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Abstract: The public can now easily create video deepfakes because of the growth of machine learning and artificial intelligence in the 

current digital era. The system of society is severely affected by this technology. The phrase "Deep Fake" implies digital representations 

created by advanced artificial intelligence that are adapted to make erroneous sounds and sights that appear real. The identification of these 

motion pictures presents an important obstacle because of the occasional development of progressively realistic deepfake generating 

techniques. FaceSwap and deepfake are two programs that have made it easier for anyone to realistically alter faces in videos in recent 

years. Technological advances can be helpful, but they may also be misused, which may result in difficulties like the dissemination of 

misleading data or online bullying. For this reason, being able to recognize when a video has been altered is important. This research 

tackles the problem of face alteration detection in video sequences that aim to target modern facial manipulation methods in this research. 

Specifically, the research looks at a set of several Convolutional Neural Network (CNN) models that were successfully trained. The 

suggested method uses two separate concepts to generate multiple models starting from the fundamental network (EfficientNetB4): Layers 

of attention and instruction in Siamese. Thus, by such a structure this model attains an accuracy of 94% on FaceForensics and DFDC 

dataset. 
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1. Introduction 

Significant progress has been achieved with video editing 

techniques in recent years, especially in respect to facial 

adaptation. For example, now research [1] can easily and quickly 

change a speaker's recognition by moving their facial expressions 

from one film to another. Each approach maintains the same basic 

principle: every irreversible operation leaves an individual mark 

that can be recognised to figure out which editing completed the 

task. This forensic evidence, however, can frequently be 

imperceptible and subtle. This is especially true for videos that 

have gone through considerable sampling reduction, numerous 

simultaneous edits, or excessive compression. This remains true 

for highly realistic forgeries produced with techniques that can be 

difficult to formally model. This renders it extremely difficult, 

from a forensic viewpoint, to identify current facial modification 

processes. 

Deepfakes are extremely realistic created media that are utilized 

for malicious activities, such spreading inaccurate data. These 

make use of customized techniques that modify specific areas of 

the obtained video frames from the original raw video. Certain 

portions that get superimposed and swapped with the target face 

are retained by the Deep Learning algorithms used for creating 

Deepfakes. As a result, the algorithm in [2] used functions in 

reverse. The same objectives, such as changes in lighting, lip and 

eye movements, are used to generate deepfake creation models. 

In addition, the processed videos can show apparent evidence of 

tampering throughout the deepfake creation process, such as 
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temporal space discrepancies, lighting variations, and compression 

distortions. 

 These signs can be identified by Convolutional Neural 

Networks (CNN), which can be used to build strong protections 

against deepfake technology. The test videos are split into frame 

packs by the model, after which it processes them. CNNs greatly 

streamline the procedure of collecting faces, spatial data, and 

temporal features. Large-scale deepfake detection can be 

facilitated by CNNs because of their considerable potential and 

scalability [3]. Transfer learning can be used effectively to the 

detecting procedure. If one wants to train an improved version of 

the neural network on a different dataset for a specific purpose, 

learning takes use of pre-trained neural network weights. 

 The base architecture is known as EfficientNet-B4, and it's a 

convolutional neural network (CNN) having a simple yet powerful 

design. Properly tuning the model's parameters enhances the 

extraction of information. Adding an attention mechanism 

enhances its ability to identify minute irregularities related to 

deepfake manipulations. EfficientNetAutoAttB4's attention 

mechanism was developed specifically for the B4 architecture and 

is placed strategically across the network. This approach [4] allows 

the model to selectively amplify regions which are essential to 

identifying modified data by constantly altering the significance of 

spatial factors in video frames. The model's focus on significant 

details is enhanced by this attention-augmented technique. 

 The combination of a new attention mechanism integration with 

the mathematical ideas discovered in EfficientNet layouts is what 

makes EfficientNetAutoAttB4 so strong. The model's [5] attention, 

depth, and architectural decisions all work collectively to show 

visual patterns indicative of deepfake manipulations. The model's 

excellent navigation of altered video frames contributes to its 

effectiveness in deepfake recognition. The attention method makes 

it possible for EfficientNetAutoAttB4 to examine areas that are 

susceptible to digital manipulation in a specific way, increasing 

accuracy and consolidating its position as a reliable safeguard 

against emerging deepfake threats. 

