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Abstract: This research paper presents a groundbreaking approach to addressing the societal problem of physical abuse, which affects 

various demographic groups, including children, women, and older people, especially in domestic and workplace environments. The 

complexity of these situations, especially when the abuser and victim know each other, highlights the need for an advanced solution. The 

paper introduces a novel hybrid deep-learning framework to detect and prevent physical abuse and address this. The framework utilizes 

human action recognition, leveraging a 3D convolutional neural network (CNN) to meticulously analyze human actions in such contexts. 

The deep learning model is further enhanced by employing transfer learning techniques with ResNet-18 and GoogleNet models. These 

models are trained using the UBI fight and UCF crime datasets, which are public resources for video analysis, to identify instances of 

physical abuse. A significant innovation in this model is the transformation of 2D kernels into 3D kernels, which allows for an improved 

extraction of features in both temporal and spatial dimensions from the video data. Additionally, a bilinear Long Short-Term Memory 

(LSTM) layer is integrated into the model to capture more extended material information, thus improving the analysis of human actions. 

The results of this hybrid model in detecting physical abuse are promising, showing marked improvements in performance metrics due to 

the shift from 2D to 3D kernels and the inclusion of bilinear LSTM. 

Keywords: Deep Learning, Human Action Recognition, 3D Convolutional Neural Networks, Long Short-Term Memory (LSTM), Physical 

Abuse Detection, Transfer Learning, Video Surveillance Analysis, Performance Metrics in Machine Learning. 

 

1. Introduction 

Throughout history, the expression of anger, an emotion 

deeply rooted in human experience, has often manifested in 

physical ways across diverse cultures. Unfortunately, this 

tendency to express anger physically results in harm, 

particularly to vulnerable groups. This includes severe 

injuries and lasting psychological impacts. According to 

World Health Organization data, instances of physical abuse 

directed at women and children are notably prevalent in 

countries like the United States and India. The issue of 

violence extends to educational settings such as schools and 

colleges, as well as other institutions like childcare centers 

and hostels. While surveillance systems, often through 

CCTV, can detect such incidents, they require human 

oversight for effective intervention. This necessitates the 

development of more sophisticated, intelligent surveillance 

technologies. 

The challenge lies in accurately identifying human 

behaviors, an intricate task that has become a key area of 

focus in fields like Machine Learning and Computer Vision. 

Algorithms rooted in computer vision [1] face challenges in 

accurately capturing the nuances of complex human actions 

within a given scene. Recognizing these actions involves 

more than just analyzing the movement patterns of body 

parts [2]; it also requires understanding the context, cultural 

factors, and the collective behavior of all individuals 

present. This makes the process of extracting relevant 

features particularly complex [3]. 

Deep Learning (DL) has emerged as the most effective 

method for tackling this complexity. The evolution of GPU 

architecture and the vast amounts of video data generated by 

the rise of social media [4] have significantly advanced DL's 

capabilities. Additionally, the development of depth-

sensing camera technologies has been revolutionary, 

enabling the capture of detailed 3D structures and postures 

of the human body, thus offering a more comprehensive 

view of human actions. 

The advancements in artificial intelligence, particularly with 

Deep Learning (DL) algorithms, have been transformative, 

propelling Convolutional Neural Networks (CNNs) to the 

forefront as robust tools for tasks like feature extraction and 

classification [5]. CNNs are distinguished by their ability to 

autonomously learn high-level features from raw data, 

drastically reducing the need for complex manual feature 

engineering. This capability is a significant breakthrough, 

streamlining processes that were once time-consuming and 

expertise-dependent. CNNs, inspired by the human visual 

cortex, excel in interpreting visual data, making them highly 

effective in various computer vision domains. Their 

architecture, consisting of layers of convolutional filters, is 

adept at identifying patterns, edges, and shapes in images.  

This proficiency extends beyond visual tasks, finding 
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applications in natural language processing and medical 

image analysis. In healthcare, for instance, CNNs are 

revolutionizing medical diagnostics by analyzing images 

such as X-rays and MRIs with remarkable accuracy. The 

widespread application of CNNs across these diverse fields 

marks a substantial technological leap, enhancing our ability 

to understand and respond to complex visual information 

and human actions and opening up new avenues for 

innovation and application. 

2. Literature Survey 

The study of human action recognition is increasingly 

prominent in computer vision research. The field, known as 

Human Activity Recognition (HAR), aims to identify and 

categorize human activities like jumping, playing, 

punching, walking, and running in various forms of media 

such as images and videos. Vision-based methods are 

particularly noted for their effectiveness in capturing 

temporal actions, a point emphasized by Yanmin [6]. Yet, 

the consistent and accurate recognition of human behavior 

in video format poses a substantial challenge. 

