

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN
ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1612

Pricing Model - Aware Task Scheduling in Cloud paradigm enhanced

with DRL on MAPE Framework

Shruthi P S*1 , Dr. D. R. Umesh 2

Submitted: 26/01/2024 Revised: 04/03/2024 Accepted: 12/03/2024

Abstract: Cloud computing being a multifarious technology offers greater services to the end users, on a serious note several challenges

need to be addressed to date even though numerous researches have been conducted in this field. Among the major issues like security,

sustainability, availability, and many more, efficient resource allocation according to the requirement is important. Efficient resource

allocation has become a critical issue in cloud computing because over-provisioning increases financial risk both at the provider’s site and

end-user; under-provisioning increases the service latency it may violate service level agreements eventually providers lose their customers.

Hence many research works are going on to come up with an optimal solution for resource allocation in the cloud paradigm in different

ways, like load balancing, workflow scheduling, container positioning, QOS parameter-based scheduling, etc. Our work addresses the task

secluding by using the Deep Reinforcement technique corresponding with MAPE architecture, where the process of task scheduling is

evolved over the various stages of MAPE architecture combining the VM pricing models (reserve, on-demand, and spot). We implemented

our technique on the BitBrains dataset which consists of traces of 1750 VM. The results are discussed on variants of Reinforcement

techniques and concluded the Reinforcement combining with neural network i.e DeepReinforcement technique with VM pricing model

(DRL with PM) shows better results compared to other techniques. Our work's throughput is compared to those of others who achieved

promising results, validating that our approach to task scheduling yields superior outcomes.

Keywords: Reinforcement learning, Deep Reinforcement learning, MAPE architecture, VM Pricing model, Q learning.

1. Introduction

Cloud computing, particularly the Infrastructure as a Service

(IaaS) model, offers reliability, availability, and scalability,

facilitating the execution of diverse applications through a pay-as-

you-go model. However, it introduces challenges in resource

management due to factors like application heterogeneity, resource

contention, and varying workload patterns. Successful resource

management solutions aim to maintain user satisfaction by

dynamically adjusting infrastructure to meet changing demands,

but breaches the existing and policy created Service Level

Agreements (SLAs) that also offers Quality of Service (QoS) can

occur without a thorough understanding of environment dynamics

and their impact on system performance.

Cloud workloads, especially those involving end-users, are

dynamic and uncertain due to user actions and environmental

factors. Predicting future workloads is challenging, requiring

consideration of factors like user behaviour and application

specifics. Adaptable decision-making mechanisms are essential for

dynamically scaling resources to ensure Quality of Service (QoS)

satisfaction amidst diverse performance-related issues. Auto-

scaling strategies aim to optimize objectives like execution time,

cost-effectiveness, and adherence to Service Level Agreements

(SLAs), facing challenges in scaling and scheduling optimization.

1. Scaling Phase: In the scaling stage, the goal is to dynamically

adapt the quantity and types of cloud resources, such as virtual

machines (VMs), based on the changing demands of the

application. This involves acquiring or releasing resources to align

with application requirements. Both the number and types of

resources need to be optimized.

2. Scheduling Phase: The scheduling stage deals with the

assignment of individual application tasks to the acquired

resources. This task allocation process aims to maximize resource

utilization and overall system efficiency.

Autoscaling strategies must continuously refresh their information

to make informed decisions, taking into account the following

factors:

Application displays changing responsibility designs at various

stages. Models used to appraise task spans are innately flawed.

Cloud foundations are set apart by fluctuating execution levels.

Autoscaling strategies, depicted in Figure 1, require continuous

monitoring of both infrastructure and applications. This ongoing

observation helps mitigate disparities between estimated task

information and actual execution progress, enabling the scaling

and scheduling decisions during runtime. These strategies operate

on a periodic execution pattern, making adjustments to instance

numbers for each VM type and price model within each update

interval, while efficiently allocating tasks to available VMs.

1 PES College of Engineering, Mandya, Karnataka,-571401,

INDIA

ORCID ID : 0009-0000-6002-4838

2 PES College of Engineering, Mandya, Karnataka,-571401,

INDIA

ORCID ID : 0000-0002-6813-3876

* Corresponding Author Email: shruthips@pesce.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1613

Fig. 1. Autoscaling process that incorporates the scaling and planning

subprocesses

The subproblems of autoscaling, namely task scheduling and

scaling, are both NP-hard due to their computational complexity.

The inherent variability in cloud performance adds uncertainty to

application execution. Our primary goal is to enhance cloud

performance through autoscaling, with a focus on employing

Reinforcement Learning (RL) techniques for task scheduling in

this paper. Scaling considerations will be addressed in future

research. Various methods, such as Dynamic programming,

Likelihood calculations, Heuristic strategies, Meta-Heuristic

calculations, Hybrid Algorithms, and ML techniques, have been

investigated to address issues.