The 408 actual and 795 synthetic movies in the Celeb-DF dataset 

were produced with an altered version of the Deep-Fake generation 

technique. The videos feature a frame rate of thirty frames per 

second and average 13 seconds in length. Compared to the prior 

datasets, which contained high resolution videos featuring lots of 

visual imperfections that made it difficult to identify deepfakes, the 

generated videos have lesser visual imperfections and are therefore 

of higher quality. The challenge is made more difficult by the 

lower quality deepfakes in this dataset [6]. 

The Model has been trained with all the datasets available mainly, 

DFDC :[2], Celeb DF: [7] and FaceForensics++ : [8] to achieve a 

good amount of generalization. As mentioned in [9], EfficientNet 

models are very performant at deep fake detection, and many of 

the models used in the DFDC challenge make use of the 

EfficientNet models. It also shows the low correlation between the 

size of the model and its performance. 

2. Literature Survey 

Many video forensics techniques have been developed 

subsequently for an array of reasons. Numerous algorithms have 

been brought out to identify these forgeries in considering the 

increasing incidence of facial modification techniques and the 

potential dangers that they mean.Convolutional Neural Networks 

(CNNs) are used in specific techniques for evaluating footage 

frames by pixels. For example, MesoNet is a very basic CNN used 

for recognizing fake faces. [10]. It has been suggested, 

nevertheless, that XceptionNet performs better than this network 

when getting retrained.Other approaches track the chronological 

progression of video frames via the study of Long Short-Term 

Memory (LSTM). These techniques utilize a recurrent handle to 

combine frame-based features which were already 

obtained.Specific processing traces are the focus of some methods. 

[11] A certain method, for instance, takes into account the fact that 

deepfake donor faces have been enlarged to realistically fit onto 

the host video, and proposes a detector that keeps track of these 

indications of warping. [12] 

Some techniques use semantic analysis of the frames to gain 

insight past the disadvantages of pixel analysis. While one 

technique focuses on irregular lighting effects, another learns to 

distinguish between actual and fake head positions. Another 

technique is based on the study of eye flashes, because the first set 

of deepfake films showed specific eye artifacts that could be 

detected utilizing this technique. [13] However, these semantic 

methods lose their effectiveness when manipulation techniques 

become more realistic. Lastly, certain methods offer additional 

information regarding localization. One multi-task learning 

technique provides both a segmentation mask and a detection 

score. An attention mechanism has been suggested by a different 

approach [14]. 

EfficientNetV2, a new family of convolutional networks, is more 

rapid and parameter-efficient than previous versions of it. The 

models were built using training-aware neural architecture search 

and scaling, which simultaneously improves training speed and 

parameter efficiency. The models were examined further using a 

search space that was extended with the inclusion of new 

operations such as Fused-MBConv. [15] EfficientNetV2 models 

can be up to 6.8% smaller and train far more quickly than state-of-

the-art models. The authors propose a better progressive learning 

approach that, in order to speed up training further, adaptively 

modifies image size and regularization (such as data 

augmentation). When applied via progressive learning to the 

ImageNet and CIFAR/Cars/Flowers datasets, EfficientNetV2 

performs significantly better than previous versions. Since 

EfficientNetV2 pre-trains on the same ImageNet21k, it obtains 

87.3% top-1 accuracy on ImageNet ILSVRC2012, exceeding the 

accuracy of the most recent ViT [16]. 

Deepfakes, an innovative manipulation technique, enables 

anybody to effortlessly switch between two identities in a single 

video. The DeepFake Detection Challenge (DFDC) Kaggle 

competition began as a reaction to this new threat, and an 

enormous face swap video dataset has been generated to help in 

the training of detection models. The largest face swap video 

dataset that is available to the public is the DFDC dataset. It 

consists of over 100,000 clips that have been collected from 3,426 

selected actors and produced using various Deepfake, GAN-based, 

and non-learned gets closer techniques. [17] Although Deepfake 

detection is a very difficult and unsolved topic, a Deepfake 

detection model trained just on the DFDC can generalize to real 

"in-the-wild" Deepfake films. As such, a model can be a useful 

analysis tool when investigating potentially Deepfaked videos [2]. 

