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Abstract: The creation of content using Procedural Content Generation or PCG is a common occurrence in game development. The 

utilization of PCG can reduce game development costs and provide players with unique gaming experiences in each session. Among the 

various existing PCG algorithms, each algorithm generates content with different levels of complexity. This research aims to compare 

maps generated by the Backtracking Algorithm, Kruskal’s Algorithm, Prim’s Algorithm, and Eller’s Algorithm. Each algorithm will create 

maze maps of sizes 5x5, 10x10, and 15x15, and their completion times will be measured using the A-Star maze-solver algorithm. Based 

on the results of this study, mazes created by the Backtracking algorithm are the most complex, with an average completion time of 2.3803 

seconds, which is 14.82% longer than the mazes generated by the Eller algorithm. The mazes created by the Eller algorithm come in second 

as the most complex, with an average completion time of 2.0729 seconds, which is 4.27% longer than those generated by the Kruskal 

algorithm. The mazes created by the Kruskal algorithm rank third in complexity, with an average completion time of 1.988 seconds, which 

is 31.84% longer than the ones generated by the Prim algorithm. Lastly, the mazes created by the Prim algorithm are the least complex, 

with an average completion time of 1.5078 seconds. 
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1. Introduction 

Video games have been rapidly growing as a form of 

entertainment in recent years. With easy access to the 

internet and an increasing number of devices capable of 

playing games, their distribution has expanded rapidly. 

According to data from We Are Social, a company 

specializing in internet, social media, and data trends, out of 

4.66 billion internet users worldwide, 3.77 billion are 

gamers [1], [2]. 

Playing video games involves various tasks and challenges, 

such as requiring agility and precision in pressing inputs, 

logical thinking and problem-solving, or tasks related to 

strategic planning [3]. Though social research on the appeal 

of video games is still limited, there are indications that the 

satisfaction derived from playing games is linked to 

successfully completing these tasks and challenges [4], [5]. 

However, many games tend to offer the same content when 

played repeatedly, leading to reduced player satisfaction 

after multiple playthroughs. In modern game development, 

the effort and time required to create game content represent 

a significant portion of the development costs and time. 

Some popular games, like Minecraft developed by Mojang, 

utilize Procedural Content Generation (PCG) in creating 

levels and other content such as in-game items [6]. 

PCG is a method used to generate game content 

procedurally. It not only optimizes the game development 

process and reduces development costs, but also enhances 

replayability [7]. One of the applications of PCG is in maze 

generation. Mazes are valuable in level and game design as 

content that serves both as physical elements within the 

level and as puzzles for players. Game designers aim to 

create a well-balanced difficulty curve for their players. If a 

game designer desires mazes in their game and different 

maze algorithms produce mazes of varying complexity, 

knowing which maze algorithm aligns with the game's 

desired difficulty curve is crucial [8]. 

The first limitation of this research is that the maze created 

is a two-dimensional grid maze with four directions, and the 

level of maze complexity is determined by calculating the 

time required to solve the maze using the A-Star algorithm. 

The objective of this research, after successfully 

implementing the Backtracking, Kruskal, Prim, and Eller 

algorithms in creating levels for the maze game, is to 

determine the comparison of maze level complexities 

generated by the Backtracking, Kruskal, Prim, and Eller 

algorithms when solved using the A-Star algorithm. 
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2. Materials & Methods 

2.1. Backtracking algorithm 

Backtracking in maze generation is a randomized version of 

the Depth-First Search algorithm. This algorithm randomly 

selects a cell until there are no neighboring cells left to be 

chosen. Once there are no available neighboring cells, the 

algorithm backtracks along the path until it finds a cell that 

still has unvisited neighboring cells [9]. This process of 

backtracking is repeated continuously until all cells have 

been selected. The steps involved in the Backtracking 

Algorithm are as follows [10], [11], [12]: 

▪ Randomly select a starting cell. 

▪ Randomly choose an adjacent cell that has not been 

visited before. Connect the chosen cell with the 

previous cell. 

▪ If all adjacent cells have been visited, backtrack to the 

previous cell until reaching a cell with unvisited 

neighbors and repeat step two. 

▪ The algorithm ends when the selected cell backtracks 

to the starting point, and there are no unvisited 

neighboring cells left. 