1.1. Reinforcement Learning

Reinforcement Learning (RL), [2] referenced in works is a learning

process that aims 1) to generate trial-and-error in dynamic

environment with recursive and irritative process 2) optimal action

that meets that state of art irrelatively. The RL technique is driven

discussion process that is been modelled referring to MDP but it

manages with compromising any number of states and actions

namely S and A respectively and a reinforcement signal, typically

referred to as reward. A reward function is represented as R: S × A

→ R and a state transition function T: S × A → π(S) [3]. Here, π(S)

represents a probability distribution over the set of states. The

primary goal of the RL agent is to find an ideal approach, meant as

'π,' which directs the specialist in choosing activities that boost the

drawn out aggregate award [4].

 As seen in Fig. 2, when the framework is at time 't' with a state st

from the state space S, the specialist pursues a choice by choosing

an action at from the activity space A. Following the application of

action at to the environment, the state changes from st to st+1 and

the climate gives a quick award rt+1 [5].

Fig. 2. Relationship between an RL agent and Environment

There have been broad conversations with respect to the use of ML

in the space of distributed computing or cloud scheduling [4]. As

of recent, profound support learning (DRL), an innovative

approach that falls within the realm of machine learning, has

gained prominence for addressing cloud computing scheduling

challenges. To handle continuous state spaces and continuous

time-varying environments, one approach is to use

nonhomogeneous Markov processes. However, using them often

involves solving complex differential equations with variable

coefficients, which can be challenging and computationally

expensive.

Figure 3 show the model of RL framework with neural network i.e

DRL. DRL leverages the strengths of deep neural networks and

reinforcement learning, demonstrating notable advantages in

various scenarios, particularly within the intricate landscape of

cloud computing [5]. Our research is among the first to address

both scheduling and scaling simultaneously for autoscaling in the

cloud environment using reinforcement learning (RL) techniques.

 is conceptualized as a control loop where learning occurs

gradually through trial and error, driven by feedback, enhancing

the system's autonomy and adaptability to changes. This adaptive

quality is crucial in uncertain environments where prior knowledge

is vague or incomplete. At each decision or action, there's potential

to modify the state of art in the environment and rigorously

considering the recent feedback.

Fig. 3. RL framework with neural network-based decision maker

1.2. Research Gaps

In this paper, we discuss about neural network-based

reinforcement learning system (DNN-Deep Neural Network) to

resolve some gaps of task scheduling in cloud. They are as follows:

1) Although the RL paradigm appears to align with our problem, it

important to determining the appropriate timing for action

initiation and the action type [6].

2)The poor initial convergence [7].

3) Focusing on the evaluation of state-action values is crucial for

initiating new actions when dealing with expensive state-action

spaces [1].

The aforementioned are the identified main issues that greatly

increase the dimensionality of the state-action space and the

complexity of the problem.

1.3. Paper Organization

Section II delves into the background and explores related

research. In Section III, we present the decision-making system for

task scheduling during the planning phase. Furthermore, this

section outlines the system framework and introduces the proposed

algorithm. Section IV provides comprehensive details on the

experimental results, elucidates the evaluation metrics used, and

conducts an in-depth analysis of the outcomes. Section V serves as

the conclusion of this work.

2. Related works

In the section, works done by various authors have been discussed

and gaps in their work is identified to work on as a part of my

research work. Finally, a comparative statement is drawn out of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1614

observations. The author of the work [10] as proposed RLPAS

(Reinforcement Learning based Proactive Auto-Scaler)