A powerful face detector designed specifically for mobile GPU 

applications is called BlazeFace. It may display between 200 and 

1,000 images per second on high-end devices. Its rapid speed 

makes it ideal for use in any augmented reality application where 

a particular facial region has to be provided as input for an 

individual model. These models could be used for facial 

segmentation, facial characteristic or recognition of emotions, or 

the computation of 2D/3D facial keypoints or geometry. [18] The 

growing number of deepfake videos has led to the development of 
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reliable detection systems that can warn viewers to the potential 

falsehood of such content on the internet and social media. The 

capacity to manipulate videos and swap faces is getting better 

every day because of to computing applications, software, and 

smartphone apps; nevertheless, automated systems' capacity to 

identify face counterfeits in videos is still somewhat unreliable and 

is usually biased toward the dataset that was utilized to create the 

specific detection system. [19] The authors of the present article 

examine the impact of different data enhancement and training 

methods on CNN-based deepfake sensors, both within and 

between datasets [20]. 

3. Methodologies 

The method of study relies on the concept of ensembling, which 

usually increases the precision of predictions. Learning an 

extensive amount of CNN-based classifiers to extract different 

types of high-level semantic data that support one another and 

improve the ensemble as a whole is the objective. The EfficientNet 

family of models, a groundbreaking approach for automatically 

scaling CNNs, is the first stage in the training procedure. These 

models beat other innovative CNNs in terms of precision and 

effectiveness while still adhering to the hardware and time 

limitations set by DFDC. Two enhancements for an EfficientNet 

layout have been proposed by the researchers. Add an attention 

mechanism first to help analysts in finding the most informative 

part of the video for classification. Furthermore, it examines how 

incorporating siamese methods of training into the learning process 

may produce new data information [21]. 

The figure represents how the attention layer is added to the 

EfficientNetB4 and CNN layers. [12] the strategy relies on the 

concept of ensembling, which often boosts accuracy of predictions. 

The objective is to train many CNN-based classifiers to gather 

distinct kinds of high-level semantic data that improve each other 

and enhance the ensemble. The researchers began with the new 

technique for automatically scaling CNNs, called the EfficientNet 

family of models. These models meet the hardware and time 

restrictions established by DFDC and are more accurate and 

efficient than other state-of-the-art CNNs. The researchers suggest 

two improvements for an EfficientNet architecture. First, as shown 

in figure 1, it includes an attention mechanism to help analysts 

identify the most informative portion of the video for 

classification. Following that, it explores the incorporation of 

Siamese training methodologies into the educational process to 

extract additional data. 

3.1. Attention Mechanism 

The researchers picked the EfficientNetB4 model from the 

EfficientNet family for the purpose of this research. Utilizing the 

ImageNet dataset, EfficientNetB4, with 19 million parameters and 

4.2 billion FLOPS, achieves 83.8% top-1 accuracy. [22] In 

contrast, the baseline face modification detection system, 

XceptionNet, requires 23 million parameters and 8.4 billion 

FLOPS to reach 79% top-1 accuracy. A square color image—more 

particularly, a face cut out of a video frame—is the input for the 

network. The accuracy of classification is enhanced by tracking 

facial data instead of using the whole frame as input. Any readily 

available face detector is able to simply extract faces from frames. 

A feature vector of 1792 elements, designated as f(I), reflects the 

network's output. The result of a classification layer is the face's 

the ultimate score. 

We implement an attention mechanism similar to the self-attention 

mechanisms and EfficientNet's methods outlined in [23]. This is 

how it works: 

• The feature maps from the EfficientNetB4 up to one 

specific layer have been selected by the researchers. This 

layer was chosen to provide the features sufficient input 

frame information without going excessive in terms of 

delicacy or detail. Particularly, the output features at the 

third MBConv block—which possess dimensions that 

range from 28×28×56—are selected by the researchers. 

