
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1508–1513 | 1508

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Enhanced Performance of Hadoop Parameters Using Hybrid

Meta Heuristics Optimization Techniques

Nandita Yambem1, A. N. Nandakumar2

Submitted: 27/01/2024 Revised: 05/03/2024 Accepted: 13/03/2024

Abstract: With Hadoop becoming the most popular open big data processing platform, various approaches have been proposed to achieve

maximal performance gain for big data applications. But the influence of various performance tuning parameters on the overall application

speedup is no-linear and it is also dependent on the application/data characteristics. This work models the problem of finding the optimal

values for tuning parameters as a search optimization problem and proposes a hybrid meta heuristics solution to problem based on

combining grass hopper swarm optimization with bat algorithm. The hybrid algorithm has good exploration and exploitation ability so that

the optimal solution is found without getting into local minimal problem.

Keywords: grass hopper swarm optimization (GSO), Hybrid meta-heuristics, Bat algorithm, mapreduce task.

1. Introduction

Big data analytics has become the engine for growth of many

enterprises all over the world. Knowledge extracted from large

volume of data collected from various departments of enterprises

like marketing, advertisement, development etc. can be used to

design the strategies for better positioning of the enterprises and

achieve competitive advantage. Among multiple big data analytics

platforms, Hadoop is a popular big data processing platform which

is open source and base for other processing platforms like Apache

Spark. Map/Reduce processing architecture is the core of the

Hadoop. The applications are designed in form of Map/Reduce

tasks to make maximal use of distributed and parallel computing.

The input placed in Hadoop distributed file system (HDFS) is

distributed to Map tasks running over multiple nodes and the

intermediate data generated by them is written to disk and

distributed to Reduce tasks. The results of the Reduce tasks are

combined and written to HDFS as final result. Map/Reduce tasks

run in multiple instances over multiple nodes to speed up data

processing. The performance of Hadoop can be enhanced by fine

tuning various configuration parameters like number of threads for

Map/Reduce, size of buffers, size of intermediate data, sort factor,

spill percent, run time memory size etc. There are multiple

configuration parameters and their joint influence on application

speed up is not a linear relation. Also exploring all the combination

of parameters and their influence of application speed is a

combinatory explosion problem. Many solutions have been

proposed modeling an influence of single configuration parameter

as a linear relationship. But under the constraints of multiple

parameters and application/data characteristics, the linear

relationship no longer holds. This creates wide negative variance

between the expected and actual application

__

1 Visvesvaraya Technological University, Belagavi, Karnataka

590018, India

 nanditayambem@gmail.com
2 City Engineering College, Bengaluru, Karnataka 560062, India

inandakumar53@gmail.com

Speedup. This work addresses this problem and proposes a solution

to find optimal values for the configuration parameters. The problem

of finding the optimal values for the configuration parameters is

modeled as search optimization problem and hybrid meta-heuristics-

based solution is proposed in this work.

A hybrid meta-heuristics solution combining grass hopper swarm

optimization (GSO) with bat algorithm is used to find the optimal

value for the configuration parameters. The configuration

parameters are considered in two categories of application specific

and platform specific. Parameters influencing the application

speed up are identified in the two categories (application and

platform) and a fitness function to maximize the application speed

up is designed for it. Hybrid meta heuristics find the values of the

configuration parameters with both exploration and exploitation

ability so that local minima problem is avoided. Following are the

contributions of this work.

1) Configuration parameters influencing the application

speedup in Hadoop were identified.

2) Hybrid meta-heuristics combining GSO and bat algorithm to

find the optimal value for configuration parameters with goal of

application speedup.

The rest of the paper is organized as follows. Section II presents

the existing works on Hadoop parameter optimization. Section III

presents the proposed hybrid meta-heuristics solution to optimize

Hadoop parameters. Section IV presents the results of the proposed

solution and its comparison to existing works. Conclusion and

future scope of work is presented in Section V.

