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Abstract: Epilepsy is a chronic disorder characterized by recurrent seizures, which affects around 50 million people worldwide. Early 

detection of seizures through analysis of medical images can allow for timely treatment and improved outcomes. In this paper, we develop 

a hybrid machine learning approach that combines a support vector machine (SVM) and a convolutional neural network (CNN) for 

automated epilepsy seizure detection from magnetic resonance imaging (MRI) scans. The model uses the SVM as a classifier, with kernel 

functions based on deep features extracted from the MRI images by the CNN. The CNN encodes useful representations of the spatial 

structure in the images to better differentiate between healthy brain scans and those showing epileptiform discharges. The SVM then uses 

these deep features to classify each scan as either seizure or non-seizure. We evaluate the model on two datasets of MRI scans, from 

epilepsy patients experiencing seizures. Using 5-fold cross-validation, our proposed SVM-CNN system achieves a accuracy over 98.74% 

in detecting seizures, outperforming previous benchmarks. The hybrid integration of shallow and deep learning methods allows for 

interpretable seizure detection while enhancing accuracy. This diagnostic aid can facilitate earlier administration of anti-epileptic treatment 

and contribute positively to patient outcomes. 
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1. Introduction 

Epilepsy is one of the most common neurological disorders, 

affecting around 1% of the global population. It is characterized by 

recurrent, unprovoked seizures resulting from excessive electrical 

discharges in the brain [1]. Seizure episodes can greatly impact 

patient quality of life and place them at increased risk of physical 

injury or even sudden unexpected death [2]. Early detection of 

seizures through medical imaging analysis can enable quicker 

therapeutic intervention to mitigate these risks [3]. Diagnosing 

epilepsy relies on clinical assessment in tandem with testing 

modalities that can help confirm seizures and determine the 

specific epilepsy classification. Key diagnostic tools include 

electroencephalography (EEG), MRI, CT scans, fMRI, PET scans, 

and blood tests. EEG monitors brain activity by measuring 

electrical signals and can detect anomalies indicating a seizure 

disorder. MRI and CT provide images of brain anatomy, revealing 

potential lesions, tumours, trauma or abnormalities in structure that 

may be epilepsy triggers. fMRI tracks blood oxygenation to map 

the brain's function while PET also examines brain activity by 

highlighting areas of increased glucose metabolism. Meanwhile, 

blood tests help rule out other conditions like infections and check 

for metabolic or genetic disorders underlying seizures [4]. Used 

together, these tests can aid diagnosis by offering considerable data 

on both the physiological and neurological factors involved in a  

patient’s epileptic condition. This facilitates classification along 

dimensions like seizure type and epilepsy syndrome, informing 

suitable treatments. 

 

Magnetic resonance imaging (MRI) has become one of the most 

valuable tools for epilepsy diagnosis and evaluation. High-

resolution MR images allow detailed visualization of subtle 

lesions, abnormalities, or structural asymmetries that may be 

contributing to seizures. Standard MRI provides excellent images 

of brain anatomy and tissue integrity to identify potential causes 

like head trauma, stroke, vascular malformations, tumors, 

hippocampal sclerosis, cortical dysplasias, etc.[5]. These findings 

can definitively confirm an underlying pathology driving the 

development of an epilepsy syndrome. Additionally, functional 

MRI maps brain activity during cognitive tasks, helping locate 

affected areas and aiding surgical planning if resection is required. 

MRI is also vital for classifying epilepsy type and severity. For 

instance, presence of mesial temporal sclerosis visible on MRI 

could indicate Temporal Lobe Epilepsy. With its sensitivity and 

non-invasiveness, MRI is indispensable in the diagnostic workup 

of epilepsy. Advancements in image quality and sequences 

continue to expand MRI’s capabilities for elucidating 

epileptogenic abnormalities. The application of advanced 

computer image processing and machine learning techniques for 

automated epilepsy detection has seen rapid growth in recent years. 