Recent advancements include a novel algorithm by Waheed 

[7], achieving an impressive 98% accuracy on test samples. 

This result was obtained by training with a specified batch 

size and learning rate, employing the Adam optimizer. HAR 

now incorporates various data types, from skeleton and 

point cloud data to infrared, depth, and even radar signals, 

as explored in Zehua's work [8]. Thomas [9] found 

particular strengths in audio data for temporal sequence 

localization and acceleration data for refining HAR, while 

radar data has enabled HAR even through walls. 

Ganesh [10] introduced the concept of Skepxels, utilizing 

CNNs to create intricate connections between skeletal 

joints. This approach is complemented by research in 

robotic engineering, which incorporates diverse human 

skeletal datasets [11]. Kim [12] tailored a strategy for virtual 

sports training, focusing on precise 3D skeleton data 

collection applied to sports like boxing and tennis. Nouray's 

survey [13] discusses various technologies in sports-related 

HAR. 

Neziha et al. [14] proposed a hybrid DL model for 

recognizing human behavior, emphasizing the significance 

of feature classification. This model was tested on the UCF 

sports action dataset, and the Gaussian Mixture Model was 

combined with the Kalman Filter and GRU, achieving 

96.3% accuracy on the KTH dataset. There has also been 

research on learning interaction patterns directly from video 

data [15], with recent studies employing CNN-based 

techniques [16-20] to analyze individual poses and postures. 

In medical imaging, Raza et al. [21] developed 

DeepTumorNet, a CNN model for brain tumor 

classification, using a comprehensive dataset of CE-MRI 

scans. Similarly, Ritu Tandon et al. [22] introduced a hybrid 

DL model, VCNet, for lung cancer nodule detection in CT 

scans using various pre-trained CNN models. 

Hnamte [23] proposed a novel two-stage DL model 

combining Auto-Encoders and LSTM for attack detection in 

cyber security, showing promising results. Similarly, 

Khatan et al. [29] developed an effective Intrusion Detection 

System using CNN and DNN, comparing their model's 

effectiveness with others in the field.  

In a series of studies exploring the applications of LSTM 

(Long Short-Term Memory) networks, various researchers 

have demonstrated the versatility and effectiveness of this 

technology in different domains. Lindemann et al. [25] 

conducted a comparative analysis of LSTM networks for 

anomaly detection, evaluating their performance against 

other machine learning and deep learning models. Musleh 

et al. [26] innovatively combined LSTM with Stacked 

Autoencoders to develop a system for Automatic 

Generation Control in power grids, showcasing the 

adaptability of LSTM in energy sector applications. 

Further expanding the scope of LSTM's applications, 

Mushtaq et al. [27] introduced a hybrid Intrusion Detection 

System (IDS) model that synergizes Auto-Encoders with 

LSTM, achieving a remarkable 89% accuracy in classifying 

cyber-attacks. This model underscores the potential of 

combining LSTM with other neural network architectures 

for enhanced cybersecurity measures. 

In the realm of the Internet of Things (IoT), Mahmoud et al. 

[28] developed an Auto-Encoder LSTM (AE-LSTM) model 

tailored for detecting anomalies. Notably, their model 

achieved high levels of accuracy without the need for 

extensive data pre-processing, indicating the efficiency and 

robustness of AE-LSTM in handling IoT-related data. 

Altunay and Albayrak [20] also proposed a hybrid model 

integrating CNN (Convolutional Neural Networks) with 

LSTM for IDS. This model demonstrated significant 

accuracy in binary and multi-class classifications, 

highlighting the effectiveness of combining CNN's spatial 

analysis capabilities with LSTM's temporal data processing 

strength in creating advanced IDS solutions. These diverse 

applications illustrate the wide-ranging potential and 

adaptability of LSTM networks in addressing complex 

challenges across various technological fields. 

Khatan [29] introduced a hybrid DL model combining 

CNN, LSTM, and a self-attention algorithm, significantly 

enhancing predictive capabilities across various datasets. 

3. Methodology 

A deep learning (DL) model incorporating transfer learning 

was developed, and a pre-trained model was utilized to 

optimize it for a specific dataset. This approach reduces 

training time and enhances efficiency. In the initial stages of 

the neural network, low-level and task-specific features are 

extracted. The model employs transfer learning in its early 

and central layers while retraining later ones. Equipped 

initially with 2D filters, the model integrates a 3D CNN 

layer to transform these filters into 3D, enabling the 

processing of frames in 3D blocks. This addition allows for 

capturing and analyzing temporal and spatial information, 

particularly useful in video motion analysis. 

