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Abstract: Red-rot disease caused by Colletotrichum falcatum is a significant threat for substantial economic losses in sugarcane industry 

worldwide. Early and accurate detection of disease is crucial for implementing timely control measures for substantial cultivation. This 

study presents a comparative performance analysis among various leverage machine learning approaches to effectively detect red-rot 

infections. The research rigorously evaluates the performance of each technique based on accuracy, precision, recall, F-measure, and other 

relevant error analysis. The data collection, preprocessing, and feature extraction methodologies are meticulously implemented to ensure 

the credibility and generalizability of the findings. The study's outcomes hold significant implications for precision agriculture and 

sustainable farming practices. The aim of this study is to implement accurate and efficient method for red-rot disease detection, which can 

empower farmers to enable targeted intervention to minimize crop losses and reliance on chemical treatments, which will contribute in 

global movement towards eco-friendly agriculture and enhancement of sugarcane industry. The results of study shed light on the strengths 

and limitations of each machine learning technique, aiding researchers and practitioners in selecting the most suitable approach for Red 

Rot detection.  
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1. Introduction 
Red Rot disease, caused by the fungus Colletotrichum falcatum, 

remains one of the most devastating threats to the global sugarcane 

industry. The disease significantly reduces yield, compromises 

sugar quality, and incurs substantial economic losses for farmers 

and sugar mills alike. Early detection and accurate diagnosis of 

Red Rot infections are crucial for effective disease management 

and the implementation of timely control measures [1]. In recent 

years, machine learning has emerged as a powerful tool in 

precision agriculture, offering the potential to revolutionize disease 

detection and enable proactive intervention. This study aims to 

conduct a comparative performance analysis of various machine 

learning methods for the detection of Red Rot of sugarcane. 

Leveraging the capabilities of machine learning algorithms, such 

as deep learning, ensemble methods, and classical statistical 

techniques, the research endeavours to identify the most effective 

and accurate approach to detecting Red Rot infections. The study's 

outcomes have far-reaching implications for the agricultural 

industry, as they can facilitate early detection and targeted 

treatments, reduce the reliance on chemical inputs, and contribute 

to sustainable farming practices. 

By utilizing machine learning methods, researchers can analyse 

digital images of sugarcane plants to detect the presence of Red 

Rot infection. Each machine learning technique brings unique 

advantages to the task, such as the ability to handle complex 

patterns, handle high-dimensional data, or provide interpretable 

results. Through a rigorous and systematic analysis, this study aims 

to compare the performance of these techniques in terms of 

accuracy. The significance of this research lies in its potential to 

optimize disease detection systems and enhance agricultural 

resilience. An accurate and efficient method for Red Rot detection 

will enable farmers to swiftly identify infected plants, take targeted 

actions, and minimize crop losses. By reducing chemical usage 

through early detection, the research aligns with the global 

movement towards sustainable agriculture and eco-friendly 

farming practices. 

In the subsequent sections, we will delve into the methodologies 

employed for data collection, pre-processing, and feature 

extraction. The performance of each machine learning algorithm 

will be meticulously evaluated, and the results will be presented 

and discussed in detail. Ultimately, the study aims to provide 

valuable insights into the most effective approach to detecting Red 

Rot of sugarcane using machine learning, paving the way for 

practical applications in precision agriculture and contributing to 

the sustainability of the global sugarcane industry. 

 

2. Materials And Method 

2.1.  Red-Rot Dataset 

The primary goal of Red-Rot dataset aims to identify more 

sensitive and accurate methods to diagnose RR `early and to mark 

RR’s progress with biomarkers. RR data is used to collect various 

image attributes of sugarcane leaf. A total of 300 records are 

selected at random from the entire set ensuring that no chosen 

record has any missing values. Some attributes with no relevance 

to evaluation are omitted. The rest of the data was normalized. 