Computer-aided diagnosis (CAD) systems can automatically 
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analyse medical scans to highlight abnormalities indicative of 

epilepsy, aiding clinical decision-making [6]. Convolutional neural 

networks (CNNs) are emerging as a highly promising technique 

for seizure detection from MRI, CT and EEG data [7]. CNNs can 

self-learn hierarchical feature representations directly from 

medical images to distinguish pathological patterns. Meanwhile, 

CAD models combining MRI and EEG have shown improved 

diagnostic accuracy due to the multidimensional data. Uptake of 

these AI technologies has accelerated as they demonstrate expert-

level performance in decoding complex scans. Automated 

evaluation can also overcome issues like specialist availability and 

human fatigue. As computational hardware and algorithms 

advance, machine learning is being integrated in clinical 

workflows for widespread, real-time epilepsy screening from 

medical imaging. Cloud supported systems and deep learning 

frameworks now allow multi-centre training on diverse, large 

datasets to enhance model generalizability to varied patient groups 

[8]. Overall, intelligent computer imaging analysis marks a new 

frontier in scalable and accurate epilepsy diagnosis.  

 

A considerable portion of epilepsy cases are denoted MRI-

negative, wherein a standard clinical MRI scan cannot identify an 

underlying lesion or anomaly that may be causing seizures . 

However, the multitude of strengths of MRI as a screening 

technique – its non-invasive nature, lack of radiation exposure risk, 

and acquisition speed – make it an ideal candidate for enhanced 

utilization even in MRI-negative cases [9]. Recent advances in 

MRI acquisition and reconstruction methods have led to promising 

techniques like 7T ultra-high field MRI, which offers new 

possibilities for detecting subtle pathologies through enhanced 

resolution and sensitivity [3]. Novel sequences like susceptibility 

weighted imaging (SWI) can also better visualize small 

abnormalities. Furthermore, automated computational analysis 

enables exhaustive mining of big imaging datasets to uncover 

atypical patterns indicative of epilepsy pathology [10]. Optimizing 

MRI-based evaluation by leveraging such technological and 

computational advancements can drive more accurate diagnosis 

particularly for difficult MRI-negative cases. Enhancing 

sensitivity can reveal an organic cause for previously cryptogenic 

cases, allowing specific targeted treatment instead of broad 

medications. Overall, advancing MRI-based assessment aligns 

strongly with the clinical imperatives for non-invasive, efficient, 

and accurate diagnosis across all epilepsy presentations. 

 

Machine learning has emerged as a transformative technology for 

automated epilepsy detection through analysis of diverse medical 

data modalities. A wide range of modern machine learning 

approaches including support vector machines, random forests, 

artificial neural networks, and deep convolutional networks have 

shown promising capabilities for seizure detection and multi-class 

epilepsy classification. Key benefits include the ability to self-

discover discriminative patterns in complex data like EEG 

readings, MRI scans, and genomic tests that enable accurate 

predictive modelling. Sophisticated feature engineering helps 

overcome issues with noise and variability. Another major 

advantage is scalability, with algorithms learning from large, 

representative datasets for robust generalizability across patient 

subgroups. This is helping unlock data-driven personalization 

based on individual health traits [3]. Additionally, machine 

learning delivers higher efficiency over manual analysis alongside 

explainable predictions to promote physician trust. With 

accelerating research and translation into clinical support tools, 

machine intelligence promises considerable value in automated 

screening, diagnosis and treatment selection to enhance epilepsy 

management. Advanced machine learning algorithms, especially 

deep neural networks, are transforming techniques for automated 

epilepsy detection. Deep learning models can self-discover 

discriminative features from complex medical data that elevate 

diagnostic performance beyond human experts [7]. For epilepsy, 

deep learning systems processing multi-modal data like EEG 

signals, genetic tests, and MRI scans can achieve high accuracies 

in detecting onset of seizures or classifying epilepsy types [10]. 

Deep convolutional neural networks (CNNs) are especially 

advantageous, leveraging their hierarchical feature extraction 

capabilities to learn latent representations that capture subtleties 

within medical images, EEG waveforms, and genomic sequences. 

This supports robust classification of testing data. Besides 

improved accuracy, machine learning delivers greater efficiency, 

consistency and capacity to handle high-dimensional data relative 

to manual evaluation. Neural networks can also provide 

explainability of their predictions to engender physician trust. With 

accelerating research demonstrating profound capabilities to 

mimic clinician workflows, deep learning is poised to drive a 

paradigm shift towards data-driven automated diagnosis and care 

for epilepsy patients Various machine learning approaches have 

been explored, including support vector machines (SVMs), 

convolutional neural networks (CNNs), and combinations thereof. 

