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Abstract: Cloud computing being a multifarious technology offers greater services to the end users, on a serious note several challenges 

need to be addressed to date even though numerous researches have been conducted in this field. Among the major issues like security, 

sustainability, availability, and many more, efficient resource allocation according to the requirement is important. Efficient resource 

allocation has become a critical issue in cloud computing because over-provisioning increases financial risk both at the provider’s site and 

end-user; under-provisioning increases the service latency it may violate service level agreements eventually providers lose their customers. 

Hence many research works are going on to come up with an optimal solution for resource allocation in the cloud paradigm in different 

ways, like load balancing, workflow scheduling, container positioning, QOS parameter-based scheduling, etc. Our work addresses the task 

secluding by using the Deep Reinforcement technique corresponding with MAPE architecture, where the process of task scheduling is 

evolved over the various stages of MAPE architecture combining the VM pricing models (reserve, on-demand, and spot). We implemented 

our technique on the BitBrains dataset which consists of traces of 1750 VM. The results are discussed on variants of Reinforcement 

techniques and concluded the Reinforcement combining with neural network i.e DeepReinforcement technique with VM pricing model 

(DRL with PM) shows better results compared to other techniques. Our work's throughput is compared to those of others who achieved 

promising results, validating that our approach to task scheduling yields superior outcomes. 

Keywords: Reinforcement learning, Deep Reinforcement learning, MAPE architecture, VM Pricing model, Q learning.

1. Introduction 

Cloud computing, particularly the Infrastructure as a Service 

(IaaS) model, offers reliability, availability, and scalability, 

facilitating the execution of diverse applications through a pay-as-

you-go model. However, it introduces challenges in resource 

management due to factors like application heterogeneity, resource 

contention, and varying workload patterns. Successful resource 

management solutions aim to maintain user satisfaction by 

dynamically adjusting infrastructure to meet changing demands, 

but breaches the existing and policy created Service Level 

Agreements (SLAs) that also offers Quality of Service (QoS) can 

occur without a thorough understanding of environment dynamics 

and their impact on system performance. 

Cloud workloads, especially those involving end-users, are 

dynamic and uncertain due to user actions and environmental 

factors. Predicting future workloads is challenging, requiring 

consideration of factors like user behaviour and application 

specifics. Adaptable decision-making mechanisms are essential for 

dynamically scaling resources to ensure Quality of Service (QoS) 

satisfaction amidst diverse performance-related issues. Auto-

scaling strategies aim to optimize objectives like execution time, 

cost-effectiveness, and adherence to Service Level Agreements 

(SLAs), facing challenges in scaling and scheduling optimization. 

1. Scaling Phase: In the scaling stage, the goal is to dynamically 

adapt the quantity and types of cloud resources, such as virtual 

machines (VMs), based on the changing demands of the 

application. This involves acquiring or releasing resources to align 

with application requirements. Both the number and types of 

resources need to be optimized.  

2. Scheduling Phase: The scheduling stage deals with the 

assignment of individual application tasks to the acquired 

resources. This task allocation process aims to maximize resource 

utilization and overall system efficiency.  

Autoscaling strategies must continuously refresh their information 

to make informed decisions, taking into account the following 

factors: 

Application displays changing responsibility designs at various 

stages. Models used to appraise task spans are innately flawed. 

Cloud foundations are set apart by fluctuating execution levels. 

Autoscaling strategies, depicted in Figure 1, require continuous 

monitoring of both infrastructure and applications. This ongoing 

observation helps mitigate disparities between estimated task 

information and actual execution progress, enabling the scaling 

and scheduling decisions during runtime. These strategies operate 

on a periodic execution pattern, making adjustments to instance 

numbers for each VM type and price model within each update 

interval, while efficiently allocating tasks to available VMs. 
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Fig. 1. Autoscaling process that incorporates the scaling and planning 

subprocesses 

The subproblems of autoscaling, namely task scheduling and 

scaling, are both NP-hard due to their computational complexity. 

The inherent variability in cloud performance adds uncertainty to 

application execution. Our primary goal is to enhance cloud 

performance through autoscaling, with a focus on employing 

Reinforcement Learning (RL) techniques for task scheduling in 

this paper. Scaling considerations will be addressed in future 

research. Various methods, such as Dynamic programming, 

Likelihood calculations, Heuristic strategies, Meta-Heuristic 

calculations, Hybrid Algorithms, and ML techniques, have been 

investigated to address  issues. 

1.1. Reinforcement Learning 

Reinforcement Learning (RL), [2] referenced in works is a learning 

process that aims 1) to generate trial-and-error in dynamic 

environment with recursive and irritative process 2) optimal action 

that meets that state of art irrelatively. The RL technique is driven 

discussion process that is been modelled referring to MDP but it 

manages with compromising any number of states and actions 

namely S and A respectively and a reinforcement signal, typically 

referred to as reward. A reward function is represented as R: S × A 

→ R and a state transition function T: S × A → π(S) [3]. Here, π(S) 

represents a probability distribution over the set of states. The 

primary goal of the RL agent is to find an ideal approach, meant as 

'π,' which directs the specialist in choosing activities that boost the 

drawn out aggregate award [4]. 

