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Abstract:  Time series forecasting plays a vital role in advancing fields like finance, economics, meteorology, and stock market analysis. 

It enables the prediction of future values by examining patterns in historical data. Forecasting becomes a great deal with recent strides in 

accuracy propelled by various deep learning techniques. In this study, we introduced a multi-stacked ConvLSTM (MS-CLSTM) model 

designed for precise periodic forecasting of atmospheric temperature indices. The model's performance was evaluated against Long Short-

Term Memory (LSTM) and Temporal Convolution Network (TCN) models across diverse historical input windows and target prediction 

scenarios. Assessment metrics such as Mean Square Error (MSE) and Mean Absolute Error (MAE) were employed to gauge accuracy, 

particularly in predicting twelve-hour periodic temperature projections using a three-day historical temperature window as input. Our 

findings revealed a substantial improvement in performance during validation, showcasing a 42% reduction in MSE and a 20% decrease 

in MAE compared to LSTM. Additionally, when compared to TCN, our proposed model exhibited a 12% decrease in MSE and a 5% drop 

in MAE. Notably, the model consistently demonstrated strong performance across various input window sizes, encompassing historical 

information ranging from two to five days, and in predicting varying target scenarios.  
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1. Introduction 

In the vast landscape of data science, where insights are sought 

amidst the ebb and flow of information, one powerful technique 

stands out – Time Series Forecasting. In striving to make sense of 

sequential data, predicting future trends, and harnessing the 

predictive potential hidden in temporal patterns, time series 

forecasting emerges as a guiding light [1]. 

Time series forecasting plays a pivotal role across diverse 

industries. Beyond energy and finance, its applications extend to 

optimizing retail inventory, enhancing traffic management for 

urban planning, aiding healthcare resource allocation, predicting 

weather patterns for disaster preparedness, optimizing 

manufacturing and supply chains, facilitating human resources and 

workforce planning, managing energy consumption in smart 

buildings, forecasting demand in e-commerce, predicting 

agricultural yields for farmers, and aiding telecommunications 

companies in network planning. Additionally, time series 

forecasting enables electricity companies to formulate effective 

energy policies by anticipating future consumption trends, 

contributing to efficient resource allocation. Similarly, 

corporations leverage accurate predictions of future stock prices to 

mitigate investment risks and make informed financial decisions, 

demonstrating the broad-reaching impact of time series forecasting 

in guiding strategic planning and operational excellence across 

various sectors [2], [3], [4], [5], [6], [7], [8], [9], [10]. Despite 

being a subject of study for decades, time series forecasting 

remains a challenging and active research problem, primarily due 

to the inherent complexity of time series data. Traditional methods, 

such as autoregressive models (AR), moving average models 

(MA), and autoregressive integrated moving average models 

(ARIMA) [11], approach forecasting by assuming linear 

relationships with observed values. However, this simplification 

often falls short in addressing the intricacies of real-world time 

series data. 

The advent of deep learning techniques has significantly impacted 

time series forecasting. Deep neural networks (DNN), in 

particular, have become widely adopted for their ability to capture 

non-linear relationships and temporal dependencies inherent in 

time series data [12]. Among DNN architectures, convolutional 

neural networks (CNN) excel at identifying local patterns in short 

time series subsequence’s, such as seasonality and trend, while 

recurrent neural networks (RNN) specialize in capturing long-term 

or mid-term temporal dynamics of the entire time series [13], [14], 

[15]. 

In practice, the combination of both CNN and RNN has proven 

effective in capturing diverse temporal information for more 

accurate forecasting results. This hybrid approach addresses the 

limitations of solely relying on one architecture. For example, 

researchers in genomics have successfully employed a hybrid 

neural network by stacking CNN with RNN for DNA sequence 

prediction [16]. CNN identifies short and recurring sequence 

motifs representing biological function units, while RNN, 

specifically long short-term memory (LSTM), learns the spatial 

arrangement of these motifs. Elaborating on this approach, the 

hybrid model ensures a comprehensive understanding of both local 

and long-term temporal patterns, enhancing its predictive 
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capabilities. This integration of multiple neural network 

architectures showcases the versatility and adaptability of deep 

learning in tackling the complexities of time series forecasting, 

further emphasizing its potential in diverse fields of study and 

application. The ConvLSTM model combines the benefits of CNN 

and LSTM, enabling the learning of long-term dependencies and 

extraction of time-invariant features, stated by Shi et al. [17]. 