2.2. Kruskal’s Algorithm 

The Kruskal's algorithm was developed by mathematician 

and computer scientist Joseph Kruskal in 1956 to create 

minimal spanning trees. In a graph or grid, where each 

connecting path between cells is assigned a cost, the 

Kruskal's algorithm repeatedly selects the connecting paths 

between 2 cells based on their costs to connect all cells 

without forming a loop [13]. The steps involved in Kruskal's 

Algorithm for creating a maze are as follows [14], [15]: 

▪ Assign letters to all cells to indicate their respective 

sets. 

▪ Randomly choose one wall between two cells. If the 

two cells belong to different sets, merge those two sets 

into one and connect the two cells. 

▪ Repeat step two until all cells are part of the same set. 

2.3. Prim’s Algorithm 

The Prim's algorithm was first developed in 1930 by the 

Czech mathematician named Vojtěch Jarník, but it received 

its name from Robert C. Prim, a computer scientist who 

rediscovered it independently in 1957. In a graph or grid, 

where each connecting path between cells is assigned a cost, 

the Prim's algorithm randomly selects one cell and chooses 

connecting paths based on the cost of connecting 

neighboring cells to the selected cell [16]. Then, the Prim's 

algorithm repeats the process of selecting connecting paths 

from all previously selected cells until all cells are 

interconnected. The steps involved in Prim’s Algorithm for 

creating a maze are as follows [17]: 

▪ Randomly choose a starting cell, which becomes part 

of the maze set. 

▪ Mark all neighboring cells of the maze set as border 

cells. 

▪ Randomly select one border cell and connect it to an 

adjacent cell in the maze set. This newly selected cell 

becomes part of the maze set. 

▪ Repeat steps two and three until all cells are included 

in the maze set. 

2.4. Eller’s Algorithm 

The Eller's algorithm was discovered by Marlin Eller in 

1982. The Eller's algorithm works by creating rows one by 

one, with each cell belonging to a different set. Then, 

neighboring cells are randomly connected to form one set. 

Next, at least one cell from each existing set is randomly 

selected to be connected to cells in the new row below [18]. 

On the next row, all cells without a set will receive a new 

set. The process of merging sets in each row is repeated 

continuously until the desired grid size is reached, and on 

the last row, all sets will be connected. The steps involved 

in Eller’s Algorithm for creating a maze are as follows [19]: 

▪ Assign letters to all cells in the first row to indicate 

their respective sets. 

▪ Randomly establish connections between adjacent 

cells, resulting in the merger of the two connected sets 

into a single set. 

▪ Randomly connect cells to cells in the next row; the 

connected cells will join the set of the cell above. Each 

set must connect at least one cell. 

▪ Assign letters to cells in the new row that are not 

connected to different sets in the existing row. 

▪ Repeat steps two, three, and four until reaching the last 

row. 

▪ On the last row, connect all cells in different sets, 

leaving only one set throughout the entire maze. 

3. Methodology 

The research methodology used in comparing the maze 

levels created by the Backtracking, Kruskal, Prim, and Eller 

algorithms in the maze game is as follows. The first step is 

literature review, where the researcher conducts theoretical 

research on mazes and the algorithms to be used in maze 

generation. The sought-after theories include Maze, 

Procedural Content Generation, Backtracking Algorithm, 

Kruskal’s Algorithm, Prim’s Algorithm, Eller’s Algorithm, 

and A-Star Algorithm. Next is the design phase, where the 

program design for maze comparison, the workflow for 

maze generation using each algorithm, and the workflow for 

the A-Star algorithm used to compare maze complexity are 
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established [20]. The subsequent step is implementation, 

where a program is developed based on the designed 

algorithms for maze generation, using the Unity game 

engine. 

Then, the next step is testing, where the mazes created by 

the algorithms are tested using the A-Star algorithm. The A-

Star algorithm is employed to solve mazes of various sizes 

generated by each algorithm. The A-Star algorithm 

measures the number of steps and time required to solve 

each maze [21]. This is followed by the evaluation phase, 

where a comparison is made between the number of steps 

and time obtained from the previous testing stage. The 

results of testing each algorithm are compared to measure 

the relative complexity of the mazes created by each 

algorithm. 