 As seen in Fig. 2, when the framework is at time 't' with a state st 

from the state space S, the specialist pursues a choice by choosing 

an action at from the activity space A. Following the application of 

action at to the environment, the state changes from st to st+1 and 

the climate gives a quick award rt+1 [5]. 

 

Fig.  2. Relationship between an RL agent and Environment 

 

There have been broad conversations with respect to the use of ML 

in the space of distributed computing or cloud scheduling [4]. As 

of recent, profound support learning (DRL), an innovative 

approach that falls within the realm of machine learning, has 

gained prominence for addressing cloud computing scheduling 

challenges. To handle continuous state spaces and continuous 

time-varying environments, one approach is to use 

nonhomogeneous Markov processes. However, using them often 

involves solving complex differential equations with variable 

coefficients, which can be challenging and computationally 

expensive.  

Figure 3 show the model of RL framework with neural network i.e 

DRL. DRL leverages the strengths of deep neural networks and 

reinforcement learning, demonstrating notable advantages in 

various scenarios, particularly within the intricate landscape of 

cloud computing [5]. Our research is among the first to address 

both scheduling and scaling simultaneously for autoscaling in the 

cloud environment using reinforcement learning (RL) techniques. 

 is conceptualized as a control loop where learning occurs 

gradually through trial and error, driven by feedback, enhancing 

the system's autonomy and adaptability to changes. This adaptive 

quality is crucial in uncertain environments where prior knowledge 

is vague or incomplete. At each decision or action, there's potential 

to modify the state of art in the environment and rigorously   

considering the recent feedback. 

 

Fig.  3. RL framework with neural network-based decision maker 

1.2. Research Gaps 

In this paper, we discuss about neural network-based 

reinforcement learning system (DNN-Deep Neural Network) to 

resolve some gaps of task scheduling in cloud. They are as follows: 

1) Although the RL paradigm appears to align with our problem, it 

important to determining the appropriate timing for action 

initiation and the action type [6]. 

2)The poor initial convergence [7]. 

3) Focusing on the evaluation of state-action values is crucial for 

initiating new actions when dealing with expensive state-action 

spaces [1]. 

The aforementioned are the identified main issues that greatly 

increase the dimensionality of the state-action space and the 

complexity of the problem. 

1.3. Paper Organization 

Section II delves into the background and explores related 

research. In Section III, we present the decision-making system for 

task scheduling during the planning phase. Furthermore, this 

section outlines the system framework and introduces the proposed 

algorithm. Section IV provides comprehensive details on the 

experimental results, elucidates the evaluation metrics used, and 

conducts an in-depth analysis of the outcomes. Section V serves as 

the conclusion of this work. 

2. Related works 

In the section, works done by various authors have been discussed 

and gaps in their work is identified to work on as a part of my 

research work. Finally, a comparative statement is drawn out of the 
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observations. The author of the work [10] as proposed RLPAS 

(Reinforcement Learning based Proactive Auto-Scaler) 