2.2. Machine Learning Methods 

Machine learning is a collection of statistical models and 

algorithms that allows software applications to perform a specific 

task without being explicitly programmed. The machine learning 

methods help to build an adaptive program that automatically 

adjusts to receive data.[2] The integration of machine learning 

algorithms offers a transformative approach to combat the 

pernicious Red Rot disease, leading to improved disease 

management and sustainable farming practices. The robust 
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methodology, comparative analysis, and real-world applications 

make this research a pioneering effort in harnessing machine 

learning for agricultural challenges. As the agriculture industry 

continues to evolve, this study sets a remarkable precedent for 

harnessing cutting-edge technologies to protect and enhance crop 

production on a global scale. The brief detail of models used in the 

present study is as follows: 

2.2.1. Adaboost 

Boosting is a general and effective method for developing accurate 

prediction rule by merging many fairly susceptible and inaccurate 

rules. By harnessing the power of Adaboost, the research offers a 

transformative and efficient approach to combat the devastating 

Red Rot disease in sugarcane crops. The root of Boosting lies in 

the theoretical framework of machine learning known as probably 

approximately correct (PAC) learning model. The AdaBoost by 

Freund and Schapire was the first realistic boosting algorithm and 

is one of the most extensively used method, having purposes in 

different fields. It overcomes many issues of the previous boosting 

algorithms [3]. This algorithm takes the training set S= ((x1,y1) 

…….., (xm,ym)) of N samples as input, where each instance xi is 

extracted from certain space X  and represented in a  vector, and yi 

∈Y is the class label linked with xi [4]. The boosting algorithm 

additionally can access another unspecified learning algorithm, 

called a weak learning algorithm represented as Weak Learn. This 

algorithm repeatedly calls Weak Learning a series of rounds. In 

round t, the booster runs Weak Learn with distribution Dt on the 

training set S. To correctly classify a part of the training set with a 

high probability on Weak Learn calculates the hypothesis 

. Adaboost is a powerful ensemble learning technique 

that combines weak classifiers to build a robust and accurate 

model. 

We integrate Adaboost to create a predictive model capable of 

distinguishing between healthy and infected sugarcane plants 

based on key image features [5]. This approach ensures a high level 

of accuracy and robustness in Red Rot disease detection, enabling 

farmers to take timely actions to mitigate its impact. 

2.2.2. Bayesian Network  

Bayesian classification depends on Bayes Theorem. It considers 

the observed data and provides the basis for probabilistic learning 

which comprises previous knowledge. By harnessing the power of 

Bayesian Network, the research offers an efficient and accurate 

approach to combat the devastating Red Rot disease in sugarcane 

crops. Bayesian Network has been developed to remove the 

shortcomings of Naïve Bayes classifier. A Bayesian network 

consists of a directed acyclic graph with set of nodes and a set of 

edges between nodes. A node denotes the random data and the 

edges between two nodes represent conditional dependencies 

between nodes [6]. The Bayesian network learning process is 

divided into two steps: learning the network and learning the 

relationship between data. 

Firstly, Take domain variable and divided into set of attributes, 

X={X1,X2,……,Xn}            (1)                        and C, class variable. 

Then, find the value of attribute X with given C: 

By using eq. (1), compute predictive distribution P(C, x/7) by 

marginalizing joint distribution with example x,   

                 (2)

      

Apply Bayesian Network classification rule using eq. (2) 

   (3) 

Computing  for each class  by joint probability 

distribution with eq. (3) 

                 (4) 

The use of Bayesian Network for disease detection is a notable 

strength of this research. Bayesian Networks are adept at 

modelling probabilistic relationships between variables, making 

them highly suitable for complex systems like agricultural 

diseases.[7] We implement Bayesian Network to create a 

predictive model capable of identifying Red Rot infections based 

on various input features. This approach enhances the accuracy and 

reliability of the disease detection system, empowering farmers 

with a powerful tool to tackle Red-Rot proactively. 

2.2.3. Multilayer-Perceptron (MLP) 

MLP by M. Minsky and S.Papert is a feed-forward artificial neural 

network, composed of more than one perceptron and uses back-

propagation for training the network [30]. By harnessing the 

capabilities of deep learning with MLP, the research offers an 

efficient and accurate approach to combat the devastating Red Rot 

disease in sugarcane crops. An MLP consist an input layer for 

receiving signals, an output layer that makes decisions or 

predictions for the input values, and number of hidden layers 

between those input-output layers, which are the real 

computational engines of the MLP [8]. An MLP with a hidden 

layer can approximate any continuous function. MLPs are trained 

on a set of input- output pairs and learn to model the dependencies 

between input and outputs. It learns how to convert input data to 

the desired response. MLP calculates a discontinuous function 

with eq. (5) 

 

 

where,  

The use of Multi-Layer Perceptron for disease detection is a 

standout feature of this research. MLPs are known for their ability 

to learn complex patterns and relationships within data, making 

them particularly suitable for intricate problems like Red Rot 

identification [9]. By adopting this advanced machine learning 

technique, we create a predictive model capable of accurately 

distinguishing between healthy and infected sugarcane plants 

based on key image features. This approach provides an efficient 

and robust solution to early detection, empowering farmers to take 

timely actions and manage the disease effectively. 