Current Study endeavours to formulate an innovative model 

suggesting a sophisticated neural network architecture featuring 

multiple layers for systematic encoding and structured information 

learning from input data. The benchmark model utilized is a 

complex configuration of Convolutional Long Short-Term 

Memory (ConvLSTM) with multiple stacked layers (MS-

CLSTM). The model’s effectiveness is evaluated through 

experiments employing weather time series dataset. To thoroughly 

scrutinize the efficacy of our developed model, we conducted 

comparisons with leading models from existing literature tailored 

to each specific time series. Our results consistently demonstrate 

the superiority of the proposed methodology, showcasing 

enhanced forecast accuracy in contrast to baseline methods such as 

LSTM and TCN. 

2. Experimental Setup 

2.1 Dataset 

Weather time series dataset recorded at Weather Station, Max 

Planck Institute for Biogeochemistry in Jena, Germany. The Time 

frame considered was 01-01-2016 to 01-11-2023.  The dataset 

consists of 411592 rows across 22 different features of Jena 

climate data such as ‘Date Time’, ‘p (mbar)’, ‘T (degC)’, ‘Tpot 

(K)’, ‘rh (%)’, and so on. In this study, our primary focus was on 

analyzing temperature patterns. We specifically examined the 

historical data, aiming to predict future temperatures. 

Consequently, our attention was directed towards only two key 

attributes: 'Date Time' and 'T (degC)'. 

2.2 Input-label Window Size 

Defining the input-label window size involves configuring 

historical input data and its corresponding output sequence in a 

time series forecasting model, particularly for a univariate multi-

step time prediction. In this context, the term "univariate" signifies 

the model's focus on predicting a single variable or time series, 

while "multi-step" denotes the prediction of multiple future time 

steps. For instance, in a scenario of univariate multi-step time 

prediction with a window size of ‘n’, the model utilizes ‘n’ 

consecutive past values of a single variable as input to predict ‘m’ 

future values. The input sequence has a length of ‘n’, and the 

output sequence comprises the predicted values for the next ‘m’ 

time steps. 

In the weather dataset, observations are recorded at 10-minute 

intervals, yielding six observations per hour and 144 observations 

per day. To forecast the temperature for the next 12 hours, a 

predictive strategy is employed. This strategy involves using a 

window of the last 720 observations (equivalent to the number of 

days, considering the 144 observations per day) as input data. The 

corresponding 72 observations following this window are used as 

labels for training the predictive model. This approach enables the 

model to learn patterns and relationships from the historical 

temperature data, allowing it to make predictions for the 

temperature in the upcoming 12-hour period based on the past 5 

days of information. 

3. Methods Applied 

3.1 Long Short-Term Memory (LSTM) 

LSTM, a specialized recurrent neural network structure, has 

demonstrated stability and efficacy in modeling long-range 

dependencies across various studies [18], [19] when applied to 

general-purpose sequence modeling. A key innovation of LSTM 

lies in its incorporation of a memory cell, denoted as ct, which 

functions as an accumulator of state information. This memory cell 

is accessed, written to, and cleared through self-parameterized 

controlling gates. Upon receiving a new input, the information is 

accumulated in the cell if the input gate it is activated. 

Additionally, the past cell status ct−1 may undergo "forgetting" if 

the forget gate ft is active. The determination of whether the latest 

cell output ct is propagated to the final state ℎt is further regulated 

by the output gate ot. With the symbol '⊙' representing the 

element-wise product, the complete LSTM architecture is defined 

as 

 

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑊𝑐𝑖  ⊙  𝑐𝑡−1 + 𝑏𝑖)                      (1) 

 

𝑓𝑡 = 𝜎 (𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑊𝑐𝑓  ⊙  𝑐𝑡−1 + 𝑏𝑓)                     (2) 

 

𝑐𝑡 =  𝑓𝑡  ⊙ 𝑐𝑡−1 +  𝑖𝑡 ⊙ tanh (𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 +  𝑏𝑐  )         (3) 

 

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑊𝑐𝑜  ⊙  𝑐𝑡 + 𝑏𝑜)                       (4) 

 

ℎ𝑡 =  𝑜𝑡 ⊙ tanh(𝑐𝑡)                                              (5) 

 

3.2 Temporal Convolution Network (TCN) 

The domain of sequence modeling within the realm of deep 

learning has traditionally been dominated by recurrent neural 

network architectures like LSTM and Gated Recurring Unit 

(GRU). S. Bai et al. argued that this conventional perspective is 

outdated, proposing that convolutional networks should be given 

serious consideration as primary candidates for modeling 

sequential data [20]. They demonstrated that convolutional 

networks can outperform RNNs in numerous tasks, overcoming 

typical challenges associated with recurrent models, such as the 

exploding/vanishing gradient problem and limited memory 

retention. Additionally, opting for a convolutional network over a 

recurrent one can yield performance enhancements by enabling 

parallel computation of outputs [21]. 