2. Literature Review
Application speedup was increased through improving HDFS

efficiency in works of Nicholae et al [1]. Data access concurrency

induced computational slowdown was reduced using redundancy.

Validating against the Grid 5000 dataset, the solution was found to

increase the speed by 5% compared to default Hadoop. Compared to

other methods like configuration parameter, the speed up is lower in

this approach. Data compression was used as strategy for application

http://www.ijisae.org/
https://vtu.ac.in/en/
https://vtu.ac.in/en/
mailto:inandakumar53@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1508–1513 | 1509

speedup in works of Verma et al [2]. The data transfer latency was

reduced due to net bandwidth reduction caused by data

compression. The solution could not provide more than 5% speed

as validated by word counting task in XSEDE platform. Task

scheduling strategy was used for application speed up in works of

Zaharia et al [3]. In this strategy, the jobs which can affect the

response time of other tasks are predicted and prioritized for

execution against others. By prioritizing them ahead of others,

application slowdown and memory contention are reduced.

Lagging job prediction is difficult in heterogeneous environment.

Phase level scheduling was used for application speed up in works

of Zhang et al [4]. Job is split into multiple stages or phases. Each

phase is a fine-grained unit. Scheduling is done phase wise, so that

response time of overall job can be increased. This also facilitates

introduction of more parallelism. Validating the solution in a 10

node Hadoop cluster setup, the solution is found to increase the

speed up by 1.3 times. But without a generalized method for phase

like application split up, the solution cannot be used for all kinds

of applications. Data locality was used for speeding up the

applications in works of Guo et al [5]. Task with higher inter task

communication are scheduled to run in same node. By this way,

message exchange across nodes is reduced and this is reflected as

speedup in applications. But the communication profile of tasks

must be known well in advance to achieve maximum benefit in this

method. Intermediate data generated by map jobs were compressed

to improve the speedup in works of Crume et al [6]. Compression

of intermediate data reduced the data shuffling computation

overhead. Authors also improved the compression efficiency

without any compression loss. Through testing with Hadoop

clusters, authors found a speedup of 6%. The scheme works well

only for certain datasets. As a solution to this problem Chen et al

[7] proposed an adaptive strategy for intermediate data

compression. Heuristics based decision was made to decide when

to compress the data based on application performance benchmark.

Data shuffling strategy was used

to improve application performance in works of Yu et al [8]. This

algorithm made a decision on data shuffling with the goal of

minimization of extra duty cycles. Application speed up increased

by 10% compared to default Hadoop in this solution. Data

compression-based application speed up strategy was proposed by

Ruan et al [9]. Through a novel data compression algorithm,

authors compressed the intermediate data. The solution was tested

against word count task in Hadoop cluster and the method was

found to provide at least 5% speedup. Moise et al [10] improved

the efficiency of intermediate data management through

concurrency. This optimization reduced the overall data fetch time

and increased the application speed up. But the method is not

scalable for large clusters. By optimizing the in-memory

management, Veiga et al [11] increased the application speedup.