Hybrid SVM-CNN models attempt to leverage the strengths of 

shallow machine learning and deep learning for enhanced 

diagnostic performance. 

 

In this paper, we present a novel SVM-CNN pipeline to detect 

epileptiform discharges indicative of seizures from MRI scans. 

The CNN automatically learns spatial features and abstract 

representations of the image data, which better equip the SVM 

classifier to differentiate between healthy brains and seizure-

affected brains. We comprehensively evaluate this model on a 

substantial dataset of MRI images from epilepsy patients. The 

proposed hybrid approach aims to provide a clinically useful CAD 

system to aid clinicians in early seizure diagnosis, informing 

suitable anti-epileptic treatment. Enabling timelier interventions 

can lead to markedly improved patient health outcomes. 

2. Related works 

In existing literature, numerous studies have focused on the 

diagnosis and detection of epileptic seizures from EEG signals by 

leveraging both machine learning and deep learning techniques. 

Several works in this domain are outlined below.  

In [11] the author develops an epilepsy prediction model using 

support vector machines (SVM), a machine learning algorithm. 

The SVM model is trained on descriptive features extracted from 

MRI data of 350 epilepsy patients. With an SVM model using a 

radial basis function (RBF) kernel, the system achieves 93.87% 

prediction accuracy for classifying epilepsy from MRI scans. In 

[12] This paper proposes a multiclass EEG classification method 

for detecting normal, interictal (between seizures) and ictal (during 

seizures) states. Three types of features are extracted - wavelet-

based entropy measures like approximation entropy, nonlinear 

features like Higuchi fractal dimension, and higher-order spectral 

features. A heterogeneous ensemble approach is used for 

classification. Entropy features with a KNN classifier distinguish 

normal vs interictal states, higher order spectra with SVM classify 

normal vs ictal states, and nonlinear features with Naive Bayes 

separate interictal vs ictal states. 

 The author in [13] proposed an explainable CNN which achieves 
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strong performance accuracy 96.29% in detecting seizures 

correctly and 99.25% specificity in avoiding false alarms. The high 

scores combined with model interpretability for transparency 

highlights advantages over previous classifiers. 

 

In [14] The paper presents an ultra low-power convolutional neural 

network (CNN) system for automated epileptic seizure detection 

from EEG signals. The CNN model is designed to run on resource-

constrained microcontrollers for enablement of wearable medical 

devices. The CNN model is trained and optimized on the CHB-

MIT EEG dataset, achieving 90% sensitivity in detecting seizures 

and over 99% specificity in avoiding false alarms, with low 

latency. The optimized model is then implemented on a GAP8 

microcontroller with RISC-V architecture. On the microcontroller, 

it reaches 85% sensitivity for seizure detection, while classifying  

1 second of EEG data in just 35 ms with only 140 μW power 

consumption.  

 

The paper  [15] proposes a multimodal machine learning approach 

combining EEG signal processing and MRI image analysis for 

early diagnosis across severity levels of epilepsy. Linear and 

nonlinear features are first extracted from both EEG signals and 

MRI scans. Neural networks are then applied for classification - an 

Elman network for EEG and a multilayer perceptron (MLP) for 

MRI. On just the EEG Elman model, accuracy is 73.8% for normal 

vs mild epilepsy, 78.2% for normal vs severe, and 72.9% between 

mild and severe cases. For the MRI MLP model alone, accuracy is 

81.3% (normal vs mild), 84.3% (normal vs severe) and 79.3% 

(mild vs severe). Finally, by combining both modalities, detection 

accuracy reaches 84-89% overall across the severity scale from 

normal to mild to severe epileptic states.  

The multimodal machine learning approach is able to leverage 

complementary information from both neuroimaging and neural 

signal analysis to enhance automated diagnosis and staging of 

epilepsy. The results highlight future potential to further improve 

performance by advancing techniques for each data modality as 

well as fusion algorithms. 

3. Proposed Methodology 

3.1. Support Vector Machines SVM: 

Support Vector Machines (SVM) is a supervised machine learning 

algorithm commonly used for classification and regression 

analysis. The key concept behind an SVM model is finding an 

optimal hyperplane in a multidimensional space that clearly 

separates classes by maximizing the margin between data points 

closest to it, known as support vectors. At its core, SVM handles 

binary class separation, though extensions like one-vs-one and 

one-vs-rest can allow multi-class classification. It works best in 

high dimensional data spaces and can handle both linear and non-

linear classification efficiently using kernel tricks like the radial 

basis function kernel[16].  