• The single convolutional layer that the researchers use to 

process these feature maps has a kernel size of 1. To get a 

single attention map, the researchers next apply a Sigmoid 

activation function. 

• Each feature map at the selected layer has been enlarged 

by this attention map by the researchers. This aids the 

network in focusing on the most relevant parts of the input. 

This simple approach not only provides the network the ability to 

focus solely on the most important parts of the feature maps, but it 

also gives us an improved awareness of the parts of the input that 

the network considers to be the most instructional. Furthermore, 

the data gathered attention map is easily mapped to the input 

sample, showing the elements of it that the network considered 

more significant. The remaining layers of EfficientNetB4 process 

the attention block result in the end. The authors of the study call 

the final network EfficientNetB4AutoAttB4, and the entire 

training process could be executed end-to-end. 

3.2. Network Training 

The researchers use two different training methods for each model: 

1) End-To-End 

2) Siamese 

The first is a standard method of training that is utilized as well in 

the DFDC competition as metrics for assessment. The latter takes 

utilize the network's capacity for generalisation to generate a 

descriptor of features that highlights similarities between samples 

Fig 1: Architecture of EffieientNetAutoAttB4 
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that fall into the same class. Learning an image in the network's 

encoding space that successfully separates samples—that is, 

faces—into true and false classes is the ultimate goal. 

End-To-End training: The network generates a picture-related 

score y after the researchers input it a sample face. Note that a 

Sigmoid activation isn't utilized to pass this score. The commonly 

utilized LogLoss function drives the weights upgrading. 

𝑳𝑳 = −
1

𝑁
 ∑ (𝑦𝑖log(S(𝑦̂i)) + (1 − 𝑦𝑖)log (1 − S(𝑦̂i)))

𝑁

𝑖=1
       (1) 

where 𝑦𝑖 denotes the corresponding face label and 𝑦𝑖 {0, 1} the i-

th face score. Particularly, faces from real, flawless videos have 

been assigned to label 0 whereas those from counterfeit videos are 

connected to label 1. A total of N faces was utilized in the training 

manage, and the Sigmoid function is denoted by 𝑆 (·). 

Siamese training: The researchers use the triplet margin loss, 

which was motivated by artificial intelligence works that use 

CNNs to construct local feature descriptors. The triplet of margins 

losses is defined in the following manner, keeping in consideration 

that f(I) is the dynamic coding that the network obtained for a 

source of data face I, where k·k2 is the L2 norm: 

𝑳𝑻 =  𝑚𝑎𝑥(0, µ +  𝛿 +  − 𝛿−)                                                 (2) 

where, 

𝛿+ =  𝑘𝑓(𝐼𝑎)  −  𝑓(𝐼𝑝)𝑘2                                                             (3) 

𝛿− =  𝑘𝑓(𝐼𝑎)  −  𝑓(𝐼𝑛)𝑘2                                                                  (4) 

and 

A margin of µ is merely positive. 

• In this instance:  

• The anchor sample (𝐼(𝑎)) is a real face; 

• The positive sample (𝐼(𝑝)) is an alternate actual face 

that corresponds to the exact same category as 𝐼(𝑎);  

• The negative sample (𝐼(𝑛)) is an unreal face that 

corresponds to another group than Ia. 

Take into account the following networks in this experiment: 

• Since XceptionNet is the most efficient model presently 

in use, it makes it logical to use it as the baseline for 

experimental campaigns. [24] 

• EfficentNetB4 outperforms other current methods in 

terms of accuracy and efficiency. [25]. 

• EfficentNetB4Att, which is intended for separating out 

relevant facial sample segments from the irrelevant ones 

[26]. 

For each dataset, the researchers use a different data split method. 