calculation, drawing motivation from the laid out RL- SARSA 

algorithm. This adaptation allows RLPAS to simultaneously learn 

about the environment and manage resource allocation. Through 

rigorous testing with real workloads, the RLPAS algorithm 

demonstrates superior performance compared to existing auto-

scaling methods, exhibiting notable improvements in CPU 

utilization, response time, and throughput. The challenges of the 

work [11] revolves around devising effective strategies for 

dynamically allocating budgets in order to auto-scale scientific 

workflows within a cloud environment. The proposed approach 

involves implementing a Markov Decision Process (MDP) model 

[3], which enables the learning of novel policies by leveraging 

feedback, specifically information concerning the infrastructure's 

state and the execution progress of workflows. These insights are 

gathered from the execution of different policies within the auto-

scaler, facilitating an iterative improvement process. This work as 

faced severe makespan and /or cost degradation. An innovative 

approach to auto-scaling cloud applications, leveraging the Q-

learning technique is presents with the goal of helping stack of 

software As a Service an Assistance (SaaS) suppliers in settling on 

ideal asset portion choices inside a dynamic and flighty cloud 

environment [12]. The work incorporates various virtual machine 

(VM) pricing mechanisms, encompassing both the on-demand and 

reserved patterns. It is been acknowledge that auction-based 

pricing mechanisms play a significant role in the ever-evolving 

cloud trading market. The author of the work [13] implemented a 

decentralized architecture, which enhances the system's resilience 

in the event of a centralized controller failure. By distributing the 

responsibility for resource allocation to local controllers rather 

than relying on a single centralized controller, the system gains the 

ability to respond swiftly to sudden load spikes. The proposed 

approach in [14] is designed to exhibit dynamic adaptability in the 

face of uncertainties and workload spikes, effectively addressing 

the unwanted scenarios of overprovisioning and under-

provisioning. This method is executed at regular intervals, 

allowing to finely tune the allocation of resources to align with the 

workload demands of cloud services. The author is [15] as 

introduces scheduling algorithm that dynamically allocates the 

resources that is dependent on Q-learning. The author in [16] has 

introduced a dynamic resource scheduling algorithm that relies on 

Q-learning. Recognizing the competitive nature of resource 

allocation among the PM nodes within the environment, a Q-

learning algorithm that operates on a competition-based 

framework is devised. This approach enables the system to 

iteratively learn and refine the optimal resource scheduling 

strategy. The work [17] detail about a novel DeepBS solution 

effectively addresses the issue commonly encountered by RL 

algorithms. This is achieved through the implementation of our 

QoS Guarantor mechanism.  

This section highlights that many previous studies have focused 

solely on scaling or scheduling challenges in the cloud, neglecting 

to address both simultaneously. However, our innovative approach 

treats scaling and scheduling as interconnected subproblems 

within the autoscaling framework, leading to remarkable results. 

While addressing only one of these subproblems partially resolves 

the autoscaling challenge, our contribution emphasizes the 

importance of concurrently tackling both aspects for a 

comprehensive solution. In this paper, we specifically address the 

scheduling problem. 

 

Table 1. Comparative statement of the related works considered in the literature survey. 

  

References 
Algorithms/ 

techniques 

Problem Objectives 

Seyed Mohammad Reza Nouri, 2018,[7] Q Learning[7] Scaling Reduces SLA violation, minimizing cost 

Junjie Cen, 2022 [9] ModifiedQ-

learning[9] 

Scaling Minimizing System Delay 

J. V. Bibal Benifa, D. Dejey ,2019 [10] SARSA [10] Scaling Increase CPU utilization, increase response time and 

increase throughput 

Yisel Garı´, 2019,[11] Q learning[11] Scaling Increase Make span and reduce execution cost 

YiWei , 2019 [12] Q Learning[12] Scaling Reduce Cost 

Seyed Mohammad Reza Nouri, 2019 [13] Q learning[13] Scaling Reduce Cost and reduce SLA violation  

Mostafa Ghobaei-Arani a, 2018,[14] Q Learning [14] Scaling  Reduces cost and increases resource utilization 

Xin Sui ,2019, [15] Support vector 

Regression 

Scheduling  Reduces virtual machine migration and energy 

consumption  

Bin Wang, 2021,[16]  Deep Q Learning Scheduling Reduce energy consumption and reduce SLA violation 

rate 

Xingjia Li [17] Deep Q Learning Scheduling Reduce cost 

The table 1 depicts that majority of the work is done in the area of 

scaling compared to scheduling and none of the works considered 

scaling and scheduling as two sub problems of autoscaling. 

3. Proposed work 

Our work incorporates the MAPE architecture [8], comprising 

Monitoring, Analysis, Planning, and Execution phases. Monitoring 

involves tracking metrics like CPU usage, memory usage, and 

network bandwidth. The Analysis phase identifies overutilized and 
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underutilized VMs. Planning decides task-to-VM mappings based 

on pricing models, followed by executing Load-Based VM 

scheduling policies. The integration of Deep Q Networks (DQN) 

with Reinforcement Learning techniques in the planning phase is 

crucial in our approach. 

Figure 4 shows the MAPE architecture integrated with different 

components in the cloud paradigm. In the proposed approach, the 

planning phase of the Control MAPE  means  (Monitor, Analyze, 

Plan, Execute) circle is executed utilizing a RL-based specialist. 

This specialist ceaselessly changes the provisioned resources in 

view of the conditions of the framework including the current 

exhibition useful by property of Q Function  i.e Q(S,A), which 

addresses the worth capability of the specialist at time t while 

making a move at in the present status st.  Q𝜋(st,at) quantifies the 

total future rewards that result from the selection of action at while 

taking into account a discount factor 𝜆 and adhering to policy 𝜋 

within the current state st  [9], addressed in equation 1 .  