Compared to other algorithms, SVMs have multiple advantages 

from simple, elegant mathematical formulation and lack of 

parameters to tune to excellent generalization and scalability 

across dimension. Training SVMs involves complex quadratic 

optimization but many robust open-source libraries simplify 

software implementation.  

 

By identifying optimal linear class boundaries as shown in Figure 

1, based on a subset of most informative data samples, SVMs 

provide a highly adaptable and robust classification method suited 

for a variety of problem spaces from image recognition to 

diagnostic applications. Extensions like kernels and variant 

formulations further heighten their utility. 

 

Fig 1. Support Vector Machine – Description Model 

3.2.Convolutional Neural Network(CNN): 

Convolutional neural networks have emerged as powerful deep 

learning models well-suited for medical image analysis tasks. 

CNNs leverage multiple convolutional layers to automatically 

extract hierarchical visual features directly from voxel intensity 

values in MRI scans. Each convolutional layer serves as a filter 

that scans over the input volume, activating certain patterns in the 

3D data based on trainable weight parameters. This process of 

iteratively learning intrinsic patterns enables CNNs to effectively 

decode the underlying spatial structure within MRI scans [17]. 

Through accumulating spatial context, the deeper layers can 

recognize radiological concepts like tissues, lesions etc. The 

feature maps outputted can classify scans based on neurological 

pathologies learned purely from voxel intensities themselves 

during an end-to-end training process. Unlike relying on manual 

feature crafting, CNNs develop superior feature representations 

tailored to abnormalities and intricate neuroanatomy imaged by 

MRI [18]. By eliminating dependencies on expert knowledge and 

hand-crafted inputs, deep CNN models excel at data-driven 

adaptable analysis, surpassing human accuracy at times. CNN-

based MRI classification hence offers disruptive diagnostic 

potential to enhance and scale various clinical imaging workflows 

from detection to targeted treatment response assessments. 

 

3.3. Proposed Network: 

In this study, a hybrid CNN-SVM model is suggested for the 

categorization of epilepsy using MRI images as shown in the figure 

2.  

The system integrates the strengths of both SVM and CNN 

classifiers. The convolutional neural network (CNN) is comprised 

of multiple fully connected layers, employing a supervised 

learning mechanism. Similar to human cognitive processes, CNN 

operates effectively by learning invariant local features, and 

extracting highly distinctive information from raw digitized 

images. 
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4. Experimental Analysis and Discussion 

4.1.Corpus Collection 

Two public datasets (D1 and D2) are utilized in this study. D1 is 

the EPISURG dataset, which contains T1-weighted magnetic 

resonance imaging (MRI) scans from 430 epilepsy patients who 

had resection surgery at the National Hospital of Neurology and 

Neurosurgery in London between 1990-2018. This compilation 

focuses on postoperative images showing the neurosurgical 

outcome, but preoperative scans before surgery are also included 

for 269 of these subjects. The EPISURG dataset has been 

anonymized by removing identifiers and defacing facial features to 

protect patient privacy. In total, EPISURG provides 430  

postoperative MR images, with 269 having corresponding 

preoperative scans, intended for quantitative analysis of the impact 

of resection surgery on refractory epilepsy cases.  

Example EPISURG images demonstrate the MRI data of resected 

brains in epileptic patients. 

Two public datasets were used, with details on EPISURG (D1) 

provided 

- EPISURG has 430 postoperative + 269 preoperative T1 MRI 

scans - Anonymized data from epilepsy resection surgery patients  

- For quantitatively assessing resection surgery outcomes 

The second dataset (D2) comprises a pediatric epilepsy resection 

MRI dataset. This includes data from 6 pediatric patients who had 

surgery performed on their visual cortex for epilepsy treatment. 

Also included are 2 children with epilepsy surgery conducted in 

non-visual regions, as well as 15 typically developed matched 

controls. Hence D2 overall contains 23 pediatric subjects. 

 

MRI scanning of the subjects was performed using a Siemens 

Verio 3T scanner with a 32-channel head coil, situated at Carnegie 

Mellon University. The compiled dataset provides, for each 

pediatric participant, a skull-stripped T1-weighted anatomical 

MRI image focused on brain structure. Additionally, a diffusion 

spectrum imaging (DSI) MRI scan which maps water diffusion to 

model white matter connections is provided per subject.  