Intermediate data were managed effectively and as result

application speed up increased two times. The approach also

increased the memory resource cost. Configuration parameter

optimization was used for application speedup in works of Chen et

al [12]. Authors identified the parameters to be fine-tuned for CPU

and IO intensive tasks. But the parameter values are selected trial

and error without any guideline for value selection. Application

collocation was used as strategy for application speed up in works

of Malik et al [13]. Collocation reduced the inter node

communication and memory latency due to it. This resulted in

application speed up. Authors found the proposed solution is able

to increase the speed up by 8%. Application speed up for failed

tasks was realized by C.K et al [14]. Authors applied check pointing

to remember the failed points and execution continued from those

points. Hadoop configuration parameter tuning using genetic

algorithm was explored in works of Liao et al [15]. Though multiple

parameters were considered, the joint influence of multiple

parameters was not considered in this work. Memory management

strategies for application speed up were explored in works of

Bhaskar et al [16]. Based on past history of application, the memory

profile for application is designed. Pre-allocation of memory is done

based on the memory profile. Resources were held without

utilization and this affected the overall throughput. Gradient

algorithm was used for Hadoop configuration parameter tuning in

works on Kumar et al [17]. Gradient algorithm fine-tuned the

parameters with goal of application speedup. But the approach is

specific to application and not generic. Lee et al [21] used data

locality for application speedup. Two different data locality

algorithms based on block and keyword was introduced to achieve

maximal performance for map and reduce jobs. But the method is

not scalable for large clusters. Eldouh et al [22] integrated data

locality along with reduced data shuffling to increase the application

speedup. Term frequency features are extracted from texts and they

are grouped using K means clustering algorithms. Data belonging to

same clusters are maintained in same node. Though speed

up was increased by 40%, the solution worked only for specific

applications. From the survey, it could be seen that among the

approaches for configuration parameter tuning, multi parameters

tuning with goal of application speed up is not considered in any of

existing works. Though some works on tuning the number of reduce

tasks or memory was available, they are not adaptive to

application/data characteristics. This work addresses this research

gap and proposes a solution for application speedup in Hadoop based

on optimization of multiple configuration parameters adaptive to

application/ data characteristics.

3. Hybrid Meta-Heuristics Optimization

The architecture of the proposed solution is given in Figure 1. The

application and platform specific configuration parameters with

stronger correlation to application speed up are identified. The

optimal values for these configuration parameters are found using

hybrid meta-heuristics optimization. The optimal values are set onto

application and platform to achieve higher speed-up. Following are

the parameters considered for optimization in this work.

The application speedup is measured in terms of job completion

time. To model the relationship between the configuration variables

and the job completion time, a dry run is conducted with various

configuration values and the measured job completion time. The

optimal values for the configuration parameters (P1-P10) to achiever

lower job completion time are found using hybrid meta-heuristics

optimization combining Bat algorithm with GSO. A hybrid

equilibrium is maintained between exploration (local optima) and

exploitation (global optima) by adopting bat and GSO combination

Bat performs well in local region search with fine exploitation and

GSO offers faster convergence in terms of exploration.

The optimal values for the configuration parameters (P1-P10) to

achiever lower job completion time are found using hybrid meta-

heuristics optimization combining Bat algorithm with GSO. A

hybrid equilibrium is maintained between exploration (local optima)

and exploitation (global optima) by adopting bat and GSO

combination. Bat performs well in local region search with fine

exploitation and GSO offers faster convergence in terms of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1508–1513 | 1510

exploration.

Fig.1. Architecture of proposed hybrid Meta heuristics solution

Fig.2. Flow of parameter optimization

Bat algorithm is a bio inspired search optimization algorithm based

on the bio-sonar characteristics of bats. Bats use a type of sonar called

echolocation to detect prey. They fly from a position 𝑥𝑖 with a

random velocity 𝑣𝑖 with frequency f and loudness 𝐴𝑜 in search of

pray. They adjust the wavelength of their emitted pulses and rate of

pulse emission depending on their proximity to their pray. The

location, velocity and pulse frequency of a bat is updated over

successive iterations (t) as below

 𝑓𝑖 = 𝑓𝑚𝑖𝑛 + (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝛽 (1)

 𝐹𝑣𝑖
𝑡 = 𝐹𝑣𝑖

𝑡−1 + (𝐹𝑥𝑖
𝑡−1 − 𝐹𝑥∗)𝑓𝑖 (2)

 𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 + 𝑣𝑖
𝑡 (3)

𝛽is the random variable. Each bat is initially allocated a random

wavelength between [𝑓𝑚𝑖𝑛 , 𝑓𝑚𝑎𝑥]. The frequency is fine tuned

for a better exploration of the pray in the search space and for

diversification ability.

