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Abstract: In the realm of medical image analysis, accurately segmenting brain tumours is crucial for precise diagnosis and treatment 

planning. Deep learning techniques, particularly convolutional neural networks (CNNs), have shown significant potential in automating 

this task. In this research paper, we propose a method that combines a "ResNet50 model with Transfer Learning" for tumour detection and 

a ResUnet model with a custom loss function for segmentation. To adapt the ResNet50 model to a new dataset, we leverage transfer 

learning techniques. This involves initializing the model's weights with pre-trained weights from a large-scale dataset such as Imagine. By 

harnessing the powerful feature extraction capabilities of ResNet50 and ResUnet, the model becomes adept at identifying and 

segmenting brain tumours from MRI images. This approach reduces training time and improves model accuracy, particularly when 

working with small datasets. We evaluate our proposed method using the "The Cancer Genome Atlas (TCGA)" dataset from The Cancer 

Imaging Archive (TCIA). To assess its performance, we compare it against other deep learning models such as DenseNet121, K-means 

clustering, and VGG16 for classification and segmentation tasks. Experimental results on the testing data demonstrate that our method 

outperforms other deep learning networks in terms of effectiveness and efficiency. Our research paper introduces a methodology that 

combines ResNet50 with transfer learning for tumor detection and ResUnet with a custom loss function for segmentation in brain MRI 

images. The results indicate that our approach is superior to alternative deep learning models, offering improved accuracy and efficiency 

in brain tumor segmentation tasks. 
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1. Introduction  

Gliomas, which arise from glial cells, are a prevalent type of 

brain tumor, accounting for approximately 40% to 50% of primary 

brain tumors. The World Health Organization (WHO) classifies 

gliomas into two categories based on their growth rate and 

likelihood of spreading: low-grade gliomas (LGG) and high-grade 

gliomas (HGG). HGG gliomas are more aggressive and malignant 

compared to LGG gliomas. Examples of LGG gliomas include 

Astrocytoma and Oligodendroglia, while Glioblastoma is the most 

common type of HGG glioma. 

Magnetic Resonance Imaging (MRI) is a crucial diagnostic 

tool  that enables doctors to visualize the shape, size, location, and 

activity of brain tumors. This information aids in treatment 

planning tailored to each patient. Advanced Abbreviations and 

Acronyms MRI techniques like diffusion-weighted imaging and 

perfusion-weighted imaging provide additional insights into the 

tumor's vascularization and cellular density, assisting in 

distinguishing between LGG and HGG gliomas. Timely and 

accurate diagnosis of gliomas is essential as it guides appropriate 

treatment selection, ultimately improving patient survival rates [1]. 

        MRI plays a significant role in the diagnosis of gliomas. 

Standard MRI methods used for glioma diagnosis include T1-

weighted MRI (T1-w), T2-weighted MRI (T2-w), T1-weighted 

MRI with gadolinium contrast enhancement (T1-c), and Fluid 

Attenuated Inversion Recovery (FLAIR). These imaging 

techniques  provide valuable information about glioma features, 

location, and size, facilitating improved diagnosis and treatment 

planning by medical professionals. 

Automated and precise segmentation of brain tumors   and 

their sub- regions can greatly alleviate the manual labelling 

workload and time required by medical professionals. This 

approach offers a faster and more accurate alternative, enabling 

clinicians to diagnose and treat brain tumors with improved 

efficiency. However, several challenges must be addressed by 

researchers in this field. 

Firstly, the variability in size, shape, and location of tumors 

poses a significant challenge for brain tumor segmentation. 

Achieving consistent and accurate identification and 

segmentation of tumor regions across different patients and 

images can be difficult. 

Secondly, medical images, such as MRI scans, often contain 

noise and artefacts that can impact the accuracy of segmentation 

algorithms. Factors like patient motion, magnetic field in 

homogeneities, and imaging artifacts contribute to the presence 

of noise, making segmentation more challenging. 
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Tumor heterogeneity is another crucial challenge in brain 

tumor segmentation. Tumors can exhibit complex and 

heterogeneous characteristics, making it challenging to precisely 

delineate tumor borders. Additionally, different sub-regions of a 

tumor may display varying degrees of contrast enhancement, 

edema, and necrosis, further complicating individual 

segmentation. 

