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Abstract: Currently, many countries around the world have taken specific steps to gradually replace traditional fossil energy sources with 

renewable energy sources, of which solar energy is an appropriate choice. Power generation using photovoltaic (PV) batteries is becoming 

increasingly important because this is a renewable energy source with many advantages such as no fuel costs, no environmental pollution, 

requiring little maintenance, and does not emit noise compared to other energy sources. However, PV modules when working with 

inappropriate load impedance still have low conversion efficiency, so maximum power point tracking (MPPT) for PV is essential in a PV 

system. The amount of electricity generated depends on the operating voltage of the PV. On the I(V) and P(V) characteristics of PV, there 

exists only one maximum power point (MPP), this MPP point changes depending on radiation and environmental temperature. The MPPT's 

mission is to find and maintain the most efficient working mode. Therefore, many MPPT methods have been studied to determine the 

optimal working point. In this article, we propose to use the Deep Q Network (DQN) algorithm to maximize the energy from solar panels 

when there are changes in radiation intensity and environmental temperature. The results have been simulated and verified on 

MATLAB/SIMULINK, showing the feasibility and quality of the response when applying the new algorithm. 

Keywords: Solar Energy, Deep Reinforcement Learning, Deep Q Network, Maximum Power Point Tracking, Photovoltaic Systems, DC - 

DC converter 

1. Introduction 

Renewable energy is a clean and infinite source of energy 

that nature has given to humans. For example, sunlight, 

flowing water, wind, tides, rain... Using PV panels has the 

disadvantage of a large initial investment. In addition, the 

system also depends on weather conditions, so the 

generation of electrical energy will not be continuous during 

the day, month, and year. Furthermore, the efficiency of 

converting solar energy from PV panels into electrical 

energy is not high [1]. This means that to create large power 

generation capacity, the system needs to use a large area to 

install PV panels. Therefore, we need to study the MPPT 

algorithm so that the power converters operate at the MPP 

of PV panels. The main goal of the MPPT algorithm is to 

achieve high-quality response, accurate tracking, and 

minimize fluctuations due to weather effects. In the 

documents [2-5] the authors did a comparative study on 

MPPT techniques to find the right direction. Among the 

various MPPT algorithms, reports focus heavily on the 

perturb and observe (P&O) method [6-8] and incremental 

conductance (INC) method [9-13]. In [6], a study and 

evaluation of the P&O technique, it is shown that the 

technique suffers from variability, algorithmic complexity, 

design dependence, and increased computational load. In 

the P&O technique, the operating point oscillates around the 

MPP, causing increasing power loss. This oscillation can be 

minimized by reducing the influence of turbulence, but 

achieving MPP will take a long time. In the literature [14-

16] it was proposed to change the step size in this situation. 

Although these methods use simple algorithms. However, 

the results tracking MPP are not fast and accurate. At the 

same time, the methods do not consider the effects of 

radiation intensity and environmental temperature. Some 

proposed methods considering adaptive perturbations are 

presented in research [17-19]. In document [9], the authors 

concluded that using the INC method when the radiation 

intensity changes large and suddenly will give an 

undesirable response. To overcome these disadvantages, 

some intelligent control methods are researched such as 

neural networks [20-29] and fuzzy logic [30-33]. However, 

the limitation of the method is complex calculation and large 

data storage requirements. Besides, MPP continuously 

changes due to the radiation intensity shining on the panels 

and the environmental temperature changing in real time, so 

low-cost hardware processors cannot be used for these 

applications. 

Today, Deep Reinforcement Learning (DRL) is an 

advanced subfield of Artificial Intelligence (AI) and 

Machine Learning (ML). DRL combines Deep Learning 

techniques with Reinforcement Learning algorithms to 
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create intelligent agents capable of making decisions 

through trial and error to optimize long-term goals or 

rewards. This allows agents to continuously learn from 

interactions with complex, dynamic, and uncertain 

environments. The core of DRL lies in using neural 

networks to approximate complex functions and effectively 

estimate the value of actions or states based on 

environmental observations. These capabilities have 

enabled DRL to achieve notable milestones in a variety of 

applications, such as robotics, natural language processing, 

autonomous vehicles, and gaming [34-38]. However, the 

application of DRL techniques to control systems using 

renewable energy is still limited. 

From the 𝐼(𝑉) characteristics, it shows that there is a point 

called MPP, which is the point where when the system 

operates at that point, the PV output power is the largest. 