This is achieved by combining optimization algorithms with

complementary properties of strong exploitation and diversification.

By this way a near optimal solution can be obtained with a faster

convergence rate.

Table 1. OPTIMIZATION PARAMETERS

GSO is a recent swarm intelligence algorithm proposed in works of

Saremi et al [19]. This algorithm is based on the grasshopper’s

foraging and swarming behavior. Grasshopper is an agricultural pest

whose life cycle has two stage nymph and adulthood. In nymph

stage, the grasshoppers move in small steps with less movement. In

adulthood stage, grasshoppers make long rage movements and the

movements are abrupt. GSO algorithm has two phases (i)

intensification and (ii) diversification which are based on the

movement pattern of grasshoppers in nymph and adulthood stage.

Mathematically, GSO represents the swarming behavior of

grasshoppers in terms of their social interaction (Si), gravitational

force (Gi) and wind advection (Ai) as

 Pi = Si + Gi + Ai (4)

Where Piis ith grasshopper’s position. Si is calculated for N

grasshoppers separated by a Euclidean distance (dij) with a social

force s as

Si=∑ s(dij)diǰ
N
j=1
j≠i

 (5)

The social force is represented in terms of attraction intensity (𝑓) and

attration length (𝑙) as

 s(r) = f exp
−r

l − exp−r (6)

Attraction and repulsion are the two themes based on which social

interaction is measured. For a distance in range of 0 to 15, attraction

is felt in range of 2.07 to 4 and repulsion is felt in range of 0 to 2.07.

At the distance of 2.07, a comfort zone is realized where there is

neither attraction nor distraction.

ID Variables Default values

P1 io. sort.factor 10

P2 io. sort.mb 100

P3 io.sort.spill.percent 0.80

P4 mapred.reduce.tasks 1

P5 mapreduce.tasktracker.map.tasks.

maximum

2

P6 mapreduce.tasktracker.reduce.tas

ks.maximum

2

P7 mapred.child.java.opts 200

P8 mapreduce.reduce.shuffle.input.b

uffer.percent

0.70

P9 mapred.inmem.merge.threshold 1000

P1

0

Input data size (number of

samples/MB)

Application

dependent

parameter

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1508–1513 | 1511

The gravity force Giin equation (4) is calculated in terms of

distance unit vector to center of earth (êg) and gravitational

constant (g) as

Gi = −gêg (7)

The wind advection Ai in equation (4) is calculated in terms of

distance unit vector to wind direction (êw) and drift constant (u) is

given by

Ai = uêw (8)

Fitting each of the variables, the equation 1 is modified with upper

bounds (ubd) and lower bounds (lbd) in the the d-th dimension and

given as equation 9.

𝑃𝑖
𝑑 = 𝑐 (∑ c

ubd−lbd

2

N
j=1
j≠i

) 𝑠(|𝑃𝑗
𝑑 − 𝑃𝑖

𝑑|)
𝑃𝑗−𝑃𝑖

𝑑𝑖𝑗
) + �̂�𝑑

(9)

�̂�𝑑 is the best solution found so far in the d-th dimension space.

The parameter c is similar to inertia weight ω in PSO. This

parameter controls the grasshopper’s movement around food

(target) and provides a fine balance between diversification and

intensification. The parameter 𝑐 is calculated as

𝑐 = 𝑐𝑚𝑎𝑥 − 𝑡
𝑐𝑚𝑎𝑥−𝑐𝑚𝑖𝑛

𝑡𝑚𝑎𝑥
 (10)

With the maximum value for 𝑐 represented as 𝑐𝑚𝑎𝑥 and minimum

value for 𝑐 represented as 𝑐𝑚𝑖𝑛 . The position is updated for every

iteration (𝑡) for a maximum number of iterations (𝑡𝑚𝑎𝑥)

Grasshopper position is updated every iteration based on both local

and global best solution. The iteration is stopped when they are no

change in position of grasshopper.