Lea et al. stated that, TCN possesses unique features, including 

causal convolutions, ensuring no information leakage from the 

future to the past. Additionally, TCN exhibits the ability to 

effectively analyze extensive historical data for future predictions. 

This is achieved through a combination of deep networks, 

complemented by residual layers and dilated convolutions, 

allowing for an in-depth examination of past data to inform future 

forecasts [22]. The TCN adopts a 1D fully-convolutional network 

(FCN) architecture, as introduced by Long et al. [23]. In this 

architecture, each hidden layer maintains the same length as the 

input layer, and zero padding of length (kernel size − 1) is 

incorporated to ensure successive layers retain the same length as 

their predecessors. The fulfillment of this objective relies on the 

utilization of causal convolutions, where the convolution operation 

at time ‘t’ involves only elements from time ‘t’ and earlier in the 

preceding layer.  

A fundamental constraint of basic causal convolution lies in its 
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ability to consider a history size linearly dependent on the 

network's depth. However, the receptive field sizes achievable with 

causal convolution remain limited unless a substantial number of 

layers are stacked. This limitation becomes particularly 

challenging in sequence tasks, given the computational burden 

associated with causal convolution. To overcome these challenges, 

dilated convolutions, as proposed by Yu and Koltun [24], offer the 

advantage of creating an exponentially large receptive field 

without the necessity of an excessive layer count. In a more formal 

context, considering a 1-D sequence input x ∈ Rn and a filter f: {0, 

..., k − 1} → R, the dilated convolution operation F on the 

sequence's element s is defined as 

 

𝐹(𝑠) = (𝑥 ∗𝑑  𝑓)(𝑠) = ∑ 𝑓(𝑖). 𝑥𝑠−𝑑.𝑖
𝑘−1
𝑖=0                                    (6) 

 

Here, d represents the dilation factor, k denotes the filter size, and 

s − d·i incorporates the past direction into the equation. 

To achieve a sufficiently large receptive field size in TCN, it is 

essential to increase both network depth n and the filter size k along 

with the dilation factor d. Empirical observations indicate that an 

effective architecture involves making the network deep and 

narrow, implying the stacking of numerous layers and selecting a 

slim filter size. Additionally, the integration of residual 

connections, as demonstrated in residual networks [25], has shown 

significant effectiveness in training deep networks by utilizing skip 

connections throughout the architecture. A residual block, as 

introduced by He et al. [26], comprises a branch that extends to a 

sequence of transformations F, and the results are summed with the 

input x of the block is defined as 

 

𝑜 = 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 (𝑥 + 𝐹(𝑥))                       (7) 

3.3 Proposed model: MS-CLSTM 

ConvLSTM, a variant of recurrent neural networks, is designed for 

spatio-temporal prediction with convolutional structures integrated 

into both input-to-state and state-to-state transitions. In the context 

of ConvLSTM, the prediction of the future state of a specific cell 

within a grid is influenced by the inputs and previous states of its 

neighboring cells. This is accomplished through the utilization of 

convolutional operators in both the state-to-state and input-to-state 

transitions [17]. 

The primary limitation of LSTM is failing to encode spatial 

information. To overcome this challenge, a distinctive aspect of 

our design involves representing all inputs (X1, ..., Xt), cell outputs 

(C1, ..., Ct), hidden states (H1, ..., Ht), and gates (it, ft, ot) of the 

ConvLSTM as 3D tensors, with the last two dimensions 

corresponding to spatial dimensions (rows and columns). To 

provide a clearer perspective on the inputs and states, one can 

envision them as vectors positioned on a spatial grid. In this 

configuration, the ConvLSTM determines the future state of a 

specific cell within the grid based on the inputs and past states of 

its local neighbors. This is efficiently accomplished by 

incorporating a convolution operator in both the state-to-state and 

input-to-state transitions. The ConvLSTM architecture, where ‘∗’ 

denotes the convolution operator and ‘⊙’ denotes the element-

wise product is defined as 

 

𝑖𝑡 = 𝜎 (𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑖  ⊙  𝐶𝑡−1 + 𝑏𝑖)               (8) 

 

𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑓  ⊙  𝐶𝑡−1 + 𝑏𝑓)            (9) 

 

𝐶𝑡 =  𝑓𝑡  ⊙ 𝐶𝑡−1 + 𝑖𝑡 ⊙ tanh (𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ 𝐻𝑡−1 +  𝑏𝑐 )  