    Addressing these difficulties is crucial to enhance the 

reliability and accuracy of brain tumor segmentation algorithms. 

Overcoming these challenges is essential for developing robust 

and precise segmentation approaches capable of handling the 

inherent variability and complexity of brain tumor images. 

Failure to address these challenges may result in inaccurate 

diagnoses and treatment planning, underscoring the ongoing 

need for research and development in this field. [1] 

In MRI scans, the brain consists of white matter, gray 

matter, and cerebrospinal fluid, all of which can be observed. To 

detect brain tumors, various MRI modalities are employed, 

including T1, T1-contrast (T1C), T2, proton density (PD) 

contrast imaging, diffusion MRI (dMRI), and fluid attenuation 

inversion recovery (FLAIR) pulse sequences. These modalities 

offer a comprehensive analysis of brain tissue, enabling the 

identification of abnormal areas indicative of tumor presence, as 

well as active tumor tissue, necrosis, and edema. Glioblastomas, 

in particular, tend to infiltrate healthy surrounding tissue, 

resulting in blurred and indistinct tumor borders. However, by 

combining multiple MRI modalities, each tissue type's distinct 

characteristics can be discerned, enhancing the accuracy of tumor 

region identification [2]. 

Deep convolutional neural networks (CNNs) have shown 

impressive performance in medical image segmentation. In 2015, 

the introduction of ResNet brought a residual learning framework 

that enabled the training of significantly deeper networks 

compared to previous models. Residual networks with up to 152 

layers have been evaluated on the ImageNet dataset 

demonstrating their depth capabilities while being less complex 

than VGG nets. 

Prior studies have explored the use of small convolutional 

kernels for segmenting tumors in MRI images. This approach 

employed smaller filter kernels to create deeper CNNs and 

cascaded additional convolutional layers to achieve a similar 

receptive field as larger kernels. Another study introduced a 

complex architecture with parallel branches and two cascaded 

CNNs for brain tumor segmentation. The network training 

involved two phases, refining the last layer using samples closer 

to those observed in brain tumors for each class. 

However, patch-based methods used in these studies have 

limitations such as redundancy caused by overlapping between 

small patches and challenges in training CNNs due to vanishing 

gradients. The problem of degradation arises as the network 

depth increases, leading to saturation in accuracy. 

Overcoming these challenges is crucial to develop more efficient 

and effective approaches for brain tumor segmentation. 

Addressing issues related to redundancy and vanishing gradients 

can help improve the performance and training process of CNNs 

in this context [3][4][5]. 

In this paper, we introduce a novel approach for brain tumor 

segmentation utilizing residual networks (ResNets) with transfer 

learning. ResNets are a type of deep convolutional neural 

network known for their effectiveness in image segmentation 

tasks. They incorporate shortcut connections, where the output of 

a layer is added to its input, improving the training of deep 

networks. This simple modification overcomes limitations of 

previous techniques and enhances performance. 

To train our ResNet model, we employ transfer learning. This 

technique leverages a model pre-trained on a large dataset, such 

as ImageNet, to enhance the performance of a model trained on a 

smaller dataset for a different task. In our case, we utilize a pre-

trained ResNet model from ImageNet and fine-tune it on a 

dataset of brain MRI images. This transfer learning strategy 

improves the model's performance by leveraging the knowledge 

learned from the large dataset. 

The structure of the paper is as follows: In Section 2, we present 

our proposed brain tumor segmentation algorithm based on 

Residual Network (ResNet) with transfer learning. The section 
provides a detailed description of the method. Section 3 presents 

the experimental results. Finally, in Section 4, we conclude the 

paper and discuss the findings. 