Weather factors greatly affect PV operations. Among them, 

temperature and solar radiation intensity are typical factors 

that have the strongest influence on 𝐼(𝑉) characteristics, 

leading to changes in the MPP position of PV. In most 

applications it is desirable to optimize the output power flow 

from the PV to the load. To do that requires the system's 

operating point to be set at the MPP point. There are many 

algorithms researched and applied in practice. This article 

introduces the DQN algorithm, develops the algorithm, 

simulates and evaluates the effectiveness of the algorithm in 

controlling the maximum power point of the PV array. 

2. Mathematical Description of Photovoltaic Cells 

The PV battery has an electrical circuit equivalent to a diode 

connected in parallel with a photogenerated power source. 

At stable light intensity, the PV battery has a certain 

working state, the photogenerated current does not change 

with the working state. Therefore, in the equivalent circuit 

it can be considered as a steady current source 𝐼𝑝ℎ. In fact, 

during the fabrication of PV batteries, due to the front and 

back electrode contact, it is also possible that the material 

itself has a certain resistivity. Therefore, in the equivalent 

circuit, it is necessary to add a series resistor 𝑅𝑠 and a 

parallel resistor 𝑅𝑠ℎ to the load 𝑅𝐿. Thus, the equivalent 

circuit of a PV battery is shown in Figure 1.  

 

Fig 1. Equivalent circuit diagram of PV 

The current through the diode is calculated as the following 

equation [29,41]: 

𝐼𝐷 = 𝐼𝑠ℎ (𝑒
𝑞𝑉𝐷
𝑛𝑘𝑇 − 1)  (1) 

According to Kirchhoff's law of electric current, we have: 

𝐼𝑝ℎ − 𝐼𝐷 −
𝑉𝐷

𝑅𝑠ℎ
− 𝐼𝑃𝑉 = 0  (2) 

According to Kirchhoff's law of voltage, we have: 

𝑉𝑃𝑉 = 𝑉𝐷 − 𝑅𝑠𝐼𝑃𝑉  (3) 

where: 𝐼𝐷 is the current through the diode (𝐴); 𝐼𝑠ℎ is the 

saturation current of the diode (𝐴); 𝑞 is the charge of the 

electron (1.602 × 10−19𝐶); k is the Boltzman constant 

(1.381 × 10−23𝐽/𝐾); 𝑇 is the contact layer temperature (𝐾); 

𝑛 is the ideal coefficient of the diode; 𝑉𝐷 is diode voltage 

(𝑉); 𝐼𝑃𝑉 is the PV output current (𝐴). 

From equations (1), (2), and (3), deduce the 𝐼(𝑉) 

characteristic equation of a PV cell. 

𝐼𝑃𝑉 = 𝐼𝑝ℎ − 𝐼𝐷 − 𝐼𝑠ℎ = 𝐼𝑝ℎ − 𝐼𝑠ℎ (𝑒
𝑞(𝑉𝑃𝑉+𝑅𝑠𝐼𝑃𝑉)

𝑛𝑘𝑇 − 1) −

(
𝑉𝑃𝑉+𝑅𝑠𝐼𝑃𝑉

𝑅𝑠ℎ
)  (4) 

From equations (1), (2), (3), and (4) and from the equivalent 

diagram of the PV array, we can build a simulation model 

of the PV array when the temperature and radiation intensity 

change.  

Simulation diagram using PV module A10Green 

Technology A10J-S72-175 has basic parameters measured 

under standard conditions (1000W/m2, 25oC) as shown in 

table 1. 

Table 1. Technical specifications of PV modules under 

standard conditions 

Parameters Symbol Value 

Maximum Power PMPP 175 W 

Cells per module N 72 cells 

Open circuit voltage Voc 43.99 V 

Short-circuit current Isc 5.17 A 

Voltage at MPP VMPP 36.63 V 

Current at MPP IMPP 4.78 A 

Temperature coefficient of Voc KV -0.36 V/ºC 

Temperature coefficient of Isc KI 0.04 A/ºC 

Conducting simulations on MATLAB/SIMULINK 

software, we obtain the 𝐼(𝑉) and 𝑃(𝑉) relationship curves 

of PV as shown in Figures 2-5. 
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Fig 2. I(V) characteristics of PV when solar radiation changes 

 

Fig 3. P(V) characteristics of PV when solar radiation changes 

 

Fig 4. I(V) characteristics of PV when temperature changes 

 

Fig 5. P(V) characteristics of PV when temperature changes 

Thus, the position of the MPP point on the characteristic 

curve is unknown and it always changes depending on 

radiation conditions and temperature. Therefore, an 

algorithm is needed to track the MPP point, which is the 

heart of the MPPT controller. 