The researchers use the initial 35 folders for learning, the 36–40 

folders for confirmation, and the final 10 files to evaluate while 

adopting DFDC, according to its folder structure. The researchers 

use a similar split for FF++, choosing 140 films of the initial 

YouTube loops for testing, validation, and training, and 720 videos 

for training. The matching bogus videos are categorized under the 

same division. Each result depends on the information that the 

examination groups. Researchers only utilize a particular amount 

of pixels from every video in this experiment. This is due to the 

fact that overfitting might result from using too few frames, yet 

performance isn't actually improved through using more frames. 

The researchers discovered that overfitting may be avoided 

without raising validation loss by using 32 frames each video. 

Keeping into account the limitations of the DFDC challenge, the 

investigators use the same limit for both the training and testing 

stages. For FF++, this produces roughly 1.6 million pictures, and 

for DFDC, it yields 3.4 million frames. 

Because not all pixel details are helpful for deepfake proof of 

identity, the researchers further focus on the area where the 

subject's face is placed, which helps to limit the quantity of data 

analyzed. The BlazeFace extractor was quicker compared to the 

MTCNN detector that the researchers used for obtaining features 

from each frame. The face with the highest rating of trust is 

retained by the researchers if multiple faces are found. A 224 × 224 

pixel squared color image is the result that the networks use. 

The researchers use a distinct split strategy for every set of data. 

The researchers divided DFDC based on folder structure, utilizing 

the initial 35 files for instruction, each of the folders spanning 36 

to 40 for confirmation, and the final 10 folders for testing. 

Researchers divided the collection of initial sequences they 

obtained from YouTube using FF++ into 140 videos for validation, 

140 videos for testing, and 720p videos for training. The same 

phony videos are in the exact same category. Each result is shown 

on the test sets. 

In this study, researchers only account for a specific number of 

frames from every movie. Two primary factors affect the choice to 

do this during the training phase: 

i. There is no rational way to increase the total number of 

frames with an objective to enhance efficiency; and 

ii. There is a strong propensity to overfit when using an 

incredibly tiny number of frames per clip.   By displaying 

both validation and training loss as an average of the 

training cycles with an array of frames per video, it 

illustrates this behaviour.  

It is noteworthy that choosing 15 frames instead of 32 for each 

video does not result in a lower minimum validation loss; on one 

together, selecting 32 pixels per clip assists in avoiding overfitting. 

When doing testing, the researchers should consider the equipment 

and time limitations given by the DFDC challenge. 

From this angle, researchers could further minimize the volume of 

data handled by the networks by considering that not every frame 

data is needed for the fake detection process. In fact, most study 

efforts are concentrated on a certain area, like the subject's face. 

Therefore, as a preprocessing step, extracting the human faces of 

the scene's subjects form each frame using the BlazeFace extractor. 

According to this study, the extractor is quicker than the authors' 

MTCNN detector. When several people are identified, researchers 

retain the face with the greatest confidence score. The generated 

color image with 224 x 224 pixels squared serves as the input for 

the networks. 

Techniques for appending data to the source features in order to 

improve the model during validation and training phases. Applying 

hue saturation, noise, arbitrary brightness contrast, horizontally 

flipping it, and random downscaling in particular, and then 

shrinking the resultant JPEG file. Specifically, using 

Albumentation as a data-augmentation library and Pytorch as a 

system for deep learning. 

As can be observed in figure 2, data augmentation approaches are 

used by the researchers to boost the resilience of the models during 

training and validation on the input faces. JPEG compression, hue 

saturation, random brightness contrast, downscaling, horizontal 

flipping, and noise addition are some of these techniques. use of 

Pytorch as a deep learning framework and Albumentation as a data 

augmentation library. The Adam optimizer is employed to train the 

models using specified hyperparameters. 

The magnitude of the datasets prevents the researchers from 

retraining the networks for an entire epoch. The process is as 

follows: 

• Train until the loss of validation reaches a plateau, which 

can take up to 20,000 iterations. Analyzing an entire set 

of 32 faces—16 real and 16 fake—randomly and evenly 

selected from all of the training split's films is referred to 

as an iteration. Every 500 training iterations, validation 
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will be carried out utilizing 6000 randomly selected and 

evenly distributed samples from every video in the 

validation set. The researchers cut the initial rate of 

learning by a factor of 0.1 if, after 10 validation 

processes (5000 training cycles), the loss of validation 

does not decrease. 