calculation, drawing motivation from the laid out RL- SARSA

algorithm. This adaptation allows RLPAS to simultaneously learn

about the environment and manage resource allocation. Through

rigorous testing with real workloads, the RLPAS algorithm

demonstrates superior performance compared to existing auto-

scaling methods, exhibiting notable improvements in CPU

utilization, response time, and throughput. The challenges of the

work [11] revolves around devising effective strategies for

dynamically allocating budgets in order to auto-scale scientific

workflows within a cloud environment. The proposed approach

involves implementing a Markov Decision Process (MDP) model

[3], which enables the learning of novel policies by leveraging

feedback, specifically information concerning the infrastructure's

state and the execution progress of workflows. These insights are

gathered from the execution of different policies within the auto-

scaler, facilitating an iterative improvement process. This work as

faced severe makespan and /or cost degradation. An innovative

approach to auto-scaling cloud applications, leveraging the Q-

learning technique is presents with the goal of helping stack of

software As a Service an Assistance (SaaS) suppliers in settling on

ideal asset portion choices inside a dynamic and flighty cloud

environment [12]. The work incorporates various virtual machine

(VM) pricing mechanisms, encompassing both the on-demand and

reserved patterns. It is been acknowledge that auction-based

pricing mechanisms play a significant role in the ever-evolving

cloud trading market. The author of the work [13] implemented a

decentralized architecture, which enhances the system's resilience

in the event of a centralized controller failure. By distributing the

responsibility for resource allocation to local controllers rather

than relying on a single centralized controller, the system gains the

ability to respond swiftly to sudden load spikes. The proposed

approach in [14] is designed to exhibit dynamic adaptability in the

face of uncertainties and workload spikes, effectively addressing

the unwanted scenarios of overprovisioning and under-

provisioning. This method is executed at regular intervals,

allowing to finely tune the allocation of resources to align with the

workload demands of cloud services. The author is [15] as

introduces scheduling algorithm that dynamically allocates the

resources that is dependent on Q-learning. The author in [16] has

introduced a dynamic resource scheduling algorithm that relies on

Q-learning. Recognizing the competitive nature of resource

allocation among the PM nodes within the environment, a Q-

learning algorithm that operates on a competition-based

framework is devised. This approach enables the system to

iteratively learn and refine the optimal resource scheduling

strategy. The work [17] detail about a novel DeepBS solution

effectively addresses the issue commonly encountered by RL

algorithms. This is achieved through the implementation of our

QoS Guarantor mechanism.

This section highlights that many previous studies have focused

solely on scaling or scheduling challenges in the cloud, neglecting

to address both simultaneously. However, our innovative approach

treats scaling and scheduling as interconnected subproblems

within the autoscaling framework, leading to remarkable results.

While addressing only one of these subproblems partially resolves

the autoscaling challenge, our contribution emphasizes the

importance of concurrently tackling both aspects for a

comprehensive solution. In this paper, we specifically address the

scheduling problem.

Table 1. Comparative statement of the related works considered in the literature survey.

References
Algorithms/

techniques

Problem Objectives

Seyed Mohammad Reza Nouri, 2018,[7] Q Learning[7] Scaling Reduces SLA violation, minimizing cost

Junjie Cen, 2022 [9] ModifiedQ-

learning[9]

Scaling Minimizing System Delay

J. V. Bibal Benifa, D. Dejey ,2019 [10] SARSA [10] Scaling Increase CPU utilization, increase response time and

increase throughput

Yisel Garı´, 2019,[11] Q learning[11] Scaling Increase Make span and reduce execution cost

YiWei , 2019 [12] Q Learning[12] Scaling Reduce Cost

Seyed Mohammad Reza Nouri, 2019 [13] Q learning[13] Scaling Reduce Cost and reduce SLA violation

Mostafa Ghobaei-Arani a, 2018,[14] Q Learning [14] Scaling Reduces cost and increases resource utilization

Xin Sui ,2019, [15] Support vector

Regression

Scheduling Reduces virtual machine migration and energy

consumption

Bin Wang, 2021,[16] Deep Q Learning Scheduling Reduce energy consumption and reduce SLA violation

rate

Xingjia Li [17] Deep Q Learning Scheduling Reduce cost

The table 1 depicts that majority of the work is done in the area of

scaling compared to scheduling and none of the works considered

scaling and scheduling as two sub problems of autoscaling.

3. Proposed work

Our work incorporates the MAPE architecture [8], comprising

Monitoring, Analysis, Planning, and Execution phases. Monitoring

involves tracking metrics like CPU usage, memory usage, and

network bandwidth. The Analysis phase identifies overutilized and

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1615

underutilized VMs. Planning decides task-to-VM mappings based

on pricing models, followed by executing Load-Based VM

scheduling policies. The integration of Deep Q Networks (DQN)

with Reinforcement Learning techniques in the planning phase is

crucial in our approach.

Figure 4 shows the MAPE architecture integrated with different

components in the cloud paradigm. In the proposed approach, the

planning phase of the Control MAPE means (Monitor, Analyze,

Plan, Execute) circle is executed utilizing a RL-based specialist.

This specialist ceaselessly changes the provisioned resources in

view of the conditions of the framework including the current

exhibition useful by property of Q Function i.e Q(S,A), which

addresses the worth capability of the specialist at time t while

making a move at in the present status st. Q𝜋(st,at) quantifies the

total future rewards that result from the selection of action at while

taking into account a discount factor 𝜆 and adhering to policy 𝜋

within the current state st [9], addressed in equation 1 .