𝑸𝛑(𝒔𝒕, 𝒂𝒕) = 𝑬𝛑[∑ 𝝀𝒊𝑻
𝒊=𝟎  𝒓𝒕+𝒊+𝟏 | 𝑺 = 𝒔𝒕 𝑨 =  𝒂𝒕] 

   (1)    

      
  

Fig. 4. MAPE architecture 

3.1. Pricing model 

The three significant price models are reserved, on-request and 

spot. The spot evaluating model absolutely rely upon the ongoing 

accessibility of the assets and bid cost model relies upon of the 

ongoing business sector. We have planned on-request and spot 

evaluating model. Cloud computing is pay as you go, only as costs 

arise example where assets are normally brought On-request in a 

rental length, signified as 𝑇𝑝𝑒𝑟𝑖𝑜𝑑, which < 𝑇reservation, is a 

denotation applied for all VM instances that are treated to be 

reserved. Cloud service providers (CSPs) are considered without 

terminating their active reserved VM instances as long as these 

instances are until their reserved period is alive, 𝑇reservation. The 

renting policy (RP∆t
jR,RP∆t

jO,RP∆t
jS)  at time ∆t has two concepts to 

be considered one is the pricing model and the different VM types, 

where RP∆t
jR   = number of reserved VM instances with type j for 

the period  [∆t,∆t+1], RP∆t
jO  = rented on-demand VM instances 

with respect to  type j for a specific period, RP∆t
jS  = new rented 

spot VM instances with respect to type j.  

The Total Cost refers to the overall cost borne by the Cloud service 

provider to serve all requested services.  

Total VM cost is the cost of all the VMs as given in equation 2. 

                             

Total Cost = ∑ 𝐕𝐌 𝑪𝒐𝒔𝒕𝒏
𝐍
𝐧=𝟏     (2) 

 

Each VM Cost depends on the renting policy at time t as expressed 

equation 3 

VM Costn= ∑ ((𝑽𝑴𝒕
𝒋𝑶  

∗ 𝑪𝒕
𝒋𝑶
) + 𝑷𝒕

𝒋𝑶
+ (𝑽𝑴𝒕

𝒋𝑹𝑵
𝒋=𝟏  * 𝑪𝒕

𝒋𝑹
 )  + 𝑷𝒕

𝒋𝑹
  +  

(𝑽𝑴𝒕
𝒋𝒔
 ∗  𝒃𝒊𝒅𝒕

𝒋
 )+ 𝑷𝒕

𝒋𝒔
)    (3) 

 

𝐶𝑡
𝑗𝑂
, 𝐶𝑡

𝑗𝑅
 𝑎𝑛𝑑 𝑏𝑖𝑑𝑡

𝑗
  cost of VM type j rented on-demand,  the cost 

of reserved VM type j and the bid price of VM type j during [∆t, 

∆t+1] respectively. As per renting policy RP∆t
jO = VMt

jO and 𝑉𝑀𝑡
𝑗𝑅

   

can be defined as in equation 4. 

 

𝑽𝑴𝒕
𝒋𝑹

=𝑽𝑴𝒕
𝒋𝑨𝒍𝒊𝒗𝒆𝑹  + 𝑹𝑷∆𝐭

𝒋𝑹
     (4) 

 

Table 2. Types of VMs 

VM Types Core CPU(MIPS) RAM 

(GB) 

Disk  VM 

price($/hr) 

t3.small 2 500 16 2GB 0.0224 

t3.medium 2 1000 64 4GB 0.0448 

t3.large 2 2000 128 8GB 0.0893 

t3.xlarge 4 5000 256 16GB 0.1786 

 

where 𝑉𝑀𝑡
𝑗𝐴𝑙𝑖𝑣𝑒𝑅 is the number of alive reserved VM instances with 

type j at time ∆t.  

It can be computed as shown in equation 5. 

 

𝑽𝑴𝒕
𝒋𝑨𝒍𝒊𝒗𝒆𝑹=𝑽𝑴𝒕−𝟏

𝒋𝑨𝒍𝒊𝒗𝒆𝑹+𝑽𝑴𝒕
𝒋𝑵𝒐𝒕𝑨𝒍𝒊𝒗𝒆𝑹    (5) 

 

Where, 𝑉𝑀𝑡−1
𝑗𝐴𝑙𝑖𝑣𝑒𝑅 = number of in process reserved VM instances 

which are active with category type j at time ∆t-1  and 𝑉𝑀𝑡
𝑗𝑁𝑜𝑡𝐴𝑙𝑖𝑣𝑒𝑅 

= passive reserved VM instances with type j category until ∆t. 

If the delay of the user request is more than 0, then SLA is violated. 

The main aim of scaling is to reduce the total cost by maintaining 

SLA as equated in 6. 

Minimize (Total cost)     (6) 

 

3.2. Pseudocode for MAPE architecture 

The Fig.4 depicts the MAPE architecture, their interaction with 

external users and the cloud environment. The user request is fed 

to load balancer which distributed among the could services. The 

algorithm for MAPE architecture is shown in algorithm 1. 

 

Algorithm 1: Pseudocode for MAPE architecture 

Input: Initialize state with user model, cloud model and price 

model. 

Output: scheduling i.e which involves mapping appropriate VM to 

the task corresponding to pricing model. 