                                                                                                    (10)                 

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ 𝐻𝑡−1 + 𝑊𝑐𝑜  ⊙  𝑐𝑡 + 𝑏𝑜)      (11) 

 

ℎ𝑡 =  𝑜𝑡 ⊙ tanh(𝑐𝑡)                                                (12)           

The proposed model MS-CLSTM, as illustrated in Fig. 1, 

incorporates a sequence of four stacked ConvLSTM layers. The 

ConvLSTM2D layer in this model combines convolutional 

operations with the long short-term memory (LSTM) architecture, 

making it well-suited for handling spatiotemporal data, such as 

sequences of images. The initial ConvLSTM layer applies a 

convolutional LSTM operation with 64 filters and a kernel size of 

(10, 1). Using 'same' padding ensures that the output maintains the 

same spatial dimensions as the input. By setting 

‘return_sequences’ to True, this layer provides the complete 

sequence of outputs for each input sequence. Dropout is 

incorporated to prevent overfitting, while batch normalization aids 

in stabilizing and expediting the training process. 

The second ConvLSTM layer is akin to the first, but with 

return_sequences set to False, indicating that it only yields the 

output for the final timestep of the input sequence. This can be 

advantageous for dimensionality reduction. The third and fourth 

ConvLSTM layers mirror the first one, returning the full sequence 

of outputs. The TimeDistributed Dense layer applies a dense 

operation with ReLU activation to each timestep independently. 

This is commonly employed to process the output sequence of 

preceding layers autonomously. The final dense layer, utilizing 

linear activation, generates the ultimate output. To summarize, the 

ConvLSTM2D layers analyze the spatiotemporal features in the 

input sequences, capturing both spatial and temporal 

dependencies. The amalgamation of convolutional and LSTM 

operations empowers the model to comprehend intricate patterns 

in the input data, and subsequent dense layers map these features 

to produce the final output. The inclusion of dropout and batch 

normalization serves to regularize and stabilize the training 

process. 

 

 
Fig. 1. Proposed MS-CLSTM Model Architecture. 

4. Performance Measures  

To assess the effectiveness of our forecasting methods, we employ 

two distinct Goodness-of-Fit (GoF) measures. The initial measure 

is the Mean Square Error (MSE) is characterized as 
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𝑀𝑆𝐸 =
1

𝑇
∑ (Y𝑡 − 𝑌̂𝑡)

2𝑇

𝑡=1
                                                      (13)   

                        

Given a forecast 𝑌̂𝑡 for a temperature Y𝑡. we calculate the Mean 

Absolute Error (MAE), which assesses a method's average 

absolute error relative to the average absolute error of the seasonal 

naive forecast. The MAE is defined as 

MAE =
1

T
 ∑ (Yt − Ŷt)T

t=1                                                           (14)       

5. Results and Discussion 

To comprehensively assess the behavior of our models, we 

initiated the analysis by employing the LSTM model on our 

dataset. Our exploration entailed executing the model with 

different window sizes, spanning from 2 days to 5 days of 

historical data, predicting the immediate 12 hours into the future, 

and also forecasting outcomes after a 2-day interval. Subsequently, 

we conducted similar experiments with both TCN and ConvLSTM 

models, maintaining the same window sizes. Throughout each 

model iteration, performance is evaluated by measuring key 

metrics, MSE and MAE. Table 1 provides a comprehensive 

overview of MSE and MAE values for three different models 

LSTM, TCN, and MS-CLSTM across multiple training epochs and 

past history lengths.   

Utilizing a 2-day past history as input, the MS-CLSTM model 

consistently enhances its predictive capabilities, showcasing a 

gradual decline in training MSE from 0.253 in Epoch 1 to 0.09 in 

Epoch 4. Simultaneously, the model demonstrates proficient 

generalization, evident in the reduction of validation MSE from 

0.118 to 0.074 across the same epochs, underscoring its adept 

learning and forecasting prowess. Compared to LSTM, MS-

CLSTM achieved a significant 36.21% reduction in validation 

loss, signifying superior performance, and demonstrated a notable 

9.76% reduction when compared to TCN, highlighting its 

effectiveness in the forecasting task. 

Additionally, the MAE loss values for the models reveal distinct 

patterns. The LSTM model exhibited a gradual decrease in both 

training and validation MAE, reaching 0.276 and 0.265, 

respectively. In contrast, the TCN model demonstrated a reduction 

in both training and validation MAE to 0.231 and 0.216, while the 

MS-CLSTM model displayed the lowest MAE values at 0.227 for 

training and 0.202 for validation. These results suggest that both 

TCN and MS-CLSTM models outperformed the LSTM model in 

minimizing absolute errors, with the MS-CLSTM model 

showcasing the most effective learning and generalization 

capabilities, achieving the lowest MAE values for both training 

and validation. 