2. Method 

The ResNet50, originally trained on a large dataset for image 

recognition, is employed in this study for brain tumor detection 

using transfer learning. Transfer learning involves adapting the 

pre-trained network to the specific task at hand. In this case, the 

fully connected layers of ResNet50 are replaced with 

convolutional layers, which are then trained on a brain tumor 

dataset. Throughout the training process, the weights of the pre- 

trained layers remain unchanged, while the newly added layers 

are trained to identify brain tumors. By applying transfer learning 

with the ResNet50 model, benefits such as faster convergence 

and improved performance are achieved since the network has 

already learned relevant features for segmentation tasks. 

In addition, the UNet architecture, introduced by Olag 

Ronneberger et al., is specifically designed for biomedical image 

segmentation. The architecture comprises two main components: 

the encoder and the decoder. The encoder consists of 

convolutional layers followed by pooling operations, enabling 

feature extraction from the image. On the other hand, the decoder 

employs transposed convolutions to facilitate localization. Both 

the encoder and the decoder are fully connected layers networks. 

The UNet architecture effectively segments biomedical images 

by utilizing the strengths of the encoder and decoder components 

[6]. 

 

 Convolutional Neural Network Segmentation: ResNet 

architecture 

 Our proposed method utilizes a Residual Network (ResNet), 

which offers different variants such as ResNet-18, 

ResNet-34, ResNet- 50, and more, where the number represents 

the number of layers. For our approach, we employ the ResNet50 

model with transfer learning. Here are the details: 

ResNet50 is a deep convolutional neural network model 

comprising 48 convolutional layers, along with 1 MaxPool layer 

and 1 Average Pool layer. This configuration results in 

approximately 3.8 x 10^9 floating-point operations. 

While increasing the number of layers in deep convolutional neural 

networks generally improves accuracy, enhancing model 

performance is not as straightforward as merely adding more 

layers. Despite the development of techniques to mitigate issues 

like vanishing or exploding gradients, the problem of accuracy 
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saturation and rapid degradation persists even in deep neural 

networks with numerous layers. This issue cannot be attributed to  

overfitting and is observed as an increase in training error when 

additional layers are added to an appropriate deep model. 

To address the problem of accuracy degradation, one approach is 

to incorporate identity layers into a shallower model. Identity 

layers are essentially layers that pass their input through to their 

output without modifying it significantly. Adding identity layers 

does not increase the model's complexity, and it should not lead to 

an increase in training error. In fact, in certain cases, incorporating 

identity layers can actually improve the training error. The 

inclusion of identity layers can help stabilize the training process 

and prevent overfitting. 

 

 

 

 

 

Figure 1 In the comparison between the shallower and deeper 

models, it can be observed from both the left and right sides that 

the deeper model consistently exhibits higher error rates, which is 

unexpected since the deeper model should not inherently perform 

worse. 

To tackle the challenge of accuracy degradation in deep neural 

networks, a solution has been put forward in the form of a deep 

residual learning framework. This framework incorporates 

shortcut connections that function as identity mappings. These 

connections aim to counteract the problem of accuracy 

deterioration commonly observed in deep networks. By 

introducing these shortcut connections, the framework offers a 

way to mitigate the degradation issue and improve the 

performance of deep neural networks. 

 

 

 

 

 
Fig 1 This is an illustration from the original ResNEt paper 

 

To address the challenge of accuracy degradation in deep neural 

networks, a solution was proposed involving the training of 

layers to fit a residual mapping denoted as H(x). Additionally, a 

non- linear mapping F(x) is fitted using extra layers, such that 

F(x) = H(x) - x. This allows the original mapping to be expressed 

as  

H(x) = F(x) + x, as illustrated in Figure 2. 

One advantage of this approach is that it avoids the need to 

introduce additional parameters to the model. This helps to 

control computational time since shortcut identity mappings are 

utilized instead of incorporating extra layers with more 

parameters. By adopting this strategy, the problem of accuracy 

degradation in deep neural networks can be effectively tackled 

while maintaining computational efficiency. 

Working on skipping connections in ResNets 

To comprehend how ResNet addresses problems like vanishing 

and exploding gradients, it is essential to grasp the concept of 

skipping connections within the network. In traditional neural 

networks, the output of early layers is denoted as x_0, and 

subsequent layers perform computations based on this output. 