The final step is report writing, where a detailed report is 

written, describing the entire research process and the 

findings obtained from this study. In this research, a 

program is designed to serve as a platform for algorithms to 

create a maze. Within this program, users can choose the 

size of the maze to be generated and the algorithm to be used 

in maze generation. Users can also observe the maze-

solving process using the A-Star algorithm and obtain 

information about the time required to solve the maze 

created by each algorithm. 

In Fig. 1, the workflow of the Maze Generation scene is 

depicted, which appears after selecting an algorithm from 

the main menu. Within the maze generation scene, the 

program displays three buttons: Menu, Generate Maze, and 

Solve Maze. When the Generate Maze button is pressed, the 

program executes the algorithm previously chosen in the 

main menu to create a maze and displays it on the screen. 

When the Solve Maze button is pressed, the program runs 

the A-Star algorithm to solve the existing maze and displays 

the solved maze and the time taken to solve it on the screen. 

 

Fig. 1. Flowchart Maze Generation Scene 

Fig. 2 depicts the sequential steps of the Backtracking 

method. Prior to the commencement of the algorithm, the 

computer generates cells for the maze according to the 

specified maze size. To begin with, the method employs a 

random selection process to designate one cell as the Start 

cell. The adjacent cells to the selected cell are examined, and 

any unvisited cells among them are identified as potential 

cells for visitation. From the candidate cells, the algorithm 

randomly chooses one cell to visit. This cell is then 

connected to the previous cell, and the previous cell is noted 

as the source. This visiting process is repeated until the 

algorithm reaches a cell that has no more unvisited target 

cells. If there are no more target cells to visit, the algorithm 

will backtrack towards the source cell until it reaches a cell 

with unvisited target cells and then perform the visiting 

process again. If the Backtracking algorithm returns to the 

Start cell and there are no more cells that can be visited, it 

means that all cells in the maze are connected, and the 

algorithm is complete. 

 

Fig. 2. Modified Backtracking Algorithm Flowchart For 

Maze Generation 

Fig. 3 illustrates the workflow of the Kruskal algorithm. 

Before the algorithm begins, the program creates cells for 

the maze based on the desired maze size. Firstly, this 

algorithm assigns different set numbers to all cells and keeps 

track of the number of sets present. The algorithm then 

randomly selects two adjacent cells. If these two cells 

belong to different sets, the algorithm connects them and 
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merges the two sets into one. This random selection and 

merging process are repeated until there is only one set 

remaining throughout the entire maze, indicating that all 

cells in the maze are connected, and the algorithm is 

complete. 

 

Fig. 3. Modified Kruskal Algorithm Flowchart For Maze 

Generation 

The flowchart in Fig. 4 illustrates the workflow of the Prim 

algorithm. Before the algorithm starts, the program creates 

cells for the maze based on the desired maze size. Firstly, 

this algorithm designates all cells as outside cells. The 

algorithm then randomly selects one cell to be the first inside 

cell. All outside cells adjacent to any inside cell will be 

converted into edge cells. The algorithm selects one existing 

edge cell to connect with an inside cell and transforms that 

edge cell into an inside cell. This process of changing and 

merging edge cells is repeated until all edge cells are used 

up, indicating that all cells in the maze are connected, and 

the algorithm is complete. 

 

Fig. 4. Modified Prim's Algorithm Flowchart for Maze 

Generation 

Fig. 4 illustrates the workflow of the Eller algorithm. Before 

the algorithm starts, the program creates a maze based on 

the desired maze size. Firstly, the algorithm initiates the 

process from the first row. It assigns different set numbers 

to cells in this row. Then, random connections are made 

between two cells with different sets, and those sets are 

merged. For each existing set, one cell is connected to a cell 

in the next row. This process of assigning sets, connecting 

cells, and merging sets is repeated until reaching one row 

before the last row. In the last row, sets are continuously 

merged until only one set remains, indicating that all cells 

in the maze are connected, and the algorithm is complete. 
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4. Results & Discussion 

An application was designed to visualize the comparison of 

the backtracking, Kruskal, Prim, and Eller algorithms, based 

on the completed study methods and flowchart design.  