At the culmination of Epoch 4 with a 3-day past history and 

targeting the next 12 hours, a comparative analysis of MSE and 

MAE losses in the validation set reveals distinctive performances 

among LSTM, TCN, and MS-CLSTM models. LSTM 

demonstrates effective learning with a reduction in validation MSE 

from 0.279 in Epoch 1 to 0.125 in Epoch 4 and a corresponding 

decrease in MAE from 0.396 to 0.256. TCN exhibits improved 

performance, reflected in the reduction of validation MSE from 

0.318 to 0.083 and a decrease in MAE from 0.418 to 0.214. 

Notably, the MS-CLSTM model surpasses both counterparts, 

achieving the lowest validation MSE of 0.073 in Epoch 4, 

signifying superior accuracy. The MS-CLSTM model also 

minimizes absolute errors effectively, with the lowest MAE of 

0.204. MS-CLSTM exhibited a 20.31% reduction in validation 

MAE and 41.60%. reduction in MSE compared to LSTM, 

emphasizing its proficiency in minimizing absolute errors. 

In comparison to TCN, MS-CLSTM demonstrated a 

12.05% reduction in validation MSE and a 4.67% reduction 

in validation MAE, underscoring its effectiveness in both 

accuracy and precision for the specific time series forecasting task. 

These results highlight the advantageous capabilities of the MS-

CLSTM model in achieving superior validation performance 

compared to both LSTM and TCN.  

Fig. 2 illustrates the training and validation Mean Squared Error 

(MSE) loss for the models under two different past history lengths: 

(a) 2 days and (b) 3 days. The visual representation provides a 

comparative view of how each model's MSE loss evolves during 

training and testing across multiple epochs for both past history 

scenarios. Fig. 3 to 5 display sample predictions generated by each 

of the models. 

 

 
 

Table 1. Model Performance Metrics for 2 Days and 3 Days Past History for next twelve hours prediction 

   
MSE MAE 

Past History Model Loss Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 1 Epoch 2 Epoch 3 Epoch 4 

2 days (288 

observations) 

LSTM 
Training 0.453 0.187 0.163 0.126 0.506 0.339 0.316 0.276 

Validation 0.261 0.211 0.157 0.116 0.394 0.355 0.308 0.265 

TCN 
Training 0.324 0.155 0.116 0.1 0.837 0.299 0.258 0.231 

Validation 0.271 0.115 0.089 0.082 0.389 0.257 0.224 0.216 

MS-CLSTM 
Training 0.253 0.125 0.096 0.09 0.486 0.27 0.232 0.227 

Validation  0.118  0.085  0.075  0.074  0.257  0.217  0.208  0.202  

3 days (432 

observations)  

LSTM 
Training 0.401 0.17 0.127 0.096 0.479 0.321 0.275 0.239 

Validation 0.279 0.228 0.158 0.125 0.396 0.342 0.29 0.256 

TCN 
Training 1.586 0.162 0.115 0.101 0.784 0.304 0.256 0.239 

Validation 0.318 0.121 0.095 0.083 0.418 0.259 229 0.214 

MS-CLSTM 
Training 0.721 0.128 0.095 0.087 0.422 0.275 0.233 0.223 

Validation 0.094 0.092 0.08 0.073 0.232 0.225 0.213 0.204 
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                 (a)                                                                                                                    (b) 

Fig. 2. Training and Validation MSE Loss for the models with (a) two day historical data; (b) three day historical data. 

 

 
Fig. 3. Sample predictions using LSTM model with a three-day historical input. 
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Fig. 4. Sample predictions using TCN model with a three-day historical input. 

 

 
Fig. 5. Sample predictions using MS-CLSTM model with a three-day historical input.  
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6. Conclusion 

In the conducted study, a versatile model was proposed by 

incorporating multiple stacked ConvLSTM layers named MS-

CLSTM, establishing a structured encoding-forecasting 

architecture. This model not only successfully addressed the 

challenge of nowcasting but also showcased its adaptability to a 

broader range of spatiotemporal sequence forecasting problems. 

MS-CLSTM, presents a robust foundation for tackling intricate 

challenges in the realms of temporal and spatial forecasting. This 

research opens avenues for further exploration and application of 

these methodologies across diverse domains, promising 

advancements in predictive modeling for future events, complex 

spatiotemporal consequences of climate changes.  
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