In contrast to feed-forward neural networks, where each 

input is processed independently, Recurrent Neural 

Networks (RNNs) establish a temporal dependency, basing 

each prediction at time 't' on previous predictions and 

accumulated knowledge. However, RNNs may fall short in 

addressing long-term dependencies, a gap effectively filled 

by Long Short-Term Memory (LSTM) networks. LSTMs 

utilize cell states to carry information through the network, 
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selectively retaining or discarding it as needed. 

The development of the physical abuse detection model 

proceeded in three stages: 

Stage-1: Pre-trained 2D models, specifically ResNet-18 and 

GoogleNet, were explored. These models were trained and 

tested on two datasets using transfer learning, focusing on 

2-dimensional filters for spatial information processing. 

Stage 2: Incorporation of a 3D CNN layer into the existing 

2D models, effectively upgrading the kernel dimensions 

from 2D to 3D. This enhancement allows for extracting 

temporal information from the first layer, facilitating 

efficient spatiotemporal information processing. The 

modified models, named '3D ResNet-18' and '3D 

GoogleNet', were then considered. 

Stage 3: A bilinear LSTM layer was added to the 3D CNN 

integrated models of 3D ResNet-18 and 3D GoogleNet to 

boost the temporal information processing capabilities 

further. The resulting models are ‘3D ResNet-18 + LSTM’ 

and ‘3D GoogleNet + LSTM’. 

The framework for detecting physical abuse through these 

hybrid DL models is outlined in Figure 1. Initially, raw 

video inputs undergo preprocessing steps like resizing, 

normalization, and grayscale conversion. Data 

augmentation techniques are applied to address any 

skewness in the dataset. The dataset is then split into training 

(70%), validation (10%), and testing (20%) segments. 

During training, the model is fine-tuned through 

hyperparameter adjustments. Training accuracy and loss are 

monitored through graphs, with learning rate, and epoch 

numbers tweaked to guide the model toward optimal loss 

minimization and accuracy maximization, ensuring 

stability. 

 

Fig 1: Schematic Representation of the Hybrid Model for Physical Abuse Detection. 

4. Dataset 

Deep Learning (DL) models advance their knowledge by 

analyzing training datasets, especially in computer vision 

systems where algorithms are tailored to identify specific 

features within these datasets. However, sourcing an 

appropriate dataset for training poses a significant challenge 

in developing a DL model. The complexity of human 

interactions, with their varied body movements and 

coordination, adds to this challenge. An analysis of this 

variability, particularly in the context of single images, has 

been conducted by Ronchi and Perona [36]. 

Human interactions are inherently dynamic, often 

characterized by coordinated movements. For instance, a 

simple handshake involves one person extending their hand, 

followed by the reciprocal action of the other person. 

Researchers have recognized the significance of 

understanding and predicting future actions in such 

scenarios, as it significantly contributes to the overall 

comprehension of the scene [30]. Some studies have 

discovered that forecasting future actions can be 

accomplished by classifying an action or interaction based 

on its initial stages [31]. While this approach holds promise 

for scenarios with clear objectives, its effectiveness 

diminishes as the complexity and variability of interactions 

increase, especially in more nuanced and socially oriented 

interactions, such as playful gestures. 

In the context of our project, one of the significant 

challenges we encountered was the acquisition of a suitable 

dataset directly related to physical abuse. While datasets like 

UT-Interaction, UCF101, and the Kinetics action 

recognition dataset, which encompass actions like boxing 

and punching, exist, they often fall short of meeting the 

specific requirements for capturing instances of physical 

abuse in video feeds. These datasets typically offer lower-

resolution inputs and may not align with the precise criteria 

for detecting physical abuse actions in a video context. After 

conducting an exhaustive search [33], [34], we eventually 

identified two publicly available datasets, namely UBI-

Fights [35] and UCF Crime [36], which contain authentic 

video clips depicting everyday individuals engaging in 

actions such as hitting, kicking, and various forms of 

physical conflict. These datasets closely matched our 

project's objectives, providing a more appropriate 
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foundation for detecting physical abuse in video data. 

4.1. UBI Fight Dataset 

Released in 2020, this dataset encompasses 80 hours of 

video material, captured using a stationary camera and 

meticulously annotated at the frame level. It comprises 

1,000 video clips, of which 216 depict instances of physical 

altercations, and 784 portray everyday life scenarios. 