3. Deep Reinforcement Learning based MPPT 

Control 

3.1. Introduction to DRL techniques 

Two key concepts lie at the heart of DRL: Reinforcement 

Learning (RL) and Deep Learning (DL). RL, which focuses 

on learning the optimal policy through interaction with the 

environment and DL, uses artificial neural networks to 

generalize and represent complex patterns or relationships 

in data. The combination of these techniques synergistically 

expands the capabilities of both. Because DL offers 

scalability and generalization to large state spaces and 

complex functions. While RL guides the learning process 

through trade-offs between exploration and exploitation, 

allowing agents to coherently improve their performance 

over time. 

A DRL framework typically includes the following 

components: environment, agent, state, action, and reward. 

Environment represents the contextual surroundings in 

which the agent operates. The agent is controlled by AI, 

interacting with its environment through actions and 

learning to make better decisions based on observed 
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changes in state and rewards it receives while performing 

perform specific actions. The agent aims to develop an 

optimal policy that maximizes the cumulative reward (also 

known as profit) over a period or multiple time steps, 

considering both the immediate and future value of each 

take action to achieve better long-term results. 

To accomplish this, DRL techniques often use a 

combination of value-based and policy-based approaches. 

Value-based methods, such as Q-Learning or Temporal 

Differential Learning, aim to estimate the value functions 

associated with each state-action pair. In contrast, policy-

based methods, such as Policy Gradient (PG) or Actor-Critic 

(AC), attempt to learn the optimal policy by explicitly 

optimizing the objective function with respect to expected 

profit. Both approaches have their own advantages and 

challenges, and successful DRL applications often use 

combined techniques to improve their overall performance 

and stability. 

Effectively training a DRL agent often requires overcoming 

a number of challenges. For example, the balance between 

exploration and exploitation is an important aspect of 

maintaining a balance between gathering new information 

about the environment and exploiting existing knowledge to 

optimize benefits. Additionally, learning in large and high-

dimensional state spaces, dealing with partial observability, 

managing confounding or delayed rewards, and transferring 

learned knowledge across tasks are some of the key 

challenges that the DRL algorithm needs to address to 

improve its overall performance and robustness. 

3.2. Markov decision process model 

To use the DRL technique in MPPT control for PV systems, 

we define a Markov Decision Process (MDP) model applied 

to the problem. The Markov decision process is a set of data 

𝑆, 𝐴, 𝑇, 𝑟. In which: 𝑆 describes the operating points of the 

PV system - is a finite set of states; 𝐴 describes the duty 

cycle disturbance, applied on the converter to change the 

operating state of the PV source - which is a finite set of 

actions; 𝑇 is the probability that the action executes the next 

state; 𝑟 is a reward function that represents the direct reward 

for performing the action in the current state. 

The process of implementing the DRL technique in the PV 

system is for the agent to receive a reward when determining 

the correct action, on the contrary, it will receive a penalty 

when choosing the wrong one. In which the reward function 

as well as the state and action space are predetermined. This 

combination includes duty cycle, duty cycle disturbance, PV 

array current and voltage as shown in the literature [42,43]: 

𝑆 = {𝑉𝑃𝑉 , 𝐼𝑃𝑉 , 𝐷, ∆𝐷}  (5) 

The agent causes an action in the perturbed action space of 

the duty cycle ∆𝐷 and is then performed in the environment. 

𝐴 = {𝑎| + ∆𝐷, 0, −∆𝐷}  (6) 

Define reward function: 

𝑟 = 𝑟1 + 𝑟2 + 𝑟3  (7) 

where: 

𝑟1 = {
0  𝑖𝑓 0 ≤ 𝐷 ≤ 1
−1   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (8) 

𝑟2 = {
(

𝑃𝑡+1

𝑃𝑀𝑃𝑃
)

2

   𝑖𝑓 ∆𝑃 ≥ −𝜀

0                 𝑖𝑓 ∆𝑃 < −𝜀
 

 (9) 

𝑟3 =
𝑃𝑡+1

𝑃𝑀𝑃𝑃
  (10) 

We see that the reward function is the sum of the 

components 𝑟1, 𝑟2, 𝑟3. 

where: function 𝑟1: the agent is penalized if it is outside 𝐷; 

function 𝑟2: Agent gets reward if capacity increases, 

otherwise no reward; function 𝑟3: The agent receives a 

higher reward when in the global MPP position than in the 

local MPP position. 