While (time period (∆t)) 

  for each user request at the time interval ∆t  

  Monitor user and cloud environment 

  Analyse user request and cloud capacity 

  Plan an action for scaling operation by minimizing the 

total cost and maintaining the SLA. 

  Execute the planned operation by reducing the makespan 

time. 

  End for 

End while 
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3.3. Detailed Planning Phase 

In a unique cloud market, SaaS suppliers face the test of enhancing 

asset portion in the midst of vulnerability. We tackle this by 

figuring out the issue as a  Markov Decision Process (MDP)  and 

utilizing Q-learning coordinated with neural computing networks 

Our self-adaptive algorithm minimizes costs in cloud resource 

allocation, with the task scheduling pseudo-code outlined in 

algorithm 2. 

i) State space: The optimal action selection relies on the current 

observation denoted as x, which is a composite of two essential 

components: xserver and xtask. The xserver component encapsulates the 

present server state, encompassing available CPU resources 

(Av_CPU) and available memory resources (Av_MEM). These 

resources pertain to the Virtual Machines (VMs) currently running 

on the server. Conversely, xtask represents the existing task 

conditions, including the requested CPU resources (Rq_CPU), 

required memory (Rq_MEM), and task deadlines for multiple VM 

types and tasks. In this context, determining the optimal action 

entails making decisions based on these observations. These 

decisions may encompass resource allocation, VM placement, or 

task scheduling, all predicated on the current server state and the 

specific requirements of the tasks and VMs.  

ii) Action space: The agent requires a defined set of actions to 

manipulate its environmental state. These actions should align with 

the system's objectives. Be that as it may, not all activities are 

proper for each state, requiring the foundation of a strategy to 

confine the accessible activities for each state. In our framework, 

picking a proper VM machine out the four accessible is the activity 

to be take in light of the evaluating model utilizing DRL strategy. 

Taking into account state 𝑠 ∈ 𝑆, the at the same time activity set 

𝐴(𝑠) list down every one of the vital moves that can be made. 

Likewise state s is communicated as a = (VMtjR,VMsjO,VMsjS), 

where VMtjR is the hold VM example of type j dispensed for the 

period Treservation, VMsjO , on-request VM cases of type j 

designated for the period ∆t . VMsjS, is the spot VM occurrences 

of type j. 

iii)  Reward system: An adequate processing capacity should be 

maintained to accommodate the dynamic service requests 

generated by continuous workloads. When the current processing 

capacity falls short of meeting current workload demand, the 

resources will be overutilized and can be neutralized by scale-up. 

Conversely, if an excessive number of VM instances is allocated 

which causes underutilization and the processing capacity will far 

exceed the current workload. In this scenario, unnecessary 

expenses in renting VM instances will be incurred and also 

squanders valuable cloud resources which can be controlled by 

scale-down. Both of these inappropriate resource allocation 

behaviours have detrimental effects on overall system utility.  

 

The above three points are treated as individual factors referring to 

the same in this paper an optimized reward function is described to 

address cloud providers utility function. The decision time is the 

crucial one for all the considered states S which can be denoted as 

Ti  stating  state s=(𝐴𝑊𝑇𝑖 , 𝑉𝑀𝑇𝑖), where  𝐴𝑊𝑇𝑖is the average 

customer workload [𝐴𝑊𝑇𝑖 = 𝑎𝑣𝑔(𝑅𝑞CPU, RqMEM)]and 𝑉𝑀𝑇𝑖is the 

number of VM instances available in type [𝑉𝑀𝑇𝑖=avg(Av_CPU, 

Av_MEM)], an action a =(𝑉𝑀𝑠
𝑗𝑅

,𝑉𝑀𝑠
𝑗𝑂

, 𝑉𝑀𝑠
𝑗𝑆

 ), and so the 

updated state s'=(𝐴𝑊𝑇𝑖+1, 𝑉𝑀𝑇𝑖+1), where active workload is 𝑊𝑇𝑖 , 

then the below equation 7 defines reward function i.e  R(s',a) . 

 

R(s',a)=Profit(a)+Performance(a) [12]       (7) 

 

Profit(a)=Income- TotalCost        (8)  

 

TotalCost=∑ 𝐕𝐌 𝑪𝒐𝒔𝒕𝒏
𝐍
𝐧=𝟏                referred from equation (2) 

 

VM Costn= ∑ ((𝑽𝑴𝑻
𝒋𝑶  
 ∗  𝑪𝑻

𝒋𝑶
)   +  𝑷𝑻

𝒋𝑶
     +  (𝑽𝑴𝑻

𝒋𝑹𝑵
𝒋=𝟏   * 𝑪𝑻

𝒋𝑹
 )   

+ 𝑷𝑻
𝒋𝑹

  +  𝑽𝑴𝑻
𝒋𝒔
 ∗  𝒃𝒊𝒅𝑻

𝒋
 )           referred from equation (3)    

 