2.2.4. Random Subspace method (RSM) 

RSM is an ensemble method that combines several models for 

classification proposed by Ho [10]. By harnessing the capabilities 

of ensemble learning with RSM, the research offers an efficient 

and accurate approach to combat the devastating Red Rot disease 

in sugarcane crops. RSM tries to reduce the correlation with 

random samples of features instead of the entire feature set like 

bagging. Training data can also be modified in RSM and this 

modification can be done in feature space. Let training sample set 

S = (S1, S2,…….,Sn) and each training object Si (i = 1…….n) be a 

p-dimensional vector.[11] We can randomly select r <p attributes 

from the p-dimensional data set S in RSM. Thus, r-dimensional 

random subspace can be obtained from p-dimensional feature 

space. Therefore, modified training set S˜ b = (S˜ b1, S˜ b2, . . ., Sb
n) 

consists of r-dimensional training objects S˜ bi = (sb
i1, sb

i2, . . ., sb
ir) 
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(i = 1, . . ., n), where r components sb
ij (j = 1, . . ., r) are randomly 

selected from p components sij (j = 1, . . ., p) of the training vector 

Si (the choice of each training vector is same). Then we can 

construct classifiers in random subspaces S˜ b and combines them 

in a final decision rule by simple majority voting. This approach 

introduces diversity and robustness to the predictive model, 

making it adept at handling complex and high-dimensional 

datasets [12]. By adopting RSM, we create a sophisticated 

predictive model capable of accurately identifying Red Rot 

infections based on crucial image features [13]. This methodology 

provides a reliable and efficient means of early detection, 

empowering farmers to take proactive actions to manage the 

disease effectively. 

2.2.5. Bagging  

Bagging proposed by Breiman is an ensemble method based on the 

concept of bootstrap and aggregation, so it combines the 

advantages of both methods [14]. In this method, one tries to 

combine the predictions from multiple models together to perform 

better than the original model. Bootstrap is a general method that 

may be used to minimize the variance for those algorithms that 

have high variance. This method is powerful because of enhancing 

the performance of a single model by means of use of more than 

one copies of it on different sets of data. Bootstrapping consists of 

random sampling with replacement. However, in order to replicate 

a bootstrap, Xb = (Xb
1, Xb

2,. . . Xb
n) of the training set X, it is 

possible to reduce or even avoid the deceptive training objects in 

the boot strapping set.[15] Therefore, classifiers that are 

constructed on these training sets can have improved performance. 

In general, combined classifiers provide better results than a single 

classifier because the advantages of each classifier are combined 

in the last solution. Thus, bagging may help to construct better 

classifiers on trained misleading sample sets. The utilization of 

Bagging for disease detection is a noteworthy highlight of this 

research. Bagging is a powerful learning technique that aggregates 

predictions from multiple models, reducing the risk of overfitting 

and enhancing the overall accuracy and robustness of the 

predictive model. By employing Bagging, we create an effective 

and accurate predictive model capable of identifying Red Rot 

infections based on crucial image features [16]. 

2.2.6. Random Forest  

Random forest introduced by Ho is an ensemble method that 

functions by establishing a multitude of decision trees during 

training and then gives output class which is the classification or 

regression mode of the individual trees [17]. The tree is built 

independently by the general technique of bagging and is randomly 

selected set of training samples. The final outcome can be 

determined by voting from all the trees with majority prediction.  

It turns out that RF is a highly accurate algorithm in various fields 

such as remote sensing, medical diagnosis, and anomaly detection 

[18]. RF uses bagging to increase tree diversity by developing trees 

from different training datasets, thereby reducing overall variance 

of the model. We adeptly implement Random Forest to develop an 

effective and accurate predictive model capable of identifying Red 

Rot infections based on key image features. This approach 

empowers farmers with a reliable tool for early detection, enabling 

prompt intervention and targeted treatment to manage the disease 

effectively [19]. 