Augmentation techniques enhanced the dataset, expanding 

the collection to 2,800 video segments. Each clip lasts 

between 80 to 90 seconds and is recorded at 30 frames per 

second. Video frames are resized, normalized, and 

transformed into grayscale for uniformity and quality in data 

processing. Illustrations of select video clips and action 

sequences from this dataset are presented in Figure 2 and 

Figure 3. The dataset is methodically divided for different 

phases of the model development: 70% is dedicated to 

training, 10% to validation, and the remaining 20% is 

reserved for testing. This partitioning ensures that the 

dataset is well-organized and representative, facilitating the 

development and thorough evaluation of a robust model. 

 

Fig 2: Examples of Video Clips from the UBI Fight Dataset. 

 

Fig 3: Image Sequence from a Video Clip in the UBI Fight Dataset. 

4.2. UCF Crime Dataset 

In 2021, the University of Central Florida introduced a 

dataset featuring unedited surveillance videos 

encompassing various unusual events. This extensive 

dataset includes 128 hours of video footage, which has been 

augmented to encompass 3,500 video clips. Each clip is 

roughly 1.5 minutes long, providing a rich resource for 

research and analytical purposes. 
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Fig 4: Representative Video Clips from the UCF Crime Dataset. 

5. Performance Metric 

To evaluate the performance of the Deep Learning (DL) 

model in detecting physical abuse, a confusion matrix was 

created using 20% of the dataset reserved for testing. The 

availability of an annotated dataset enabled the generation 

of this matrix. The matrix categorizes results into four 

distinct labels based on comparing actual and predicted 

values. It serves as a tool to compute key performance 

metrics such as accuracy, sensitivity, precision, and 

specificity. 

The confusion matrix acts as a summary chart, illustrating 

how the model's predictions align with the observed 

outcomes. In this context, accuracy refers to the model's 

ability to correctly identify physical abuse and recognize 

when it is not occurring. This means the model's predictions 

should consistently match physical abuse's actual 

occurrence or absence for a high accuracy score.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁   
 ……………….(1) 

Recall, also known as Sensitivity, measures the proportion 

of actual positives (true positives) correctly identified by the 

model compared to the total number of positives present in 

the ground truth. The classifier yields many false negatives 

if the recall score is less than 0.5. This scenario might arise 

due to an imbalance in the analyzed classes or the model's 

hyperparameters not optimally tuned.  

Recall/𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁   
 …………(2) 

Specificity refers to the ratio of true negatives, which 

measures how accurately the actual negative cases are 

identified and predicted as negative by the model.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃   
…………(3) 

Precision is the metric that quantifies the ratio of correctly 

predicted positive observations (true positives) to the total 

predicted positives. If the precision score falls below 0.5, it 

suggests that the classifier is generating a significant 

number of false positives. This issue could stem from an 

imbalance in the dataset or from hyperparameters of the 

model that require fine-tuning. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃   
. . . . . . . . . . . . . . . . . . . . . (4) 

The Precision-Recall trade-off refers to the balancing act 

between improving precision and improving recall in a 

model. Enhancing one often leads to a decrease in the other, 

so it's about finding an optimal balance based on the specific 

requirements and priorities of the model. 

6. Observation And Result Analysis 

Confusion matrices were created for six models using 20% 

of UBI Fight and UCF Crime datasets. The UBI Fight 

dataset, after augmentation, consists of 2,780 video clips. 

According to the allocation strategy, 70% of these clips are 

used for training, 10% for validation, and 20% for testing. 

This means 556 clips (20% of 2,780) are designated for 

testing. Similarly, the UCF Crime dataset was expanded to 

3,515 clips. Applying the same distribution, 703 clips (20% 

of 3,515) are set aside for testing. Figures 5 and 6 showcase 

the confusion matrices for each model, with Figure 5 

focusing on the UBI Fight dataset and Figure 6 highlighting 

the UCF Crime dataset, providing a clear visual 

representation of each model's performance. 
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Fig 5: Confusion Matrices for Various Models Analyzed with the UBI Fight Dataset.

 

 

Fig 6: Confusion Matrices for Different Models Evaluated Using the UCF Crime Dataset. 
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Table 1: Comprehensive Performance Metrics for Six Models Across Two Datasets. 

 
UBI-Fight UCF-Crime 

  

Accur

acy 

Sensitivi

ty 

Specifici

ty 

Precisio

n 

Accurac

y 

Sensitivi

ty 
Specificity 

Precisio

n 

2D GoogleNet 77.51 78.41 76.61 78.02 69.27 69.69 68.91 71.98 

2D ResNet-18 79.49 91.72 67.26 89.04 79.37 80 78.82 81.67 

3D GoogleNet 87.05 86.33 87.76 86.52 87.34 87.87 86.86 89.01 

3D ResNet-18 89.02 93.88 84.17 93.22 90.32 90.9 89.81 91.78 

3D GoogleNet 

+ LSTM 
91.9 93.52 90.28 93.3 92.32 92.72 91.95 93.46 

3D ResNet-18 

+ LSTM 
96.94 95.68 98.2 95.78 95.31 95.76 94.91 96.2 

 

 

Fig 7: Combined Graphical Display of Performance Metrics Across Six Models and Two Datasets. 