Z1 = w1x0 + b1   

X1 = ReLU(z1)  

Z2 = w2x1 + b2 

X2 = ReLU(z2)  

By introducing a skip connection in a Residual Network, 

the calculations are carried out on the output of early layers as 

usual. However, in addition to this, the output is also bypassed 

through x_0 and summed with the main output before passing 

through the second activation function. In the case of ReLU 

activation, if the output z_2 is 0 and only the positive x_0 is fed 

into the ReLU activation, the resulting output will be equal to 

x_0. 

X2 = ReLU (z2 + x0) 

X2 = ReLU (0 + x0) = x0 

 

By incorporating a skip connection that enables the direct 

passage of x_0 without undergoing computations in F(x), the 

operation can be represented as H(x), where x is added to the 

output of F(x). As the network's layer count increases, F(x) may 

diminish significantly or undergo alterations that hinder the 

network's capability to learn intricate mappings. By including x, 

the identity mapping of the input is embedded within F(x), 

offering the network a reference point for the function it needs to 

learn. It is important to recognize that the fundamental objective 

of a neural network is to uncover and comprehend a mapping. 

 

X → Y 

It is possible that in some cases, the neural network may resort to 

utilizing identity mapping when a skip connection is introduced. 

X → X 

The use of skip connections and residual blocks in deep neural 

networks allows the model to potentially bypass certain layers 

that may not contribute significantly to learning the problem at 

hand. During the backpropagation process, gradients of the loss 

function with respect to the weights are needed. However, to 

access the weights in earlier layers, gradients of the loss function 

with respect to the intermediate functions represented in the 

previous layers must also be calculated. When the final output is 

produced by the last activation function in the residual block and 

the cost J is immediately calculated, propagating the gradient 

back to the layers before the residual block requires calculating 

the gradient of the cost function with respect to x, the input to the 

residual block. Without the skip connection, the operation with 

all the intermediate steps required would be more complex and 

involve additional calculations. Using the chain rule, the full 

operation with all the intermediate steps to be performed without 

the skip connection looks like this [7] Deep Residual Learning 

for Image Recognition" by He et al. (2020). 

           

∂J

∂x
 

 

∂J
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=  

∂J
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By substituting the intermediate calculations with F(x), the 

process of computing gradients is now modified as follows: 

When skip connections are incorporated into a neural network, 

an additional function H(x) = F(x) + x is introduced. During 

back propagation in networks with skip connections, the 

gradient of the cost function needs to be computed by 

differentiating through H(x) instead of solely through F(x) as in 

networks without skip connections. This is because the gradient 

must flow through the identity mapping established by the skip 

connection, which adds the input x to the output of F(x). 

∂J

∂x
=  

∂J

∂H(x)
 
∂H(x)

∂x
 

 

By substituting F(x) + x with H(x) in the gradient calculation, 

we can simplify the expression. Since x has a derivative of 1 

with respect to itself, the resulting expression becomes: 

 

∂J

∂x
=  

∂J

∂H(x)
(

∂F(x)

∂x
+ 1) =  

∂J

∂H(x)
 
∂F(x)

∂x
+  

∂J

∂H(x)
 

 

The inclusion of skip connections in a neural network guarantees 

that the gradient of the cost function with respect to H(x) 

remains unaffected, even if the gradient of F(x) becomes 

exceedingly small due to multiple multiplications during back 

propagation through numerous layers. This characteristic allows 

the network to bypass certain gradient calculations during back 

propagation, thereby preventing the issue of vanishing or 

exploding gradients [8]. 

  

 ResNet50 architecture 

 

 

 

 

 

 

 

 

 

 

 
Our proposed method for brain tumor detection utilizes the 

ResNet50 architecture, as shown in Table 1. ResNet-50 is a 

convolutional neural network (CNN) design renowned for its 

ability to extract features at different abstraction levels, ranging 

from low-level to high-level features. This architecture, 

commonly employed for image classification tasks, consists of 50 

layers. The ResNet50 architecture begins with a convolutional 

layer containing 64 filters of size 7x7, followed by a max pooling 

layer with a stride size of 2. This is followed by a block of three 

convolutional layers with filter sizes of 64, 64, and 256 

respectively (sizes 1x1, 3x3, and 1x1). This block is repeated 

three times, resulting in a total of 9 layers. 