𝑸𝛑(𝒔𝒕, 𝒂𝒕) = 𝑬𝛑[∑ 𝝀𝒊𝑻
𝒊=𝟎 𝒓𝒕+𝒊+𝟏 | 𝑺 = 𝒔𝒕 𝑨 = 𝒂𝒕]

 (1)

Fig. 4. MAPE architecture

3.1. Pricing model

The three significant price models are reserved, on-request and

spot. The spot evaluating model absolutely rely upon the ongoing

accessibility of the assets and bid cost model relies upon of the

ongoing business sector. We have planned on-request and spot

evaluating model. Cloud computing is pay as you go, only as costs

arise example where assets are normally brought On-request in a

rental length, signified as 𝑇𝑝𝑒𝑟𝑖𝑜𝑑, which < 𝑇reservation, is a

denotation applied for all VM instances that are treated to be

reserved. Cloud service providers (CSPs) are considered without

terminating their active reserved VM instances as long as these

instances are until their reserved period is alive, 𝑇reservation. The

renting policy (RP∆t
jR,RP∆t

jO,RP∆t
jS) at time ∆t has two concepts to

be considered one is the pricing model and the different VM types,

where RP∆t
jR = number of reserved VM instances with type j for

the period [∆t,∆t+1], RP∆t
jO = rented on-demand VM instances

with respect to type j for a specific period, RP∆t
jS = new rented

spot VM instances with respect to type j.

The Total Cost refers to the overall cost borne by the Cloud service

provider to serve all requested services.

Total VM cost is the cost of all the VMs as given in equation 2.

Total Cost = ∑ 𝐕𝐌 𝑪𝒐𝒔𝒕𝒏
𝐍
𝐧=𝟏 (2)

Each VM Cost depends on the renting policy at time t as expressed

equation 3

VM Costn= ∑ ((𝑽𝑴𝒕
𝒋𝑶

∗ 𝑪𝒕
𝒋𝑶
) + 𝑷𝒕

𝒋𝑶
+ (𝑽𝑴𝒕

𝒋𝑹𝑵
𝒋=𝟏 * 𝑪𝒕

𝒋𝑹
) + 𝑷𝒕

𝒋𝑹
 +

(𝑽𝑴𝒕
𝒋𝒔
 ∗ 𝒃𝒊𝒅𝒕

𝒋
)+ 𝑷𝒕

𝒋𝒔
) (3)

𝐶𝑡
𝑗𝑂
, 𝐶𝑡

𝑗𝑅
 𝑎𝑛𝑑 𝑏𝑖𝑑𝑡

𝑗
 cost of VM type j rented on-demand, the cost

of reserved VM type j and the bid price of VM type j during [∆t,

∆t+1] respectively. As per renting policy RP∆t
jO = VMt

jO and 𝑉𝑀𝑡
𝑗𝑅

can be defined as in equation 4.

𝑽𝑴𝒕
𝒋𝑹

=𝑽𝑴𝒕
𝒋𝑨𝒍𝒊𝒗𝒆𝑹 + 𝑹𝑷∆𝐭

𝒋𝑹
 (4)

Table 2. Types of VMs

VM Types Core CPU(MIPS) RAM

(GB)

Disk VM

price($/hr)

t3.small 2 500 16 2GB 0.0224

t3.medium 2 1000 64 4GB 0.0448

t3.large 2 2000 128 8GB 0.0893

t3.xlarge 4 5000 256 16GB 0.1786

where 𝑉𝑀𝑡
𝑗𝐴𝑙𝑖𝑣𝑒𝑅 is the number of alive reserved VM instances with

type j at time ∆t.

It can be computed as shown in equation 5.

𝑽𝑴𝒕
𝒋𝑨𝒍𝒊𝒗𝒆𝑹=𝑽𝑴𝒕−𝟏

𝒋𝑨𝒍𝒊𝒗𝒆𝑹+𝑽𝑴𝒕
𝒋𝑵𝒐𝒕𝑨𝒍𝒊𝒗𝒆𝑹 (5)

Where, 𝑉𝑀𝑡−1
𝑗𝐴𝑙𝑖𝑣𝑒𝑅 = number of in process reserved VM instances

which are active with category type j at time ∆t-1 and 𝑉𝑀𝑡
𝑗𝑁𝑜𝑡𝐴𝑙𝑖𝑣𝑒𝑅

= passive reserved VM instances with type j category until ∆t.

If the delay of the user request is more than 0, then SLA is violated.

The main aim of scaling is to reduce the total cost by maintaining

SLA as equated in 6.

Minimize (Total cost) (6)

3.2. Pseudocode for MAPE architecture

The Fig.4 depicts the MAPE architecture, their interaction with

external users and the cloud environment. The user request is fed

to load balancer which distributed among the could services. The

algorithm for MAPE architecture is shown in algorithm 1.