Use of global best position prevents from getting trapped into local

optimum.

The pseudo code of grass hopper optimization algorithm is given

below

Algorithm 1: GOA Optimization

A. Random generation of initial population for n grasshoppers

Pi

B. Initialize Cmin, Cmax, and a maximum number of

iterationTmax

C. Evaluate the fitness f(Pi) of each grasshopper Pi

D. B= The best solution

E. While (t<tmax) do

F. Update c1 and c2

G. For i=1 to N, for all N grasshoppers in the population,

H. do

I. Distance between grasshoppers normalized in range of 1 to

4.

J. Update position using equation (12)

K. Rectify outlier and normalize grasshoppers position

L. end for

M. Update B with best solution so far

N. t=t+1

O. end while

P. Return B

Given a job completion time target (𝑗𝑡𝑐𝑡) and input data size (𝑃10),

the fitness function for maximization can be framed as

𝑓 =
1

(𝑗𝑡𝑐−𝑗𝑡𝑐𝑡)+1
 (11)

Where 𝑗𝑡𝑐 is the actual execution time. Since the relation between

parameters (P1-P10) and 𝑗𝑡𝑐 cannot be modeled as linear, a neural

network function is used to model the relationship. The neural

network function is given as

𝑗𝑡𝑐 =
1

1+𝑒∑ 𝑊𝑖𝑃𝑖+𝑏9
1

 (12)

Where the 𝑊𝑖 is the weights of the neural network and 𝑏 is the bias.

The weights and bias are found by training a 3-layer feed forward

neural network of following configuration

Table 2. NEURAL NETWORK CONFIGURATION

Parameters Values

Inputs P1to P10

Output 𝑗𝑡𝑐

Number of layers in neural

network

3

Number of neurons is layer 1 10

Number of neurons in layer 2 21

Number of neurons in layer 3 1

Activation function Sigmoid

The optimization process is given in Figure 2. The optimization

process starts with initial solution generation by Bat algorithm

followed by solution refinement using GSO. Bat algorithm starts

with a random values for P1-P9 (P10 is input by user) and attempts

to find the best values of P1-P9 by optimizing the fitness function

given in Eq. 11. GSO starts with initial solution given by Bat

algorithm and attempts to find the best values of P1-P9 by

maximizing the fitness function given in Eq. 11.

4. Results
The performance of the proposed solution is tested against PUMA

dataset [18] in Hadoop environment. The performance of the

proposed solution is compared for word

count and k-means for different volume of datasets. The

performance of the proposed solution is compared against

optimization scheme proposed by Chen et al [12], Enhanced Parallel

Detrended Fluctuation Analysis solution proposed by Khan et al [20]

and default parameters of Hadoop.

Table 3. COMPARISION OF DIFFERENCE BETWEEN

EXPECTED AND ACTUAL EXECUTION TIME FOR WORD

COUNT APPLICATION

Data

volume

(MB)

Proposed Chen et

al

Khan

et al

Default

Hadoop

128 2 4 3 8

256 4 7 5 11

512 5 8 6 12

1024 5 8 7 14

2048 6 9 7 15

Average 4.4 7.2 5.6 12

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1508–1513 | 1512

Table 4. COMPARISION OF DIFFERENCE BETWEEN

EXPECTED AND ACTUAL EXECUTION TIME FOR K-

MEANS CLUSTERING APPLICATION

Data

volume

(MB)

Proposed Chen et

al

Khan

et al

Default

Hadoop

128 3 4.5 4 9

256 4.2 7.2 5.5 11.8

512 5.7 8.4 6.4 12.1

1024 6.1 9.3 7.6 14.7

2048 7 10.1 8.2 15.6

Average 5.2 7.9 6.34 12.64

The percentage difference between expected and actual execution

time is at least 50% lower compared to Chen et al, 21% lower

compared to Khan et al and more than 100% lower compared to

default Hadoop parameter settings. The difference has reduced in

proposed solution due to two stages of finding optimal parameters

without getting into local minima problem. Initial solution is found

by Bat and further refined by GSO. The refined solution provides

application speed close to expected job completion time.