3.3. Deep Q Network algorithm controls MPPT for PV 

arrays 

The Deep Q Network (DQN) algorithm is a variation of Q-

Learning. When the association between states and actions 

is too large, the memory and computation requirements for 

𝑄 will be very large. To solve that problem, we will turn to 

a deep learning network 𝑄 to approximately calculate the 

value 𝑄(𝑠, 𝑎). With the new approach, we will generalize 

the approximation of the Q-value function instead of having 

to record and re-store the solutions. Here, the optimization 

goal of the model is to reduce bias in one step of updating 

the value function. 

Definition of the loss function: 

𝐿(𝑤) = (𝑄′(𝑆𝑡 , 𝐴𝑡) − 𝑄(𝑆𝑡 , 𝐴𝑡))
2
 (11) 

where: 𝑄′(𝑆𝑡 , 𝐴𝑡) = 𝑟𝑡 + 𝛼𝑚𝑎𝑥𝑄′(𝑆𝑡+1, 𝐴𝑡+1) is the target 

Q value; 𝑄(𝑆𝑡 , 𝐴𝑡) is the Q value estimated from the neural 

network 

The optimization problem in DQN is to find a set of neural 

network model parameters 𝑤𝑄  that minimizes the loss 

function. 

𝑤𝑄 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐿(𝑤))  (12) 

The block diagram of the DQN algorithm controlling MPPT 

in the PV array is shown in Figure 6. 
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Fig 6. Structure of DQN algorithm to control MPPT for PV systems 

The DQN agent is built on MATLAB/SIMULINK software shown in Figure 7. 

 

Fig 7. System control block diagram on MATLAB/SIMULINK 

4. Simulation Results 

Conduct simulations to verify the effectiveness of the DQN 

algorithm in two different scenarios. 

Scenario 1: The PV array is simulated for sudden changes 

in radiation intensity, assuming a constant ambient 

temperature of 25 ºC. Initially, the PV array was simulated 

at Ir = 1000 W/m2. Then, at time t = 0.5s, the radiation 

intensity suddenly drops to 850 W/m2. At time t = 1s, the 

radiation intensity drops to 650 W/m2. At time t = 1.5s, the 

radiation intensity is 450 W/m2. During t = 2s to 4s, the 

radiation intensity suddenly increases from 450 W/m2 to 

900 W/m2. During t = 5s to 7s, the radiation intensity drops 

to 400 W/m2. 

 

Fig 8. Characteristics showing changes in radiation 

intensity 
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Fig 9. The power of the PV array when the radiation 

intensity changes 

Scenario 2: The PV array is simulated for sudden changes 

in ambient temperature, assuming a constant radiation 

intensity of Ir = 1000 W/m2. Initially, the PV array is 

simulated at a temperature of T = 25 ºC. Then, at time t = 

0.5s the temperature suddenly increases to 35 ºC. At time t 

= 1s the temperature increases to 45 ºC. At time t = 1.5s, the 

temperature suddenly drops to 15 ºC. During t = 2s to 4s, the 

temperature increases from 15 ºC to 40 ºC. During t = 4.5s 

to 7.5s, the temperature drops to 20 ºC. 

 

Fig 10. Characteristics showing changes in temperature 

 

Fig 11.  PV array power when temperature changes 

From the simulation results of Figure 8-11, it can be seen 

that when the intensity of solar radiation and environmental 

temperature change, the PV system can adhere to MPP in a 

very fast time. We see, MPPT works well with the DQN 

algorithm, the PV array capacity in this case closely follows 

the maximum capacity MPP, or in other words the 

fluctuation range around MPP is small. DQN algorithm 

during MPPT control, responds quickly and accurately, 

especially the current and voltage of PV are stable when 

using this algorithm. Therefore, using the DQN algorithm in 

MPPT control of an independent power-supplied PV system 

is very appropriate, ensuring optimal, continuous and stable 

power supply to the load. 

5. Conclusion 

The article has built a simulation model of a PV array, 

investigating the influence of solar radiation intensity and 

temperature on the generating capacity of a PV array. In a 

PV system, people always want that regardless of weather 

conditions, the power flow from the PV array to the load is 

always maximum, which is the goal of the MPPT control 

problem. Thereby, the article introduces the DQN algorithm 

applied in MPPT control of PV arrays. Simulate the MPPT 

algorithm under changing weather conditions commonly 

encountered in practice to see the effectiveness of the 

proposed method. Based on simulation results on 

MATLAB/SIMULINK, it shows that the MPPT method 

works well when weather conditions change suddenly, the 

maximum power point tracking response is very fast, and 

the over-adjustment is very small. The proposed algorithm 

has advantages such as: small and narrow fluctuations 

around the maximum power point; Minimize transmission 

power loss due to fluctuations around the small maximum 

power point. Therefore, applying the DQN algorithm in 

MPPT control for PV systems will give good results. 
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