Algorithm 1: Pseudocode for MAPE architecture

Input: Initialize state with user model, cloud model and price

model.

Output: scheduling i.e which involves mapping appropriate VM to

the task corresponding to pricing model.

While (time period (∆t))

 for each user request at the time interval ∆t

 Monitor user and cloud environment

 Analyse user request and cloud capacity

 Plan an action for scaling operation by minimizing the

total cost and maintaining the SLA.

 Execute the planned operation by reducing the makespan

time.

 End for

End while

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1616

3.3. Detailed Planning Phase

In a unique cloud market, SaaS suppliers face the test of enhancing

asset portion in the midst of vulnerability. We tackle this by

figuring out the issue as a Markov Decision Process (MDP) and

utilizing Q-learning coordinated with neural computing networks

Our self-adaptive algorithm minimizes costs in cloud resource

allocation, with the task scheduling pseudo-code outlined in

algorithm 2.

i) State space: The optimal action selection relies on the current

observation denoted as x, which is a composite of two essential

components: xserver and xtask. The xserver component encapsulates the

present server state, encompassing available CPU resources

(Av_CPU) and available memory resources (Av_MEM). These

resources pertain to the Virtual Machines (VMs) currently running

on the server. Conversely, xtask represents the existing task

conditions, including the requested CPU resources (Rq_CPU),

required memory (Rq_MEM), and task deadlines for multiple VM

types and tasks. In this context, determining the optimal action

entails making decisions based on these observations. These

decisions may encompass resource allocation, VM placement, or

task scheduling, all predicated on the current server state and the

specific requirements of the tasks and VMs.

ii) Action space: The agent requires a defined set of actions to

manipulate its environmental state. These actions should align with

the system's objectives. Be that as it may, not all activities are

proper for each state, requiring the foundation of a strategy to

confine the accessible activities for each state. In our framework,

picking a proper VM machine out the four accessible is the activity

to be take in light of the evaluating model utilizing DRL strategy.

Taking into account state 𝑠 ∈ 𝑆, the at the same time activity set

𝐴(𝑠) list down every one of the vital moves that can be made.

Likewise state s is communicated as a = (VMtjR,VMsjO,VMsjS),

where VMtjR is the hold VM example of type j dispensed for the

period Treservation, VMsjO , on-request VM cases of type j

designated for the period ∆t . VMsjS, is the spot VM occurrences

of type j.

iii) Reward system: An adequate processing capacity should be

maintained to accommodate the dynamic service requests

generated by continuous workloads. When the current processing

capacity falls short of meeting current workload demand, the

resources will be overutilized and can be neutralized by scale-up.

Conversely, if an excessive number of VM instances is allocated

which causes underutilization and the processing capacity will far

exceed the current workload. In this scenario, unnecessary

expenses in renting VM instances will be incurred and also

squanders valuable cloud resources which can be controlled by

scale-down. Both of these inappropriate resource allocation

behaviours have detrimental effects on overall system utility.

The above three points are treated as individual factors referring to

the same in this paper an optimized reward function is described to

address cloud providers utility function. The decision time is the

crucial one for all the considered states S which can be denoted as

Ti stating state s=(𝐴𝑊𝑇𝑖 , 𝑉𝑀𝑇𝑖), where 𝐴𝑊𝑇𝑖is the average

customer workload [𝐴𝑊𝑇𝑖 = 𝑎𝑣𝑔(𝑅𝑞CPU, RqMEM)]and 𝑉𝑀𝑇𝑖is the

number of VM instances available in type [𝑉𝑀𝑇𝑖=avg(Av_CPU,

Av_MEM)], an action a =(𝑉𝑀𝑠
𝑗𝑅

,𝑉𝑀𝑠
𝑗𝑂

, 𝑉𝑀𝑠
𝑗𝑆

), and so the

updated state s'=(𝐴𝑊𝑇𝑖+1, 𝑉𝑀𝑇𝑖+1), where active workload is 𝑊𝑇𝑖 ,

then the below equation 7 defines reward function i.e R(s',a) .