In this research, mazes created by the Backtracking, 

Kruskal, Eller, and Prim algorithms will be tested in various 

sizes. The tested maze specifications include 30 mazes of 

size 5x5, 30 mazes of size 10x10, and 30 mazes of size 

15x15 for each algorithm. The variables taken into 

consideration in these tests are as follows: 

▪ No: The sequence number of the maze. 

▪ Maze Node: The total number of nodes present in the 

maze. 

▪ Maze Length: The exact length of the path from the 

starting point to the ending point. 

▪ Total Step: The number of steps taken by the A-Star 

algorithm to solve the maze. 

▪ Solve Time: The amount of time in seconds taken by 

the A-Star algorithm to solve the maze, measured in 

seconds. 

The program is developed by using C# programming 

language with Unity game engine. The mazes cells and 

passages are shown with simple rectangle sprites with the 

start cell colored green and end cell colored red as shown in 

Fig. 5. 

 

Fig. 5. An example of maze generated by Backtracking 

Algorithm 

The labyrinth solution procedure using the A-Star 

Algorithm is depicted in Fig. 6. Each cell traversed by the 

algorithm will be labeled with a white color and a numerical 

value indicating its cost. The designated route from the 

starting point to the destination will be indicated by a color 

spectrum ranging from green to red. 

 

Fig. 6. An example of maze traversed by A-Star Algorithm 

After the A-Star Algorithm finishes solving the maze, the 

data of the maze will be recorded and shown in the screen 

as shown in Fig. 7. 

 

Fig. 7. Recorded data shown after maze is successfully 

solved 

The comparison of each algorithms is done by generating 30 

mazes of each size of each algorithms. The average solve 

time on each algorithm is then calculated and compared to 

other algorithm in the same size category. The average 

results of the mazes generated is shown in Table 1. 

Table 1. Average results of 30 mazes of each size of each 

algorithms 

Maze 

Average 

Maze 

Length 

Average 

Total 

Step 

Average 

Solve 

Time 

Backtracking 

5x5 
17.9 23.6333 0.2299s 

Backtracking 

10x10 
61.3 98.5333 1.0014s 

Backtracking 

15x15 
114.467 221.233 2.3803s 

Kruskal 5x5 10.7 18.3 0.1719s 

Kruskal 

10x10 
25.467 78.2 0.7854s 

Kruskal 

15x15 
46.333 188.4 1.9880s 

Prim 5x5 9.7333 18.2666 0.1721s 
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Prim 10x10 21.633 67.9 0.6840s 

Prim 15x15 32.167 141.733 1.5078s 

Eller 5x5 12.633 21.4333 0.2041s 

Eller 10x10 30.133 91.2333 0.9223s 

Eller 15x15 47.766 194.033 2.0729s 

 

Fig. 8 displays the comparative analysis of maze-solving 

algorithms in the 15x15 size category. 

 

Fig. 8. Average maze solve time of each algorithm in the 

15x15 size category 

By analyzing the average time it takes for each algorithm to 

solve a maze, we may determine that the ranking of maze 

difficulty is as follows: Backtracking, Eller's, Kruskal's, and 

Prim's. On average, solving backtracking mazes required 

14.82% more time compared to Eller's mazes. On average, 

Eller's mazes required 4.27% longer time to solve compared 

to Kruskal's mazes. Kruskal's mazes required, on average, 

31.84% additional time to solve compared to Prim's. The 

disparity in average solve time is directly proportional to the 

size of the mazes. 

5. Conclusion 

Based on the conducted research, the implementation of the 

Backtracking, Kruskal, Prim, and Eller algorithms has been 

successfully accomplished in generating maze levels. Based 

on the analysis of the complexity of the mazes created by 

each algorithm, it can be concluded that concerning the 

maze-solving time with the A-Star algorithm for a size of 

15x15, mazes generated by the Backtracking algorithm are 

the most complex, with an average time of 2.3803 seconds, 

which is 14.82% greater than the mazes generated by the 

Eller algorithm. The mazes created by the Eller algorithm 

are the second most complex, with an average time of 

2.0729 seconds, which is 4.27% greater than the mazes 

generated by the Kruskal algorithm. The mazes created by 

the Kruskal algorithm are the third most complex, with an 

average time of 1.988 seconds, which is 31.84% greater than 

the mazes generated by the Prim algorithm. The mazes 

created by the Prim algorithm are the least complex, with an 

average time of 1.5078 seconds 
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