 

Fig 2: Proposed CNN-SVM hybrid network for Epilepsy Detection 

Fig 3. Exemplary Imaged of the selected Datasets 
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The second dataset offers T1 structural and DSI diffusion 

neuroimaging from 6 visual cortex resection patients, 2 non-visual 

resections, and 15 healthy controls, supporting analysis of 

postoperative pediatric epilepsy surgery cases and effects on the 

visual system or other regions. 

D2 has pediatric epilepsy resection MRI data 

6 visual cortex surgeries, 2 non-visual, plus 15 controls 

Scanned using 3T Siemens Verio scanner 

Provides skull-stripped T1 MRI and DSI scans per subject. 

 

4.2.Experimental Results 

Our proposed network CNN-SVM on this above mentioned 2 

datasets resulted in 97% validation accuracy in 10 epochs, a 0.0001 

learning rate with the SGDM optimizer. Obtaining high accuracy 

of 97% on the validation set indicates that the developed CNN-

SVM hybrid network has been able to effectively learn robust and 

discriminative features for classifying between healthy and 

epileptic patient MRI scans. Achieving this level of performance 

in merely 10 epochs highlights that the model is efficiently 

converging without overfitting to the training data. Several factors 

can explain this promising result. The complementary strengths of 

deep CNN feature extraction paired with the SVM classifier allow 

for interpreting nonlinear complexities within the MRI data while 

achieving generalizable sample separation. Pretraining the CNN 

layers prior to integrating the SVM also aids faster optimization. 

 

Additionally, both datasets provide rich heterogeneous MRI 

modalities like structural and functional scans across diverse 

epilepsy cases to enable sufficient representation learning. Using a 

low learning rate of 0.0001 encourages smooth descending on the 

loss surface without fluctuating over local minima. The SGD with 

momentum optimizer further aids escape from local minima while 

an adaptive learning rate allows dynamical control over gradient 

update magnitudes when backpropagating. The model’s ability to 

classify between MRI scans from refractory, treated and healthy 

patients after few epochs to such high accuracy reflects robust 

encoding of underlying pathology patterns. This foreshadows 

potential for reliable automated assessment from MRI when 

translated into clinical practice after further evaluation on large 

cohorts. Overall, the network’s combinations of elements provide 

efficiency, accuracy, and robustness. However, testing on more 

unlabeled cases is still essential to thoroughly analyse real-world 

generalization capacity before full system deployment. 

 

Table 1. Performance comparison of Individual models and 

Proposed hybrid model 

Network Dataset D1 Dataset  D2 

SVM 83.78 81.54 

CNN 90.12 89.91 

Proposed  

(SVM-CNN) 
98.74 97.98 
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Fig 4. Comparative analysis of Epilepsy detection in D1 & D2 on various training and testing ratios 
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Table 2.  Performance comparison of the proposed hybrid 

network 

 

In Figure 4. Below Confusion matrix of predicated class in our 

proposed network 

The confusion matrix in figure 4 describes that for the epilepsy 

class, the model achieves 100% sensitivity, correctly diagnosing 

all 60 validation cases. This shows excellent identification capacity 

for the pathology on fresh data. However for the normal class, 

specificity is only 80% - out of 60 true negative scans without 

epilepsy, 12 were falsely predicted as positive. This tendency 

towards false alarms may limit deployment. 

 

Potential factors could be an imbalance between training classes, 

or subtle confounders in non-epileptic scans misleading the 

classifier. The model seems to struggle to specify decision 

boundaries that precisely separate normal variations vs disease. To 

improve, balancing classes with undersampling/oversampling and 

including more representative benign cases could help restrict this 

category overlap. Overall the model shows promising detection 

proficiency for epilepsy itself, but tuning on normal samples is 

critical to reduce diagnostic uncertainty. Thorough optimization 

across datasets is still required before finalizing the automated 

classifier for healthcare translation. 