Penalty for on-demand and spot VM type is described in equations 

9, 10 

 

𝑷𝑻
𝒋𝑶
= {

𝟎,                    𝒊𝒇 𝑹𝑷𝑻𝒊
𝒋𝑶
≤ 𝑹𝑷𝑻𝒊−𝟏     

𝒋𝑶

𝒏𝒆𝒘𝑪𝑻
𝒋𝑹
   ∗ (  𝑹𝑷𝑻𝒊

𝒋𝑶
−  𝑹𝑷𝑻𝒊−𝟏 

𝒋𝑶
) ,   𝒆𝒍𝒔𝒆

        (9) 

 

𝑷𝑻
𝒋𝑹
= {

𝟎,                    𝒊𝒇 𝑹𝑷𝑻𝒊
𝒋𝑶
≤ 𝑽𝑻𝒊     

𝒋_𝒏𝒐𝒕𝑨𝒍𝒊𝒗𝒆𝑹 

𝒏𝒆𝒘𝑪𝑻
𝒋𝑹
   ∗ (  𝑹𝑷𝑻𝒊

𝒋𝑶
−  𝑽𝑻𝒊     

𝒋_𝒏𝒐𝒕𝑨𝒍𝒊𝒗𝒆𝑹 
) ,   𝒆𝒍𝒔𝒆

   (10) 

 

Equation (11) utility function that characterizes the mean 

utilization across all resources, with representing 𝑈𝑗
𝑚𝑎𝑥  the upper 

limit for each specific resource and 𝑈𝑗
𝑚𝑖𝑛   represents lower limit 

for ach specific resource, which means above  𝑈𝑗
𝑚𝑎𝑥  

overutilization and below 𝑈𝑗
𝑚𝑖𝑛   as underutilization of a resource. 

Increased utilization has a beneficial effect on the final reward 

(defined in 1st and 2nd part of equation (11)). Nevertheless, when 

utilization surpasses the established minimum threshold leading to 

a detrimental influence on the ultimate reward (defined in 3rd part 

of equation(11)). Initial bonus and penalty value is assumed to be 

2 and 1 respectively [12]. 

Performance(a)= 

VM(uj)=

{
 
 

 
 

𝒃𝒐𝒏𝒖𝒔,𝑼𝒋
𝒎𝒊𝒏   ≤ 𝒖𝒋 ≤ 𝑼𝒋

𝒎𝒂𝒙   

𝒃𝒐𝒏𝒖𝒔 ∗   (
∑ 𝑼𝒋

  −   𝑼𝒋
𝒎𝒂𝒙  𝑵

𝒋=𝟏

𝑵
)
𝟐

, 𝒖𝒋 > 𝑼𝒋
𝒎𝒂𝒙  

−𝒑𝒆𝒏𝒂𝒍𝒕𝒚 ∗  (
∑ 𝑼𝒋

𝒎𝒊𝒏  −   𝒖𝒋
𝑵
𝒋=𝟏

𝑵
)
𝟐

,    𝒖𝒋 < 𝑼𝒋
𝒎𝒊𝒏   

        (11) 

 

Algorithm 2: Pseudo code for task scheduling  

Input:  

State space (s): Initialize the state space with cloud and user request 

information  

Action space (a): Number of VMs of type j scheduled (includes on-

demand and spot) 

Load state space and action space into input nodes of neural 

network. 

Output: Reward obtained for optimal resource allocation at the 

output node. 

For each s,a introduce the table passage Q'(s,a) to nothing. 

Notice the present status s 

Do forever: 

 a`get_action() using neural network and Q-value table. 

Execute the action 

 rCompute_reward () as show in equation 10 through 12 

 Observe the new state s` 

 Update the table entry for Q`(s,a) as follows: 

   Q`(s,a) r + ℽ max Q`(s`,a`)   for all a 

 ss` 

In the Execution Phase of auto-scaling, scaling involves adjusting 

instances during planning, while scheduling tasks to active VMs 

occurs during execution. Minimizing makespan time is the 

planning phase's goal, achieved by prioritizing tasks with margin 

for delays. Critical tasks are given priority, with a policy 

implemented to allocate them to on-demand instances when 
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possible, minimizing the impact of failures. Future work aims to 

integrate scaling with scheduling. 

4. Experimental Setup and Results Discussion 

We conducted a comprehensive analysis using the GWA-T-12 

Bitbrains dataset to schedule tasks to appropriate VMs based on 

the proposed pricing model, measuring the performance alone 

dedicated to terms of throughput, CPU utilization, cost, and an 

aggregate metric. We integrated the SDAEM-MMQ technique 

with the examined policies, chosen for its novel nature and 

promising results. The dataset comprises performance metrics 

from 1,750 VMs within a distributed datacenter operated by 

Bitbrains, catering to prominent institutions like major banks, 

credit card operators, and insurers. The fastStorage trace, 

containing 1,250 VMs, is linked to high-speed SAN devices, while 

the Rnd trace includes 500 VMs with varying storage performance 

characteristics. Our work focused on the fastStorage dataset, with 

each VM file recording 30 days of samples monitored every 5 

minutes. 