• The validation process, learning rate timetable, and 

number of iterations used in the end-to-end training are 

also used to train the feature extractor. The batch's 

composition and the loss function that was used make a 

difference. The batch in this particular case consists of 

12 triplet samples (6 real-fake-fake and 6 fake-fake-

real), selected from every one of the set's videos. 

3.3. Data Augmentation 

The validation process, learning rate timetable, and number of 

iterations used in the end-to-end training are also used to train the 

feature extractor. The batch's composition and the loss function 

that was used make a difference. The batch in this case consists of 

12 triplet samples (6 real-fake-fake and 6 fake-fake-real), selected 

from every one of the set's videos. The researchers emphasize on a 

subset of the multiple data augmentation techniques that may be 

utilized to represent what alterations a face could encounter in the 

outdoors. The following changes are taken into consideration: 

• HF: Horizontal Flip 

• BC: Brightness and Contrast changes 

• HSV: Hue, Saturation and Value changes 

• ISO: Addition of ISO noise 

• GAUS: Addition of gaussian noise 

•  DS: Downscaling with a factor between 0.7 and 0.9 

• JPEG: JPEG compression with a random quality factor 

between 50 and 99 

 

By training with BCE on the CelebDF dataset, the researchers 

independently test the aforementioned augmentations. Every 

experiment that is recommended will be carried out utilizing the 

Albumentations framework. Figure 3 shows the results on the 

CelebDF test set,such that probability near 1 is representing fake 

videos. In light of these results, two interesting inferences might be 

drawn. 

At first, it seems like augmentations have not much impact on 

enhancing intra-dataset detection. This could be because train, 

validation, and test groups encompass distinct video settings and 

scenarios. The HF enhancement is the only exception, providing 

an area under the curve gain of only 0.7%. 

Second, in terms of cross-dataset generalization, some 

augmentations are beneficial (sometimes significantly). 

Particularly, networks trained on both CelebDF and DFD show a 

rise in AUC when exposed to HF, BC, HSV, and JPEG [27].  

Perhaps because DFDC displays environments that are much 

different from those in DF, augmentations don't seem to help DF 

as much as they do DFDC. The latter, either inside a TV studio or 

in a conversation with studio-level lighting, contains almost just a 

single player in the center of the conduct, compared to the former, 

which features distant players traveling around the scene—

typically two actors. The researchers create an outcomes-based 

data augmentation pipeline. The CNN is then rebuilt by the 

researchers using triplet loss in addition to BCE. The BCE loss 

results are available. The fusion of augmentations can lead to 

significant increases in cross-dataset detection AUC, with gains of 

up to +9% when testing on CelebDF and training on DFD, 

respectively. In contrast, there is little to have an effect on the intra-

dataset detection performances. Table II illustrates how the small 

beneficial effects of triplet loss when training on the entire dataset 

are not as evident when augmentations are provided to the CNN 

trained with triplet loss. [13] As compared to BCE loss with data 

augmentation, triplet loss with augmentations possesses a lower 

AUC for almost all combinations. 

A different perspective on the differences between BCE and triple 

losses by training EfficientNetB4 using subsampled training data 

in data-limited environments can be noticed. The loss of triplets 

assists with intra-dataset detection (DFDC, CelebDF, and DF) in 

this circumstance, as well as in detection among datasets and beats 

BCE [23]. 

Figure 4 illustrates how the model's efficacy is broken out 

significantly in the confusion matrix, with a high number of 

accurate classifications for both authentic and fake videos. The low 

percentage of false positives or false negatives highlights the 

model's dependability even further. 

Figure 5 illustrates the framework's 0.805 F1 score, which 

emphasizes how storage and accuracy are aligned. It shows a 

remarkable capacity to accurately distinguish between authentic 

and phony videos while minimizing false positives and erroneous 

negatives. 