Table 5. COMPARISION OF EXECUTION TIME FOR K-

MEANS CLUSTERING APPLICATION

Data

volume

(MB)

Proposed Chen et

al

Khan

et al

Default

Hadoop

128 37 60 46 100

256 38 62 47 105

512 39 63 49 107

1024 41 65 51 109

2048 42 67 52 111

Average 39.4 63.4 49 106.4

The average execution in proposed solution is at least 60% lower

compared to Chen et al and 24% lower compared to

Khan et al. It is 1.7 times lower compared to Default Hadoop.

Table 6. COMPARISION OF EXECUTION TIME FOR K-

MEANS CLUSTERING APPLICATION

Data

volume

(MB)

Proposed Chen et

al

Khan et

al

Default

Hadoop

128 46 70 53 110

256 49 72 55 115

512 51 74 57 117

1024 54 76 60 119

2048 56 77 61 121

Average 51.2 73.8 57.2 116.4

The average execution time in proposed solution is at least 44%

lower compared to Chen et al and 11% lower compared to Khan et

al. The execution time has reduced in proposed solution due to

speedup caused by optimal configuration parameters.

5. Conclusion

A hybrid meta heuristics solution combing bat algorithm with GSO

is proposed in this for optimizing configuration parameters.

Optimal values for the parameters were found in two stages of

initial solution by bat and further refinement by GSO. Combining

GSO with Bat provided better exploration and exploitation ability

in optimization process. Through performance analysis with two

different applications for various data sizes, the proposed solution

is found to provide better speed up and close to target execution

time. The execution time is at least 11% lower compared to

existing works and proposed solution has at least 21% reduction in

deviation between actual and expected execution time.

References

[1] B. Nicolae, D. Moise, G. Antoniu, and al. BlobSeer: Bringing

high throughput under heavy concurrency to Hadoop

Map/Reduce applications. In Procs of the 24th IPDPS 2010,

2010. In press

[2] A. Verma, L. Cherkasova, and R. Campbell. Resource

Provisioning Framework for MapReduce Jobs with

Performance Goals. ACM/IFIP/USENIX Middleware, pages

165–186, 2011.

[3] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and I.

Stoica. Improving mapreduce performance in heterogeneous

environments. In USENIX Symposium on Operating Systems

Design and Implementation (OSDI), volume 8, page 7, 2008

[4] Qi Zhang, “PRISM: Fine-Grained Resource-Aware Scheduling

for MapReduce”, 2015 IEEE

[5] ZhenhuaGuo, Geoffrey Fox, Mo Zhou, Investigation of Data

Locality in MapReduce, Proceedings of the 2012 12th

IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (ccgrid 2012), p.419-426, May 13-16, 2012

[doi>10.1109/CCGrid.2012.42]

[6] Adam Crume, Joe Buck, Carlos Maltzahn, Scott Brandt,

Compressing Intermediate Keys between Mappers and

Reducers in SciHadoop, Proceedings of the 2012 SC

Companion: High Performance Computing, Networking

Storage and Analysis, p.7-12, November 10-16, 2012

[doi>10.1109/SC.Companion.2012.12]

[7] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to

compress-compute vs. io tradeoffs for mapreduce energy

efficiency,” in Proceedings of the first ACM SIGCOMM

workshop on Green networking. ACM, 2010, pp. 23–28.

[8] W. Yu, Y. Wang, X. Que, and C. Xu, “Virtual shuffling for

efficient data movement in mapreduce,” IEEE Transactions on

Computers, vol. 64, no. 2, pp. 556–568, 2015

[9] G. Ruan, H. Zhang, and B. Plale, “Exploiting mapreduce and

data compression for data-intensive applications,” in

Proceedings of the Conference on Extreme Science and

Engineering Discovery Environment: Gateway to Discovery.