Leveraging the information extracted from the confusion 

matrices, we computed critical performance metrics that are 

pivotal indicators of the models' effectiveness. These key 

metrics encompass Accuracy, Precision, Recall, and the F1 

Score, each playing a distinct role in assessing the model's 

performance. The mathematical formulations for these 

metrics are thoughtfully detailed in equations (1), (2), (3), 

and (4), all of which can be found in section 5 of the report. 

To present a comprehensive overview of the models' 

performance across different aspects, we have organized the 

results into a neatly compiled summary table, conveniently 

labeled Table 1. This table is a centralized reference point, 

allowing stakeholders to swiftly gauge and compare the 

models' performance based on the metrics that matter most. 

Furthermore, recognizing the significance of visualizing 

performance trends, we have thoughtfully crafted Figure 7. 

This graphical representation visually analyzes how the 

models fare regarding their effectiveness. It offers a clear 

and intuitive way to discern the strengths and weaknesses of 

each model, making it easier for decision-makers to draw 

insights and make informed choices based on the presented 

data. 

6.1. Comparative Analysis of ResNet-based models. 

Figures 8 and 9 display the performance metrics' graphical 

representation across the three implementation stages for the 

UBI Fight and UCF Crime datasets, respectively. These 

graphs illustrate a clear trend of improvement in every 

performance metric as the implementation progresses from 

stage 1 to stage 3. Notably, the 3D ResNet + LSTM model 

achieves the highest accuracy, reaching 96.94% for the UBI 

Fight dataset and 94.91% for the UCF Crime dataset, as 

depicted in Figures 8 and 9. 
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Fig 8: Performance Metrics Visualization for the UBI Fight Dataset Using Three Variants of the ResNet-18 Model. 

 

Fig 9: Performance Metrics Graph for the UCF Crime Dataset Using Three Variations of the ResNet-18 Model. 

 

6.2. Comparative Analysis of GoogleNet-based models. 

The graphical representation, as illustrated in Figures 10 and 

11, demonstrates that for both datasets - UBI Fight and UCF 

Crime - there is a consistent improvement across all four 

performance parameters (Accuracy, Precision, Recall, and 

F1 Score) through the three stages of enhancement applied 

to the GoogleNet model. 
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Fig 10: Performance Metrics Visualization for the UBI Fight Dataset Using Three Variants of the GoogleNet Model. 

 

Fig 11: Performance Metrics Graph for the UCF Crime Dataset Using Three Variations of the GoogleNet Model. 
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6.3. Comparative Analysis of all models 

 

Fig 12: Visualization of Performance Metrics Across All Models. 

Figure 12 presents a graphical comparison of the four 

performance parameters (Accuracy, Precision, Specificity, 

and Sensitivity) across six models, depicted as four distinct 

curves. The graph highlights that the 2D ResNet-18 model 

exhibits more significant fluctuations in these parameter 

values. In contrast, models based on GoogleNet demonstrate 

relatively stable performance across all four metrics, 

showing less variation in accuracy, precision, specificity, 

and sensitivity scores. While GoogleNet models display a 

balanced performance, the 3D ResNet-18 + LSTM model 

stands out by surpassing all others in performance, 

demonstrating stability in its results. 

7. Conclusion And Future Work 

CNN-based Deep Learning models excel in extracting and 

analyzing complex features, with transfer learning 

demonstrating its effectiveness by quickly stabilizing and 

delivering strong performance for specific datasets. 

Incorporating a 3D CNN into these models significantly 

enhances human action recognition capabilities, as the 3D 

kernels adeptly process both spatial and temporal data, 

yielding more accurate results. For intricate tasks like 

detecting physical abuse, achieving high accuracy, excellent 

precision, recall, and specificity is crucial. 

Adding a bidirectional LSTM layer to the 3D ResNet-18 and 

3D GoogLeNet models has further refined the sequential 

data analysis. The hybrid 3D ResNet-18 with LSTM stands 

out among the evaluated models, offering superior results 

while maintaining efficiency. 

Looking ahead, there are plans to deploy this model onto an 

embedded system and test its performance with live video 

streams in real-time scenarios. The focus will be optimizing 

throughput and response time to enhance system 

performance. 
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