Subsequently, there is a block of four convolutional layers with 

filter sizes of 128, 128, and 512, repeated four times, resulting in 

a total of 12 layers. Following that, a block of six convolutional 

layers with filter sizes of 256, 256, and 1024 is repeated six times, 

totalling 18 layers. Finally, a block of three convolutional layers 

with filter sizes of 512, 512, and 2048 is repeated three times, 

comprising an additional 9 layers. The architecture concludes 

with an average pooling layer, followed by a fully connected 

layer with 1000 nodes, and a softmax function for classification 

purposes. Importantly, the ResNet50 architecture incorporates 

skip connections, allowing gradients to flow directly to earlier 

layers during back propagation. This mitigates the vanishing 

gradient problem and enables the network to learn more complex 

mappings. 

 

Transfer Learning with Resnet50 

By employing transfer learning with the ResNet-50 model, we 

leverage its pre-existing weights and adapt them to a new dataset 

specific to our tumor detection task. This approach offers several 

advantages, including reducing the amount of training data required 

and enhancing the model's accuracy. In our study, we utilized the 

pre-trained weights from the ImageNet dataset, which is a large-

scale dataset containing millions of images and has demonstrated 

exceptional performance in various image recognition and 

classification tasks. 

Pre-training the ResNet-50 model on the extensive ImageNet dataset 

equips the model with a robust foundation for feature extraction. 

The neural network has learned to capture a wide range of features 

from images, encompassing basic features such as edges and 

corners, as well as more complex features like object components 

and textures. These features are expected to be relevant in 

identifying brain tumors in MRI scans. 

Furthermore, utilizing the pre-trained ResNet-50 model helps 

mitigate the issue of overfitting. Since the model has already learned 

meaningful features from the ImageNet dataset, it can effectively 

identify important features from the MRI images without 

overfitting. This aspect is particularly crucial in medical image 

analysis tasks where the dataset size is often limited, and overfitting 

poses a common challenge. 

 

 

 

 

 

 

 

 

 

The ResUNet model is a modified version of the U-Net 

architecture that is well-suited for image segmentation tasks. It 

incorporates various layers, including convolutional layers, max- 

pooling layers, ReLU activation functions, concatenation layers, 

and up-sampling layers. The ResUNet architecture can be divided 

into three main sections: contraction, bottleneck, and expansion. 

The contraction section consists of four contraction blocks, where 

each block applies two 3x3 convolutional ReLU layers followed 

by a 2x2 max pooling operation. At each pooling layer, the 

number of feature maps is doubled. 
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The bottleneck layer comprises two 3x3 convolutional layers and 

a 2x2 up-convolution layer. This layer helps to compress the 

features while retaining the necessary information. 

The expansion section is composed of several expansion blocks. 

Each block incorporates two 3x3 convolutional layers and a 2x2 

upsampling layer, which reduces the number of feature channels 

by half. Additionally, the corresponding cropped feature map 

from the contracting path is concatenated with each block to aid 

in the reconstruction of detailed information. 

Towards the end of the expansion section, a 1x1 convolutional 

layer is employed to adjust the number of feature maps to match 

the desired number of segments in the output. 

Overall, the ResUNet model combines the strengths of 

contraction, bottleneck, and expansion sections to effectively 

perform image segmentation tasks by capturing and 

reconstructing detailed information. 

The U-Net architecture employs the Tversky loss function for 

pixel-level image segmentation, enabling the identification of 

individual cells in the segmentation map. By applying softmax 

to each pixel, the segmentation problem is transformed into a 

classification problem, assigning each pixel to a specific class. 

The same approach is also utilized in the ResUNet architecture. 