2.2.7. Logistic Regression 

Logistic Regression is a classification technique for datasets where 
dependent variable is dichotomous (binary). It takes only two 
values 0 and 1 to predict an outcome’s probability [20]. A logistic 
sigmoid function f(x) is employed to transform its output to return 

a probability value. This value, in turn, is then mapped with respect 
to a minimum of two classes. 

                                 (6) 

Each feature contributes in predicting the expected outcome of a 

dataset. Maximum likelihood estimation statistics are used to 

measure the predictive power of each attribute. The logistic model 

uses the input dataset to calculate the probability of predicting 

binary results [21]. 

2.2.8. Extreme Gradient Boosting 

Xgboost is a machine learning method proposed by Chen in 2016 

and has been widely used in various data mining fields, especially 

in kaggle [22]. It is a regression tree whose decision rules are same 

as the decision tree. Since Xgboost's block structure supports 

parallelization of the tree structure, it is an effective 

implementation of the gradient enhanced decision tree (GBDT) 

[23]. In GBDT, gradient boosting refers to an integrated technique 

used to create a new model to predict the residuals or errors of 

previous models and make a final decision by aggregating the 

predictions of all models. In this paper, Xgboost is applied with the 

following input parameters, such as logistic regression for 

classification as objective function, 3 as tree’s maximum depth, 0.3 

as step shrinkage size, and 1000 as maximum number of iterations. 

3. Methodology 

In this study, the computation has been done on RR dataset for a 

case based on data pre-processing and three different sets based on 

data-partitioning. Firstly, the normalized data is split into train and 

test data in the ratio of 2:1. Then, the training dataset is used to 

train ML methods and test dataset is used for validation. Secondly, 

the normalized data is used to train the ML models which was then 

subjected to 10-fold cross validation (Case 2) for testing. Thirdly, 

feature selection is done to remove variables that are highly 

correlated. In this paper, Boruta feature selection (BFS) method is 

applied to the normalized data at the pre-processing stage to extract 

relevant features. It is easy to use feature selection methods which 

select features using permutation of various features. BFS employs 

to effectually shortlist the best independent variables out of the 

total 24 features. After applying BFS approach on the dataset, six 

features are discarded, and rest of the features are considered to 

train the model. The pre-processed dataset was then used to train 

the computing models and the validation was done using 10-fold 

analysis (Case 3). A total of seven machine learning methods 

including AdaBoost, Bayes Network, Logistic Regression, 

Random Sub-Space, MLP, Random Forest and Bagging are used 

for the classification. The computations are implemented on a 64-

bit system with 4GB RAM and Windows 10 operating system 

using Weka 3.8 software. The performances of various ML models 

were analysed using Accuracy and Error obtained for all the three 

cases. Fig. 1 depicts the workflow process for case wise analysis. 

Further, the computing models are applied to the individual 

datasets of 3 different sets from RR database to evaluate accuracy 

and error analysis. The data from these sets are analyzed to check 

the homogeneity of data across the sets. The training dataset 

consisted of 70% records and test dataset had remaining 30% 

records from each of three sets. Fig. 2 depicts the workflow process 

for set wise analysis. 
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4. Performance Analysis 

 

 
Fig 1. Work process Flow for Case wise data analysis 

 

 
Fig 2. Workflow process for Set wise data analysis 

 

The performance of the proposed method has been evaluated using 

various accuracy parameters, error parameters and cross-

validation. Then, to check the dependency of the data from 

different sets, Kruskal Wallis test is deployed. There are various 

accuracy and error parameters used to evaluate the model which 

are defined in Fig. 3 and Fig. 4 respectively. In Fig. 3, TP depicts 

True Positive, FP depicts False Positive, TN depicts True Negative 

and FN depicts False Negative and MCC depicts Matthews 

Correlation Coefficient. In Fig. 4, MAE depicts Mean Absolute 

Error, RMSE depicts root mean square error, RRSE depicts root 

relative squared error and RAE depicts relative absolute error. 