R(s',a)=Profit(a)+Performance(a) [12] (7)

Profit(a)=Income- TotalCost (8)

TotalCost=∑ 𝐕𝐌 𝑪𝒐𝒔𝒕𝒏
𝐍
𝐧=𝟏 referred from equation (2)

VM Costn= ∑ ((𝑽𝑴𝑻
𝒋𝑶
 ∗ 𝑪𝑻

𝒋𝑶
) + 𝑷𝑻

𝒋𝑶
 + (𝑽𝑴𝑻

𝒋𝑹𝑵
𝒋=𝟏 * 𝑪𝑻

𝒋𝑹
)

+ 𝑷𝑻
𝒋𝑹

 + 𝑽𝑴𝑻
𝒋𝒔
 ∗ 𝒃𝒊𝒅𝑻

𝒋
) referred from equation (3)

Penalty for on-demand and spot VM type is described in equations

9, 10

𝑷𝑻
𝒋𝑶
= {

𝟎, 𝒊𝒇 𝑹𝑷𝑻𝒊
𝒋𝑶
≤ 𝑹𝑷𝑻𝒊−𝟏

𝒋𝑶

𝒏𝒆𝒘𝑪𝑻
𝒋𝑹
 ∗ (𝑹𝑷𝑻𝒊

𝒋𝑶
− 𝑹𝑷𝑻𝒊−𝟏

𝒋𝑶
) , 𝒆𝒍𝒔𝒆

 (9)

𝑷𝑻
𝒋𝑹
= {

𝟎, 𝒊𝒇 𝑹𝑷𝑻𝒊
𝒋𝑶
≤ 𝑽𝑻𝒊

𝒋_𝒏𝒐𝒕𝑨𝒍𝒊𝒗𝒆𝑹

𝒏𝒆𝒘𝑪𝑻
𝒋𝑹
 ∗ (𝑹𝑷𝑻𝒊

𝒋𝑶
− 𝑽𝑻𝒊

𝒋_𝒏𝒐𝒕𝑨𝒍𝒊𝒗𝒆𝑹
) , 𝒆𝒍𝒔𝒆

 (10)

Equation (11) utility function that characterizes the mean

utilization across all resources, with representing 𝑈𝑗
𝑚𝑎𝑥 the upper

limit for each specific resource and 𝑈𝑗
𝑚𝑖𝑛 represents lower limit

for ach specific resource, which means above 𝑈𝑗
𝑚𝑎𝑥

overutilization and below 𝑈𝑗
𝑚𝑖𝑛 as underutilization of a resource.

Increased utilization has a beneficial effect on the final reward

(defined in 1st and 2nd part of equation (11)). Nevertheless, when

utilization surpasses the established minimum threshold leading to

a detrimental influence on the ultimate reward (defined in 3rd part

of equation(11)). Initial bonus and penalty value is assumed to be

2 and 1 respectively [12].

Performance(a)=

VM(uj)=

{

𝒃𝒐𝒏𝒖𝒔,𝑼𝒋
𝒎𝒊𝒏 ≤ 𝒖𝒋 ≤ 𝑼𝒋

𝒎𝒂𝒙

𝒃𝒐𝒏𝒖𝒔 ∗ (
∑ 𝑼𝒋

 − 𝑼𝒋
𝒎𝒂𝒙 𝑵

𝒋=𝟏

𝑵
)
𝟐

, 𝒖𝒋 > 𝑼𝒋
𝒎𝒂𝒙

−𝒑𝒆𝒏𝒂𝒍𝒕𝒚 ∗ (
∑ 𝑼𝒋

𝒎𝒊𝒏 − 𝒖𝒋
𝑵
𝒋=𝟏

𝑵
)
𝟐

, 𝒖𝒋 < 𝑼𝒋
𝒎𝒊𝒏

 (11)

Algorithm 2: Pseudo code for task scheduling

Input:

State space (s): Initialize the state space with cloud and user request

information

Action space (a): Number of VMs of type j scheduled (includes on-

demand and spot)

Load state space and action space into input nodes of neural

network.

Output: Reward obtained for optimal resource allocation at the

output node.

For each s,a introduce the table passage Q'(s,a) to nothing.

Notice the present status s

Do forever:

 a`get_action() using neural network and Q-value table.

Execute the action

 rCompute_reward () as show in equation 10 through 12

 Observe the new state s`

 Update the table entry for Q`(s,a) as follows:

 Q`(s,a) r + ℽ max Q`(s`,a`) for all a

 ss`

In the Execution Phase of auto-scaling, scaling involves adjusting

instances during planning, while scheduling tasks to active VMs

occurs during execution. Minimizing makespan time is the

planning phase's goal, achieved by prioritizing tasks with margin

for delays. Critical tasks are given priority, with a policy

implemented to allocate them to on-demand instances when

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1617

possible, minimizing the impact of failures. Future work aims to

integrate scaling with scheduling.

4. Experimental Setup and Results Discussion

We conducted a comprehensive analysis using the GWA-T-12

Bitbrains dataset to schedule tasks to appropriate VMs based on

the proposed pricing model, measuring the performance alone

dedicated to terms of throughput, CPU utilization, cost, and an

aggregate metric. We integrated the SDAEM-MMQ technique

with the examined policies, chosen for its novel nature and

promising results. The dataset comprises performance metrics

from 1,750 VMs within a distributed datacenter operated by

Bitbrains, catering to prominent institutions like major banks,

credit card operators, and insurers. The fastStorage trace,

containing 1,250 VMs, is linked to high-speed SAN devices, while

the Rnd trace includes 500 VMs with varying storage performance

characteristics. Our work focused on the fastStorage dataset, with

each VM file recording 30 days of samples monitored every 5

minutes.