We have examined four distinct types of Amazon EC2 virtual 

machines (VMs), as detailed in Table 2. These Amazon EC2 

instances have been configured with identical settings in the Cloud 

Sim simulator. In the table,  Core indicates the number of available 

CPUs for each VM type, CPU (MIPS) addresses the computer 

processor limit in great many directions executed each second, and 

in Table 2 as shown with VM cost are related with each hour of 

calculation. Furthermore, spot examples share similar attributes as 

the on-request occurrences recorded in the table, however their 

costs fluctuate over the long haul. The gave information relates to 

the period spreading over from September eighteenth to November 

seventh, 2023, inside the AWS US-East (Ohio) district. 

The RL algorithm operates without the need for a pre-existing 

model and, as it runs, it iteratively learns and refines policies by 

interacting with the target environment using new observations. 

Throughout the experiments, each agent's action set involves 

selecting the appropriate VM for the demanding tasks, with the 

individual VMs categorized by central processor and memory. To 

survey the viability of the support learning procedures in a true 

setting, our work is contrasted with a cutting edge booking 

strategies utilized in SDAEM-MMQ [16] by examination 

throughput boundary. In the work SDAEM-MMQ creator focused 

on the really decreasing energy utilization while keeping up with 

most reduced help level understanding infringement rate, 

throughput is one of the boundaries being viewed as in the process 

which we analyzed in our evaluating model based VM planning. 

The goal of this assessment is to guarantee the expanded 

throughput and high computer processor use with negligible 

expense while versatile scheduler is carried out..  

4.1. Performance study  

This subsection delves into the performance of DRL_with_PM 

across BitBrains workloads. Initially, it outlines the convergence 

outcomes of DRL _with _PM under diverse parameter 

configurations like different learning rate and Gama value. 

Subsequently, it evaluates the algorithm's performance against 

BitBrains VM traces considering the parameters like accuracy, 

precision, recall, f1 score and loss. Finally, an examination of the 

algorithm's performance under more various works is provided. 

Figure 5 and Figure 6 shows our model training utilizing the 

request arrival pattern derived from BitBrains dataset and initially 

assess the impact of fundamental attributes defining convergence 

and parametric outcomes, in specific it describes only discount 

factor and the learning rate. These findings. Initially, we scrutinize 

the effect of various learning rates, as shown in Figure 5. During 

this examination, typically the parameters are set to their know 

values. Maximum learning rates result in more rapid attainment of 

larger episode rewards. Perphase inorder to attain excepted 

training outcomes excessively high learning rates will not always 

yield favorable training outcomes; where learning rate could be set 

to 0.1 led to diminished rewards for the agent and convergence that 

implies to a possible local optimum.  To consider specialist 

reflections for all the impending potential compensation we really  

want to distinguish the rebate factor likewise the bigger markdown 

is straightforwardly corresponding to specialist's drawn out 

remunerations. A too enormous markdown factor suggests the 

specialist's accentuation on long haul rewards, possibly reaching 

out past the ongoing activity's impact, and dangers expanding the 

Q-esteem unnecessarily. In this examination, DRL with PM sets 

the gamma worth to 0.9, accomplishing ideal execution as far as 

combination and results is displayed in Figure 6. 

 

Fig.  5. Average reward for heterogenous learning rate. 

 

Fig.  6. Average reward consideration  for unique gamma values. 

 

In our study, we compared the performance of four distinct 

reinforcement learning (RL) algorithms. The comparison was 

based on their rewards accumulated over a series of episodes. 

Overall, the results demonstrate varying degrees of effectiveness 

among the different algorithms. Notably, Deep Reinforcement 

Learning (DRL) and Deep Reinforcement Learning with Pricing 

Model (DRL with PM) consistently outperform traditional 

Reinforcement Learning (RL) and Reinforcement Learning with 

Pricing Model (RL with PM) across all episodes. This observation 

suggests that the incorporation of deep neural networks enhances 

the learning capabilities of the agents, enabling them to achieve 

higher rewards more efficiently. 

Table 3 shows the results of various evaluation metrics for all the 

variants of reinforcement learning algorithms. Furthermore, the 

introduction of the pricing model appears to have a positive impact 

on the performance of both RL and DRL algorithms. 
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Reinforcement Learning with Pricing Model (RL with PM) and 

Deep Reinforcement Learning with Pricing Model (DRL with PM) 

consistently outperform their counterparts without the pricing 

model, indicating the importance of incorporating domain-specific 

knowledge into the learning process.  

 

 

Table 3:  The results of various evalution metrics for all the varinats of reinforcement learning algorithms. 