ACM, 2013, pp. 1–8.

[10] D. Moise, T.-T.-L. Trieu, L. Boug´e, and G. Antoniu,

“Optimizing intermediate data management in mapreduce

computations,” in Proceedings of the first international

workshop on cloud computing platforms. ACM, 2011, pp. 1–

7.

[11] Veiga, Jorge & Expósito, Roberto &Taboada, Guillermo &

Touriño, Juan. (2018). Enhancing in-memory efficiency for

MapReduce-based data processing. Journal of Parallel and

Distributed Computing. 120. 10.1016/j.jpdc.2018.04.001.

[12] Chen, Xiang & Liang, Yi & Li, Guang-Rui& Chen, Cheng &

Liu, Si-Yu. (2017). Optimizing Performance of Hadoop with

Parameter Tuning. ITM Web of Conferences. 12. 03040.

10.1051/itmconf/20171203040.

[13] Maria Malik, Hassan Ghasemzadeh, Tinoosh Mohsenin,

Rosario Cammarota, Liang Zhao, AvestaSasan, Houman

Homayoun, and SetarehRafatirad. 2019. ECoST: Energy-

Efficient Co-Locating and Self-Tuning MapReduce

Applications. In Proceedings of the 48th International

Conference on Parallel Processing (ICPP 2019).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1508–1513 | 1513

[14] C, K. and X, A. (2020), Task failure resilience technique for

improving the performance of MapReduce in Hadoop. ETRI

Journal, 42: 748-760.

[15] Liao G., Datta K., Willke T.L. (2013) Gunther: Search-Based

Auto-Tuning of MapReduce. In: Wolf F., Mohr B., an Mey

D. (eds) Euro-Par 2013 Parallel Processing. Euro-Par 2013.

Lecture Notes in Computer Science, vol 8097. Springer,

Berlin, Heidelberg.

[16] Bhaskar, Archana&Ranjan, Rajeev. (2019). Optimized

memory model for hadoop map reduce framework.

International Journal of Electrical and Computer Engineering

(IJECE). 9. 4396. 10.11591/ijece.v9i5.pp4396-4407.

[17] S. Kumar, S. Padakandla, L. Chandrashekar, P. Parihar, K.

Gopinath and S. Bhatnagar, "Scalable Performance Tuning

of Hadoop MapReduce: A Noisy Gradient Approach,"

2017 IEEE 10th International Conference on Cloud

Computing (CLOUD), Honolulu, CA, 2017, pp. 375-

382, doi: 10.1109/CLOUD.2017.55

[18] Engineering.purdue.edu/~puma/datasets.htm

[19] S. Saremi, S. Mirjalili, and A. Lewis, ``Grasshopper

optimisation algorithm: Theory and application,'' Adv.

Eng. Softw., vol. 105, pp. 30_47, Mar. 2017

[20] Mukhtaj Khan, Zhengwen Huang, Maozhen Li, Gareth

A. Taylor, Phillip M. Ashton, Mushtaq Khan,

"Optimizing Hadoop Performance for Big Data

Analytics in Smart Grid", Mathematical Problems in

Engineering, vol. 2017, Article ID 2198262, 11 pages,

2017.

[21] S. Lee, J.-Y. Jo, and Y. Kim, ‘‘Hadoop performance

analysis model with deep data locality,’’ Information,

vol. 10, no. 7, p. 222, Jun. 2019

[22] A. Eldouh, H. Elkadi, and M. Khafagy, ‘‘Reducing data

shuffling and improving MapReduce performance

using enhanced data locality,’’ in Proc. IASTEM Int.

Conf., 2019, pp. 5

https://engineering.purdue.edu/~puma/datasets.htm