We have examined four distinct types of Amazon EC2 virtual

machines (VMs), as detailed in Table 2. These Amazon EC2

instances have been configured with identical settings in the Cloud

Sim simulator. In the table, Core indicates the number of available

CPUs for each VM type, CPU (MIPS) addresses the computer

processor limit in great many directions executed each second, and

in Table 2 as shown with VM cost are related with each hour of

calculation. Furthermore, spot examples share similar attributes as

the on-request occurrences recorded in the table, however their

costs fluctuate over the long haul. The gave information relates to

the period spreading over from September eighteenth to November

seventh, 2023, inside the AWS US-East (Ohio) district.

The RL algorithm operates without the need for a pre-existing

model and, as it runs, it iteratively learns and refines policies by

interacting with the target environment using new observations.

Throughout the experiments, each agent's action set involves

selecting the appropriate VM for the demanding tasks, with the

individual VMs categorized by central processor and memory. To

survey the viability of the support learning procedures in a true

setting, our work is contrasted with a cutting edge booking

strategies utilized in SDAEM-MMQ [16] by examination

throughput boundary. In the work SDAEM-MMQ creator focused

on the really decreasing energy utilization while keeping up with

most reduced help level understanding infringement rate,

throughput is one of the boundaries being viewed as in the process

which we analyzed in our evaluating model based VM planning.

The goal of this assessment is to guarantee the expanded

throughput and high computer processor use with negligible

expense while versatile scheduler is carried out..

4.1. Performance study

This subsection delves into the performance of DRL_with_PM

across BitBrains workloads. Initially, it outlines the convergence

outcomes of DRL _with _PM under diverse parameter

configurations like different learning rate and Gama value.

Subsequently, it evaluates the algorithm's performance against

BitBrains VM traces considering the parameters like accuracy,

precision, recall, f1 score and loss. Finally, an examination of the

algorithm's performance under more various works is provided.

Figure 5 and Figure 6 shows our model training utilizing the

request arrival pattern derived from BitBrains dataset and initially

assess the impact of fundamental attributes defining convergence

and parametric outcomes, in specific it describes only discount

factor and the learning rate. These findings. Initially, we scrutinize

the effect of various learning rates, as shown in Figure 5. During

this examination, typically the parameters are set to their know

values. Maximum learning rates result in more rapid attainment of

larger episode rewards. Perphase inorder to attain excepted

training outcomes excessively high learning rates will not always

yield favorable training outcomes; where learning rate could be set

to 0.1 led to diminished rewards for the agent and convergence that

implies to a possible local optimum. To consider specialist

reflections for all the impending potential compensation we really

want to distinguish the rebate factor likewise the bigger markdown

is straightforwardly corresponding to specialist's drawn out

remunerations. A too enormous markdown factor suggests the

specialist's accentuation on long haul rewards, possibly reaching

out past the ongoing activity's impact, and dangers expanding the

Q-esteem unnecessarily. In this examination, DRL with PM sets

the gamma worth to 0.9, accomplishing ideal execution as far as

combination and results is displayed in Figure 6.

Fig. 5. Average reward for heterogenous learning rate.

Fig. 6. Average reward consideration for unique gamma values.

In our study, we compared the performance of four distinct

reinforcement learning (RL) algorithms. The comparison was

based on their rewards accumulated over a series of episodes.

Overall, the results demonstrate varying degrees of effectiveness

among the different algorithms. Notably, Deep Reinforcement

Learning (DRL) and Deep Reinforcement Learning with Pricing

Model (DRL with PM) consistently outperform traditional

Reinforcement Learning (RL) and Reinforcement Learning with

Pricing Model (RL with PM) across all episodes. This observation

suggests that the incorporation of deep neural networks enhances

the learning capabilities of the agents, enabling them to achieve

higher rewards more efficiently.

Table 3 shows the results of various evaluation metrics for all the

variants of reinforcement learning algorithms. Furthermore, the

introduction of the pricing model appears to have a positive impact

on the performance of both RL and DRL algorithms.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1618

Reinforcement Learning with Pricing Model (RL with PM) and

Deep Reinforcement Learning with Pricing Model (DRL with PM)

consistently outperform their counterparts without the pricing

model, indicating the importance of incorporating domain-specific

knowledge into the learning process.