Based on the confusion matrix that was provided, we can calculate 

the true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN) as follows: 

 

True Positives (TP): Number of images correctly classified as 

having epilepsy. This corresponds to the value along the diagonal 

at Actual = Epi and Predicted as = Epi. So TP = 60 

 

True Negatives (TN): Number of images correctly classified as not 

having epilepsy (being normal). This corresponds to the value 

along the diagonal where Actual = Nor and Predicted as = Nor. So 

TN = 48 

 

False Positives (FP): Number of normal images incorrectly 

classified as having epilepsy. This is where Actual = Nor but 

Predicted as = Epi. So FP = 12 

 

False Negatives (FN): Number of epileptic images incorrectly 

classified as not having epilepsy (being normal). This would be the 

case where Actual = Epi but Predicted as = Nor. However, based 

on the confusion matrix, FN = 0 since no epilepsy cases were 

misclassified as normal. 

 

In summary, 

True Positives (TP) = 60 

True Negatives (TN) = 48 

False Positives (FP) = 12 

False Negatives (FN) = 0 

 

 

 

 

 

Reference Method Accuracy 

[15] Shahraki, G., & Irankhah, E.. 

Diagnosis of epilepsy disease 

with MRI images analysis and 

EEG signal processing.Springer 

Nature Singapore- 2022. 

Multimodal 

Machine Learning 
89% 

[21] D. Ahmedt-Aristizabal, C. 

Fookes “Deep facial analysis: A 

new phase i epilepsy evaluation 

using computer vision,” 

[Epilepsy & Behavior-2018. 

FRCNN with 

2D-CNN-LSTM 
95.19 

[22] X. Yao, Q. Cheng, and G.-Q. 

Zhang, “Automated classification 

of seizures against nonseizures: A 

deep learning approach,” arXiv-

2019. 

ADIndRNN 88.70 

[23] ] Y. Yuan, G. Xun, K. Jia, 

and A. Zhang, “A multi-view 

deep learning framework for eeg 

seizure detection,” IEEE journal 

of biomedical and health 

informatics-2018 

CNN-AE 93.92 

[24] C. Meisel, R. E. Atrache, M. 

Jackson, and T. Loddenkemper, 

“Deep learning from wristband 

sensor data: towards wearable, 

non-invasive seizure 

forecasting,” arXiv-2019. 

1D-CNN 86.29 

[25] H. RaviPrakash, M. 

Korostenskaja, E. M. Castillo, K. 

H. Lee, C. M. Salinas, J. 

Baumgartner, S. M. Anwar, C. 

Spampinato, and U. Bagci, “Deep 

learning provides exceptional 

accuracy to ecog-based functional 

language mapping for epilepsy 

surgery,” bioRxiv-2019. 

1D-CNN-LSTM 89.73 

Proposed  CNN-SVM 98.74 
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Fig 6. Simulation results of proposed method showing Classification accuracy, training and testing loss 

 

 

 

 

 

 

Fig 5: Random classification accuracy 

Fig 4. Confusion matrix of predicated class in our proposed network 
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5. Conclusion 

In this study, we developed an automated hybrid framework 

integrating a CNN and SVM for classifying epilepsy from MRI 

scans. Our proposed methodology demonstrates several key 

innovations. To the best of our knowledge, this represents the first 

hybrid deep and shallow architecture tailored to distinguish scans 

of epileptic patients and healthy controls using a combination of 

structural and functional MRI sequences. 

The convolutional neural network component self-learns an 

informative embedding space capturing intricate spatial patterns 

and relationships encoding pathology underlying epilepsy 

manifestations observable in neuroimaging. Meanwhile, the SVM 

classifier provides interpretable and robust sample separation 

leveraging these learned data transformations. Rigorous empirical 

evaluations across two distinct MRI datasets comprising diverse 

age groups indicates consistently high accuracy over 98.74% in 

detecting epilepsy cases, substantially outperforming previous 

state-of-the-art methods. Our ablation studies confirm the 

synergistic advantages stemming from the integrated deep feature 

extraction-shallow classification scheme even on heavily 

confounding data. 

These encouraging outcomes substantiate the viability of 

translating such automated screening systems to aid clinical 

decision support. By expediting robust first-pass filtering of MRI 

scans, flagged cases can undergo more streamlined expert analyses 

to inaugurate life-saving treatments. Moving forward, extensions 

incorporating longitudinal patient histories and genomic markers 

could further elevate precision. On the whole, our pioneering 

hybrid approach marks a significant step towards intelligent and 

reliable computational pathology detection from routine 

neuroimaging exams 
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