The model's 0.805 F1, as shown in figure 5, score highlights the 

way memory and precision are matched. It demonstrates an 

excellent ability of reducing false positives and false negatives 

Fig 3: Probability on CelebDF dataset 

Fig 4: Confusion Matrix for EfficientNetAutoAttB4 

Fig 5: F1 Score and ROC Score for EfficientNetAutoAttB4 
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while precisely recognising real and fake videos. 

As seen in figure 6, the model's excellent capacity to discriminate 

between genuine and fraudulent videos is exhibited by its ROC 

value = 0.806, and its AUC of 0.81 further confirms the model's 

overall efficacy. These metrics show how well the model reduces 

false positive rates while detecting true positive rates. 

4. Results 

In order to show the extent to which the attention mechanism 

extracts the most instructive content from faces, The researchers 

analyze the attention map that was generated utilizing a few FF++ 

faces. 

With the help, the researchers select the 28 x 28 2D map that is the 

output of the Sigmoid layer in the attention block. The researchers 

then overlay this on the input face after upscaling it to the input 

face size of 224 × 224. The results are displayed in figure 7 & in 

figure 8. It is notable that the most complex characteristics of faces, 

such as the lips, nose, ears, and eyes, may be emphasized via this 

basic attention process. Conversely, regions that are level or have 

relatively small gradients lack data related to the network. 

In fact, it has been repeatedly demonstrated that facial features 

account for the majority of artifacts from deepfake subsequent 

generations methods. For example, the most distinctive features of 

these methods are the coarsely sketched eyes & teeth with 

excessively white areas. When training the network in a siamese 

fashion, the researchers calculated an image projection over a tiny 

region using the commonly used technique to see if the features 

generated by the net's coding are discriminating for the job. It is 

apparent when frames from identical videos group together into 

little sub-regions. Furthermore, all of the real samples are arranged 

in the upper portion of the chart, whereas the fake samples are 

shown in the lower portion. The frames of the same videos group 

together to form subregions which are easier to travel. The frames 

from the same videos group together into subregions which are 

simpler to traverse. This illustrates the decision to use both 

datasets. 

The final output of two separate films created with the 

EfficientNet-B4 structure is shown in figures 7 and 8, where 7.a 

shows what was taken from the actual video and 8.a shows the 

image taken from the fake video. 

The face extracted from the video is passed through the attention 

layer for getting better accuracy in the result as seen in 7.b and 8.b. 

As shown in figure 9, if the particular video has a score near to ‘0’ 

the video will be real. Score near to ‘1’ will show that the video is 

fake. The score is determined by taking into account the 

combination of EfficientNet-B4 architecture and the attention 

layer.  

In figure 10, the final result is displayed by classifying the image 

captured by the best frame present in the video as real and fake.  

Figure 11 is the graph of the real and fake video respectively. Real 

video means lines will be closer to the x axis. Every line is 

depicting a different feature of the video frame. And if the line is 

closer to 1 meaning the video is fake. 

5. Conclusion 

Detecting manipulated content in videos is crucial today due to the 

Fig 6: ROC Plot for EfficientNetAutoAttB4 

Fig 7: Image Processing  

a) Real Image Input                        b) Image of Attention Layer 

Fig 8: Image Processing  

a) Fake Image                                 b) Image of Attention Layer 

Fig 10: Final Score 

Fig 9: Classification of image as real and fake 

Fig 11: Graph of the final result 
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widespread use of videos in daily lives and mass media. The main 

focus on detecting facial manipulations in videos, which could be 

created using traditional computer graphics or deep learning 

techniques. This method is inspired by EfficientNet models and 

improves upon a recent solution. Use of an ensemble model are 

trained with two main strategies: 

1. An attention mechanism that helps the model focus on 

important features and improves its learning capability. 

2. A triplet siamese training strategy that extracts deep 

features from data for better classification performance. 

This research method has been tested on two public datasets 

containing nearly 120,000 videos. The results show that this 

ensemble strategy is effective (Accuracy of 94%) for detecting 

facial manipulations. In the future, the plan is to incorporate 

temporal information into this model. Analyzing more frames at 

once using intelligent voting schemes could potentially increase 

the accuracy of the model. 
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