On average,

Eller's mazes required 4.27% longer time to solve compared

to Kruskal's mazes. Kruskal's mazes required, on average,

31.84% additional time to solve compared to Prim's. The

disparity in average solve time is directly proportional to the

size of the mazes.

5. Conclusion

Based on the conducted research, the implementation of the

Backtracking, Kruskal, Prim, and Eller algorithms has been

successfully accomplished in generating maze levels. Based

on the analysis of the complexity of the mazes created by

each algorithm, it can be concluded that concerning the

maze-solving time with the A-Star algorithm for a size of

15x15, mazes generated by the Backtracking algorithm are

the most complex, with an average time of 2.3803 seconds,

which is 14.82% greater than the mazes generated by the

Eller algorithm. The mazes created by the Eller algorithm

are the second most complex, with an average time of

2.0729 seconds, which is 4.27% greater than the mazes

generated by the Kruskal algorithm. The mazes created by

the Kruskal algorithm are the third most complex, with an

average time of 1.988 seconds, which is 31.84% greater than

the mazes generated by the Prim algorithm. The mazes

created by the Prim algorithm are the least complex, with an

average time of 1.5078 seconds

Acknowledgements

Thank you to Universitas Multimedia Nusantara in

Indonesia for providing a space for academics to conduct

this journal research. Hopefully, this research will

contribute significantly to the growth of technology in

Indonesia.

Author contributions

Ivan Cahyakusuma: Task executor, Methodology,

Software developer, Informatics department Wirawan

Istiono: Research mentor, Corresponding research author,

editor's research report, Informatics department.

Conflicts of interest

I declare that there is no conflict of interest in this research.

References

[1] I. S.-E. Otobe, “Innovations in the video game

industry,” Innov. Syst. Process. Asia, no. 94, pp. 1–34,

2007, [Online]. Available:

http://asia.stanford.edu/events/fall07/slides/otobe.pdf

[2] M.-P. Määttä, “Growth and Future of Video Game

Industry,” in Proceedings of the 2022 International

Conference on Economics, Smart Finance and

Contemporary Trade, 2019, p. 31. doi: 10.2991/978-

94-6463-052-7_9.

[3] B. Chaarani, J. Ortigara, D. Yuan, H. Loso, A. Potter,

and H. P. Garavan, “Association of Video Gaming

with Cognitive Performance among Children,” JAMA

Netw. Open, vol. 5, no. 10, p. E2235721, 2022, doi:

10.1001/jamanetworkopen.2022.35721.

[4] C. S. Green and D. Bavelier, “Action video game

training for cognitive enhancement,” Curr. Opin.

Behav. Sci., vol. 4, pp. 103–108, 2015, doi:

10.1016/j.cobeha.2015.04.012.

[5] I. Granic, A. Lobel, and R. C. M. E. Engels, “The

benefits of playing video games,” Am. Psychol., vol.

69, no. 1, pp. 66–78, 2014, doi: 10.1037/a0034857.

[6] M. Beukman, C. W. Cleghorn, and S. James,

“Procedural content generation using neuroevolution

and novelty search for diverse video game levels,”

GECCO 2022 - Proc. 2022 Genet. Evol. Comput.

Conf., pp. 1028–1037, 2022, doi:

10.1145/3512290.3528701.

[7] J. Togelius et al., “Procedural Content Generation :

Goals, Challenges and Actionable Steps,” Artif.

Comput. Intell. Games, vol. 6, pp. 61–75, 2013,

[Online]. Available:

http://drops.dagstuhl.de/opus/volltexte/2013/4351%5

Cnhttp://drops.dagstuhl.de/opus/volltexte/2013/4336/

[8] A. Chia, “The artist and the automaton in digital game

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1281–1287 | 1287

production,” Convergence, vol. 28, no. 2, pp. 389–412,

2022, doi: 10.1177/13548565221076434.

[9] B. A. Hassan and T. A. Rashid, “Operational

framework for recent advances in backtracking search

optimisation algorithm: A systematic review and

performance evaluation,” Appl. Math. Comput., vol.

370, 2020, doi: 10.1016/j.amc.2019.124919.

[10] F. Rossi, P. van Beek, and T. Walsh, “Handbook of

Constraint Programming Introduction,” Handb.

Constraint Program., pp. 1–955, 2006.

[11] D. C. Schmidt and L. E. Druffel, “A Fast Backtracking

Algorithm to Test Directed Graphs for Isomorphism

Using Distance Matrices,” J. ACM, vol. 23, no. 3, pp.

433–445, 1976, doi: 10.1145/321958.321963.

[12] G. Kondrak and P. Van Beek, “A theoretical

evaluation of selected backtracking algorithms,” Artif.

Intell., vol. 89, no. 1–2, pp. 365–387, 1997, doi:

10.1016/s0004-3702(96)00027-6.

[13] H. Li, Q. Xia, and Y. Wang, “Research and

Improvement of Kruskal Algorithm,” J. Comput.

Commun., vol. 05, no. 12, pp. 63–69, 2017, doi:

10.4236/jcc.2017.512007.

[14] S. Marković, J. Novakovic, and A. Marković,

“Generating and solving of the maze by using

Kruskal’s and Floyd’s algorithm,” Int. Sci. Conf.

“UNITECH 2019” – Gabrovo, no. November, pp.

315–319, 2019.

[15] D. Jakus, R. Čađenović, J. Vasilj, and P. Sarajčev,

“Optimal reconfiguration of distribution networks

using hybrid heuristic-genetic algorithm,” Energies,

vol. 13, no. 7, 2020, doi: 10.3390/en13071544.

[16] Wamiliana, M. Usman, Warsono, Warsito, and J. I.

Daoud, “Using modification of Prim’s algorithm and

GNU Octave and to solve the multiperiods installation

problem,” IIUM Eng. J., vol. 21, no. 1, pp. 100–112,

2020, doi: 10.31436/iiumej.v21i1.1088.

[17] M. Iqbal, A. P. U. Siahaan, N. Elizabeth, and D.

Purwanto, “Prim’s Algorithm for Optimizing Fiber

Optic Trajectory Planning,” Int. J. Sci. Res. Sci.

Technol., vol. 3, no. September, pp. 504–509, 2017,

[Online]. Available:

https://www.researchgate.net/publication/319349574

[18] C. Science, “Fundamentals of Maze Generation,”

Fundam. Program. Comput. Sci., pp. 1–6.

[19] P. A. Newell, J. Aycock, and K. M. Biittner, “Still

Entombed After All These Years: The continuing

twists and turns of a maze game,” Internet Archaeol.,

no. 60, 2022, doi: 10.11141/ia.59.3.

[20] O. R. Chandra and W. Istiono, “A-star Optimization

with Heap-sort Algorithm on NPC Character,” Indian

J. Sci. Technol., vol. 15, no. 35, pp. 1722–1731, 2022,

doi: 10.17485/ijst/v15i35.857.

[21] G. T. Kumala and W. Istiono, “Comparison of Flow

Field and A-Star Algorithm for Pathfinding in Tower

Defense Game,” Int. J. Multidiscip. Res. Anal., vol. 5,

no. 9, pp. 2445–2453, 2022, doi: 10.47191/ijmra/v5-

i9-20.