When compared to U-Net, ResUNet demonstrates enhanced 

accuracy and performance in biomedical image segmentation, 

particularly in the context of brain tumor segmentation [9]. 

 

 Implementation Details 

Our implementation consists of two parts: 1) Detection using 

ResNet50 with transfer learning, and 2) tumor segmentation using  

ResUnet with a custom loss function. For the ResNet50 model, 

we selected the Adam optimizer and trained it for a total of 30 

epochs based on previous experience [9]. The categorical cross 

entropy loss function was employed for this network [10]. By 

utilizing pre- trained weights from the ImageNet dataset, we 

expect to enhance both the efficiency and accuracy of the 

detection process. 

In the case of the ResUnet model, we employed the Adam 

optimizer with a learning rate of 0.001 and trained it for a total of 

60 epochs [11]. To perform tumor segmentation, we utilized a 

custom loss function based on Tversky loss, tailored to suit our 

specific requirements. 

3. Experiment and Results 

For result validation, we utilized The Cancer Genome Atlas 

(TCGA) dataset from The Cancer Imaging Archive (TCIA). In 

the case of ResNet50 with transfer learning, various metrics 

including accuracy, loss, confusion matrix, f1 score, recall, and 

precision” were employed for validation purposes. These metrics 

helped assess the performance and accuracy of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2 Brain MRI with Ground truth Tumour segmentation 

result 

 

 

 

 

 

 

 

 

 

 

 

Fig 3 Brain MRI with tumor projected on the actual brain MRI 

for better representation 

 

 

 

 

 

 

 

 

 

 

 

This is the confusion matrix for the resnet50 model for tumor 

detection. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig 4 Segmentation model Tversky Score graph 
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Fig 5 Segmentation model Tversky Loss graph 

 

The graphs displayed represent the Tversky score and Tversky 

loss for the ResUnet model used in tumor segmentation. In 

Figure 10, we have presented the segmentation results achieved 

through our proposed method. To demonstrate the accuracy of 

the segmentation, we have showcased the predicted tumor 

mask and the actual tumor mask separately. Additionally, we 

have overlaid these masks onto their respective MRI images, 

with the original mask shown in red and the predicted mask 

shown in green, allowing for visual comparison and 

assessment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 6 Final result, with predicted and actual tumor segmentation 

 

We conducted a comparison of our results with several other 

popular methods for image detection and segmentation, including 

Densenet121, Vgg16, k-means clustering, and ResUnet (without 

our custom loss function). Our proposed method achieved an 

accuracy of 96% after training for 30 epochs. In comparison, 

Densenet121 achieved an accuracy of 95%, while Vgg16 

achieved an accuracy of 94.08%. The ResNet50 model without 

transfer learning achieved an accuracy of 95.08%. 

For the segmentation task using ResUnet, our proposed method 

resulted in a loss of 27.44%. In contrast, the ResUnet model 

without the custom loss function had a higher loss of 29.22%. 

Additionally, a simple U-net model produced a loss of 29.33%. 

These findings indicate that our proposed model outperformed 

the other methods in terms of accuracy, loss, and power 

efficiency. 

4. Conclusion 

In this research paper, we propose an approach for brain tumor 

detection and segmentation utilizing ResNet50 with transfer 

learning and ResU-Net with a custom loss function. Our approach 

incorporates multi-modal data during network training. The 

experimental results demonstrate the superiority of our approach 

compared to other deep networks. To elaborate, our approach 

begins by employing ResNet50 to extract features from MRI 

images. Subsequently, ResU-Net is utilized for tumor 

segmentation, and a custom loss function is employed to train 

ResU-Net. The custom loss function is specifically designed to 

enhance output stability and segmentation accuracy. The 

evaluation of our approach is conducted on a dataset of MRI 

images, demonstrating accurate tumor detection and 

segmentation. Notably, our approach outperforms other deep 

networks, such as U-Net and V-Net. Looking ahead, our future 

work involves integrating 3D U-Net, 3D ResU-Net, and 3D level 

set methods to further enhance the performance of our approach. 
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