 

Kruskal Wallis Test  

The Kruskal Wallis test is described as a distribution-free test 

which is beneficial for finding the differences among various 

groups of an independent variable on ordinal as well as continuous 

dependent variable [24]. When the assumptions of one-way 

analysis of variance (ANOVA) are not met, this test is taken into 

consideration. Kruskal Wallis test is used to check the dependency 

of the data from different sets of databases. This test determines 

whether the medians of two or more groups are different. The test 

will tell if there is a significant difference between groups. This 

test can be used for both continuous and ordinal level dependent 

variables [25]. 

5. Result Analysis 

The 8ML methods have been efficiently trained on RR dataset.  In 

this study, the efficient data partitioning has been carried out, since 

data plays an essential role in the training process model. The 

results produced by case wise, set wise are analyzed in this section. 

5.1. Case wise Accuracy and Error Analysis 

The following observations are made for the cases to measure the 

performance of various computing models using accuracy and 

error parameters: 

  

Case 1 (Validation using test Dataset) 

In this case, we randomly select 60% of data as training set and 

remaining 40% as testing set. Table 1 shows the classification 

results of various techniques in terms of accuracy and error 

measures for case 1.  

The results indicate that Bagging performs best among other 

machine learning methods with respect to both accuracy and error 

parameters whereas Adaboost shows worst performance as shown 

in Fig 5. 

 

Case 2 (Validation Using 10- fold cross validation) 

In this case, all the data is used to train the models and then 

validation of all the models is done with 10-fold cross-validation. 

Table 3 shows the classification results of various techniques in 

terms of accuracy and error measures for case 2. It can be found 

that both MLP and Bagging method shows best performance 

among other machine learning methods with respect to accuracy 

and error parameters a shown in Fig 6. 

 

Case 3 (pre-processing with Boruta feature selection and 

validation using 10-fold cross validation) 

In this case, we applied Boruta [R] feature selection method to find 

relevant features. Then, the new feature subset is used to train all 

7ML methods and the validation is done with 10- fold cross-

validation. Table 3 shows the classification results of various 

techniques in terms of accuracy and error measures for case 3. It 

can be found that Bagging performed best for all accuracy and 

error parameters as shown in Fig 7. 
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Fig. 3 Accuracy parameters 

  

 

Fig. 4 Error parameter 

 

 

Fig.5 – Accuracy and error analysis for Case 1 

 

0

0.5

1

MAE RMSE RAE RRSE

Error analysis: case 1

Adaboost Bayes Network
Logistic Regression Random Forest
MLP Random SubSpace
Bagging Xgboost

0

0.5

1

   TP Precision Recall F-Score

Accuracy analysis: case 1

Adaboost Bayes Network Logistic Regression

Random Forest MLP Random SubSpace

Bagging Xgboost



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1482–1490 |  1487 

Fig.6– Accuracy and error analysis for Case 2 

 

Fig.7 – Accuracy and error analysis for Case 3 

Table: 1 – Accuracy and Error analysis for Case 1 

                                                                        Accuracy analysis                                                              Error analysis 

Computing Model    TP Precision Recall F-Score MCC MAE RMSE RAE RRSE 

Adaboost 0.583 0.581 0.583 0.507 0.104 0.484 0.489 0.985 0.987 

Bayes Network 0.596 0.591 0.597 0.591 0.166 0.456 0.488 0.928 0.985 

Logistic Regression 0.607 0.708 0.607 0.505 0.212 0.486 0.492 0.990 0.994 

Random Forest 0.847 0.848 0.847 0.846 0.689 0.228 0.265 0.464 0.535 

MLP 0.861 0.862 0.861 0.861 0.719 0.192 0.312 0.391 0.629 

Random SubSpace 0.943 0.945 0.944 0.944 0.887 0.302 0.321 0.616 0.649 

Bagging 0.952 0.952 0.952 0.952 0.903 0.161 0.229 0.327 0.462 

Xgboost 0.964 0.964 0.964 0.964 0.905 0.150 0.205 0.315 0.241 

Table: 2 – Accuracy and Error analysis for Case 2 

                                                                       Accuracy analysis                                                              Error analysis 