 

If accuracy, precision, recall, and F1 score all have the same value, 

it typically means that the model is performing equally well in 

terms of correctly classifying instances, both in terms of positive 

and negative classes, without favoring one over the other. 

Figure 7 shows the performance metric comparison for various RL 

algorithm with the proposed work. The graph effectively illustrates 

the RL model's performance with VM pricing, demonstrating 

superior results compared to models without pricing 

considerations. 

 

Fig.  7. Performance metric comparison for various RL algorithm with 

proposed work. 

4.2. Models for comparison 

To demonstrate the effectiveness of the deep reinforcement 

learning with pricing model framework for VM scheduling, we 

compared our algorithm, against various decision-making 

techniques under different scenarios of cloud paradigm. 

VPBAR [16] employs conventional task arrival modelling and 

energy utilization modelling techniques in cloud, which severely 

restrict the model's adaptability in scenarios traffic bursts. 

LRR_MMT [16] is explored upon a strong local regression 

evaluation for minimal migration with respect to time. 

DthMf [16] a metaheuristic based on Genetic Algorithms (GA) 

facilitates power-aware VM request allocation across multiple 

sustainable cloud datacenters, considering power heterogeneity.  

VMTA [16] is a scheduling strategy that relies on a method for 

predicting traffic burst workloads. 

 Megh [16] it is  a type of  RL algorithm associated with online 

involving in VM migrations to evaluate energy efficiency. 

 EQBFD [16] it is states the throughput for all the server 

integration. 

SDAEM-MMQ [16] involves Q-learning for decision making and 

optimizing the energy.  

Computational throughput refers to the processing speed of 

computational tasks within the cloud infrastructure. It measures the 

rate at which computational operations can be performed. Higher 

the computational throughput allows for faster execution of the 

tasks and improved performance of cloud-based applications. 

Optimizing throughput in a cloud scenario is essential for ensuring 

efficient and responsive cloud services. It involving optimizing 

network infrastructure, storage systems and computational 

resources to maximize data transfer rates, minimize latency and 

enhance overall performance for cloud users and applications. 

Throughput is considered as a comparison parameter for all the 

above mentioned works and its shown that proposed approach for 

VM scheduling using deep reinforcement learning with pricing 

model has higher throughput value.  

  

Fig. 8. Throughtput of various works compared with the 

proposed work. 

Figure 8 illustrates that the decision-making system, enhanced 

with reinforcement learning techniques and variants, yields 

promising outcomes. The proposed approach and the nearer 

SDAEM-MMQ models demonstrate superior throughput values 

compared to other referred decision-making techniques for task 

scheduling.  

5. Conclusion 

In conclusion, the multifaceted nature of cloud computing offers 

extensive services to end-users, yet numerous challenges persist, 

Algorithms Accuracy 

threshold 

Precision  Marking Recall factor  F1 Score  Loss 

RL 0.79 0.79 0.79 0.79 3.219980239868164 

DRL 0.85 0.85 0.85 0.8500000000000001 1.299985885620117 

RL with PM 0.81 0.81 0.81 0.81 2.384927194792y 

DRL with PM 

(Proposed) 

0.8795959191838

368 

0.8795959191838368 0.8795959191838368 0.8795959191838368 0.8795959191838368 
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including security, sustainability, and availability. Among these 

challenges, efficient resource allocation remains paramount. 

Inefficient resource allocation can lead to financial risks for 

providers and end-users through over-provisioning, while under-

provisioning can result in service latency, potentially violating 

service level agreements and leading to customer loss. To address 

this critical issue, researchers are exploring various approaches 

such as load balancing, workflow scheduling, container 

positioning, and QoS parameter-based scheduling. Our work 

focuses on task scheduling using Deep Reinforcement Learning 

within the MAPE (Monitor, Analyze, Plan, Execute) architecture, 

integrating VM pricing models (reserve, on-demand, and spot). 

We conducted experiments on the BitBrains dataset comprising 

1750 VM traces monitored for 30 days with the interval of 5 

minutes and evaluated the performance of different reinforcement 

techniques. Our findings demonstrate that combining 

reinforcement learning with neural networks, specifically the Deep 

Reinforcement technique, yields superior results compared to other 

approaches. Additionally, we compared our work's throughput 

with that of existing research, confirming that our task scheduling 

approach achieves promising outcomes. In summary, our research 

contributes to addressing the resource allocation challenge in cloud 

computing by proposing a novel approach to task scheduling. Our 

results underscore the efficacy of our approach and its potential to 

enhance overall system performance and user satisfaction in cloud 

environments. In future work, we plan to incorporate autoscaling 

capabilities into our cloud environment, encompassing both 

scheduling and scaling functionalities. This addition will serve as 

a significant advantage, enhancing overall cloud performance and 

facilitating optimal resource utilization. 
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