Computing Model   TP Precision Recall F-Score MCC MAE RMSE RAE RRSE 

Adaboost 0.589 0.631 0.589 0.485 0.133 0.482 0.489 0.982 0.987 

Bayes Network 0.591 0.586 0.592 0.586 0.156 0.458 0.490 0.931 0.988 

Logistic Regression 0.606 0.709 0.606 0.503 0.209 0.486 0.493 0.990 0.994 

Random SubSpace 0.849 0.852 0.850 0.848 0.694 0.334 0.366 0.679 0.739 

Random Forest 0.860 0.860 0.860 0.859 0.714 0.269 0.330 0.547 0.667 

Bagging 0.861 0.861 0.861 0.860 0.716 0.227 0.315 0.462 0.636 

MLP 0.862 0.862 0.862 0.862 0.719 0.180 0.309 0.366 0.624 

Xgboost 0.891 0.891 0.891 0.891 0.723 0.169 0.301 0.284 0.614 
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Table 3 Accuracy and Error analysis for Case 3 

                                                             Accuracy analysis                                                            Error analysis 

Computing Model   TP Precision Recall F-Score MCC MAE RMSE RAE RRSE 

Logistic Regression 0.612 0.619 0.569 0.423 0.053 0.490 0.495 0.997 0.998 

Adaboost  0.589 0.631 0.589 0.485 0.133 0.482 0.489 0.982 0.987 

Bayes Network  0.591 0.585 0.591 0.585 0.154 0.458 0.490 0.933 0.989 

Random SubSpace 0.848 0.850 0.848 0.847 0.691 0.334 0.367 0.681 0.741 

MLP 0.853 0.853 0.853 0.853 0.702 0.187 0.317 0.380 0.629 

Random Forest 0.861 0.861 0.861 0.860 0.712 0.228 0.316 0.465 0.745 

Bagging 0.865 0.865 0.865 0.864 0.724 0.229 0.311 0.453 0.741 

Xgboost 0.899 0.898 0.899 0.898 0.732 0.221 0.308 0.424 0.739 

 

Table 4. Accuracy and Error collection for set1 

                                                                     Accuracy analysis                                                                 Error analysis 

Computing Model    TP Precision Recall F-Score MCC   MAE RMSE RAE RRSE 

Adaboost 0.625 0.661 0.625 0.566 0.233 0.453 0.468 0.923 0.944 

Bayes Network 0.653 0.651 0.654 0.651 0.289 0.397 0.464 0.808 0.936 

Logistic Regression 0.794 0.795 0.795 0.795 0.584 0.268 0.369 0.546 0.744 

Random SubSpace 0.884 0.884 0.884 0.884 0.764 0.261 0.316 0.532 0.638 

Random Forest 0.901 0.902 0.902 0.902 0.800 0.188 0.274 0.388 0.553 

Bagging 0.903 0.905 0.904 0.904 0.806 0.158 0.267 0.323 0.539 

MLP 0.903 0.908 0.904 0.905 0.904 0.139 0.264 0.283 0.532 

Xgboost 0.926 0.929 0.928 0.928 0.915 0.115 0.260 0.254 0.529 

 

Table 5. Accuracy and Error collection for set2 

Accuracy analysis                        Error analysis 

Computing Model TP Precision Recall F-Score MCC MAE RMSE RAE RRSE 

Bayes Network 0.627 0.628 0.627 0.628 0.245 0.420 0.471 0.853 0.949 

Adaboost 0.640 0.649 0.641 0.642 0.286 0.469 0.477 0.953 0.961 

Random Forest 0.984 0.984 0.984 0.984 0.968 0.093 0.147 0.189 0.297 

Random SubSpace 0.985 0.985 0.985 0.985 0.970 0.215 0.240 0.437 0.483 

Bagging 0.989 0.989 0.989 0.989 0.978 0.032 0.100 0.064 0.202 

Logistic Regression 0.991 0.991 0.991 0.991 0.982 0.050 0.106 0.102 0.214 

MLP 0.991 0.991 0.991 0.991 0.981 0.010 0.085 0.021 0.171 

Xgboost 0.991 0.991 0.991 0.991 0.983 0.010 0.083 0.020 0.170 

 Table 6. Accuracy and Error collection for set3 

                                                                         Accuracy analysis                                                               Error analysis 

Computing Model     TP Precision Recall F-Score MCC   MAE RMSE RAE RRSE 

Bayes Network 0.655 0.655 0.656 0.644 0.287 0.401 0.473 0.817 0.955 

Adaboost 0.657 0.672 0.657 0.629 0.296 0.450 0.468 0.917 0.945 

Logistic Regression 0.782 0.785 0.782 0.779 0.556 0.324 0.384 0.660 0.775 

Random Forest 0.823 0.827 0.824 0.822 0.642 0.288 0.356 0.587 0.718 
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Random SubSpace 0.826 0.832 0.826 0.823 0.649 0.342 0.376 0.698 0.758 

Bagging 0.834 0.835 0.835 0.833 0.663 0.245 0.340 0.500 0.686 

MLP 0.850 0.850 0.850 0.850 0.696 0.186 0.318 0.378 0.642 

Xgboost 0.880 0.881 0.880 0.880 0.701 0.121 0.310 0.350 0.621 

 

5.2. Set wise Accuracy and error Analysis 

Like the following observations are made for the individual sets 

to measure the performance of computing models: 

Set1: The values of accuracy and error parameters were found to 

be highest for MLP and least for Adaboost as shown in Table 4. 

 

Set2: MLP performed best with respect to all accuracy and error 

parameters whereas Bayes Network performed worst with respect 

to all accuracy parameters and the values of Error analysis were 

found to be least for Adaboost as shown in Table 5. 

 

 

Set3: MLP was the best performer for all accuracy and error 

parameters, whereas Bayes Network performed worst with respect 

to all accuracy and error parameters except F-measure and RAE. 

For F-measure and RAE, the values of Adaboost were found to be 

least as shown in Table 5. 

To analyze the homogeneity of data present in the three sets, 

Kruskal Wallis test was performed on the computing models under 

consideration. Since, the predicted value of computing methods 

followed non-normal distribution, Kruskal-Wall is test with 2 

degrees of freedom was used for the analysis of data using MAE, 

RMSE, RAE and RRSE.  The results of Kruskal-Wall test are 

given in Table 7. 

Table 7. – Kruskal- Wall’s test results for error parameters 

 MAE RMSE RAE RRSE 

Chi- squared 1.2754 1.4583 1.2754 1.4583 

p-value 0.5285 0.4823 0.5285 0.4823 

Significance  l     

level 

0.05 0.05 0.05 0.05 

 

 

For the table 7, H0: the samples of all the sets belong to the same 

population, Ha: The samples in the selected data sets do not belong 

to the same population. Since the estimated p-value is very much 

higher than the significance level, the alternative hypothesis is 

rejected. 

The outcomes of the Kruskal Wallis test indicate that the data in 

the three sets are not much significantly different and also the 

performance of seven used computing models are much 

statistically different from each other for the samples of all the 

three sets. 

 

6. Threats to validity 

6.1. Construct validity  

Apart from the seven computing models and the dataset used, any 
other computing models as well as available datasets may be used. 
The evaluation of the effectiveness of the computing models may 
also be done with respect to other evaluation measures like pred 
(0.3) and completeness measures apart from the accuracy and error 
parameters used in this paper. 

 

6.2. External Validity 

The experimental investigation was done on the datasets made 
available on an organization’s data repository which may or may 
not be generalized to all situations and datasets. The underlying 
pattern of software system must be taken care of before applying 
any computing models. 

6.3. Internal Validity  

Some of the computing models used in this investigation, such as, 

Random Forest computing model, may have required the 

optimization of various control parameters. Although, sincere 

efforts were put for the optimization of control parameters but the 

control parameters may vary for different datasets and software 

metrics. 

7. Conclusion  

In this study, eight efficient machine learning models were 

considered to compare the performance in terms of accuracy and 

error parameters for classifying Red Rot disease. The computing 

models included AdaBoost, Bayes Network, Random Forest, 

Logistic Regression, Bagging, Random Subspace, Xgboost and 

MLP. The evaluation was done on a RR dataset obtained from IRIS 

dataset. Three different cases including validation using test 

dataset, 10-fold cross validation and pre-processing with Boruta 

feature selection technique followed by 10-fold cross validation to 

calculate the performance of various computing models based on 

accuracy and error. A set wise analysis was also performed to 

check the homogeneity of the available dataset and Kruskal Wallis 

test was done to establish the check for the dependency of the data 

from different sets. Different models performed differently under 

different conditions. The results have shown that Xgboost method 

gives best performance in all cases whereas Adaboost and Logistic 

Regression performed worst to predict RR. In future, focus will be 

on verification of our model on more plant disease related datasets. 
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