Table 3: The results of various evalution metrics for all the varinats of reinforcement learning algorithms.

If accuracy, precision, recall, and F1 score all have the same value,

it typically means that the model is performing equally well in

terms of correctly classifying instances, both in terms of positive

and negative classes, without favoring one over the other.

Figure 7 shows the performance metric comparison for various RL

algorithm with the proposed work. The graph effectively illustrates

the RL model's performance with VM pricing, demonstrating

superior results compared to models without pricing

considerations.

Fig. 7. Performance metric comparison for various RL algorithm with

proposed work.

4.2. Models for comparison

To demonstrate the effectiveness of the deep reinforcement

learning with pricing model framework for VM scheduling, we

compared our algorithm, against various decision-making

techniques under different scenarios of cloud paradigm.

VPBAR [16] employs conventional task arrival modelling and

energy utilization modelling techniques in cloud, which severely

restrict the model's adaptability in scenarios traffic bursts.

LRR_MMT [16] is explored upon a strong local regression

evaluation for minimal migration with respect to time.

DthMf [16] a metaheuristic based on Genetic Algorithms (GA)

facilitates power-aware VM request allocation across multiple

sustainable cloud datacenters, considering power heterogeneity.

VMTA [16] is a scheduling strategy that relies on a method for

predicting traffic burst workloads.

 Megh [16] it is a type of RL algorithm associated with online

involving in VM migrations to evaluate energy efficiency.

 EQBFD [16] it is states the throughput for all the server

integration.

SDAEM-MMQ [16] involves Q-learning for decision making and

optimizing the energy.

Computational throughput refers to the processing speed of

computational tasks within the cloud infrastructure. It measures the

rate at which computational operations can be performed. Higher

the computational throughput allows for faster execution of the

tasks and improved performance of cloud-based applications.

Optimizing throughput in a cloud scenario is essential for ensuring

efficient and responsive cloud services. It involving optimizing

network infrastructure, storage systems and computational

resources to maximize data transfer rates, minimize latency and

enhance overall performance for cloud users and applications.

Throughput is considered as a comparison parameter for all the

above mentioned works and its shown that proposed approach for

VM scheduling using deep reinforcement learning with pricing

model has higher throughput value.

Fig. 8. Throughtput of various works compared with the

proposed work.

Figure 8 illustrates that the decision-making system, enhanced

with reinforcement learning techniques and variants, yields

promising outcomes. The proposed approach and the nearer

SDAEM-MMQ models demonstrate superior throughput values

compared to other referred decision-making techniques for task

scheduling.

5. Conclusion

In conclusion, the multifaceted nature of cloud computing offers

extensive services to end-users, yet numerous challenges persist,

Algorithms Accuracy

threshold

Precision Marking Recall factor F1 Score Loss

RL 0.79 0.79 0.79 0.79 3.219980239868164

DRL 0.85 0.85 0.85 0.8500000000000001 1.299985885620117

RL with PM 0.81 0.81 0.81 0.81 2.384927194792y

DRL with PM

(Proposed)

0.8795959191838

368

0.8795959191838368 0.8795959191838368 0.8795959191838368 0.8795959191838368

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1612–1619 | 1619

including security, sustainability, and availability. Among these

challenges, efficient resource allocation remains paramount.

Inefficient resource allocation can lead to financial risks for

providers and end-users through over-provisioning, while under-

provisioning can result in service latency, potentially violating

service level agreements and leading to customer loss. To address

this critical issue, researchers are exploring various approaches

such as load balancing, workflow scheduling, container

positioning, and QoS parameter-based scheduling. Our work

focuses on task scheduling using Deep Reinforcement Learning

within the MAPE (Monitor, Analyze, Plan, Execute) architecture,

integrating VM pricing models (reserve, on-demand, and spot).

We conducted experiments on the BitBrains dataset comprising

1750 VM traces monitored for 30 days with the interval of 5

minutes and evaluated the performance of different reinforcement

techniques. Our findings demonstrate that combining

reinforcement learning with neural networks, specifically the Deep

Reinforcement technique, yields superior results compared to other

approaches. Additionally, we compared our work's throughput

with that of existing research, confirming that our task scheduling

approach achieves promising outcomes. In summary, our research

contributes to addressing the resource allocation challenge in cloud

computing by proposing a novel approach to task scheduling. Our

results underscore the efficacy of our approach and its potential to

enhance overall system performance and user satisfaction in cloud

environments. In future work, we plan to incorporate autoscaling

capabilities into our cloud environment, encompassing both

scheduling and scaling functionalities. This addition will serve as

a significant advantage, enhancing overall cloud performance and

facilitating optimal resource utilization.

6. References and footnotes

Acknowledgements

This research received support, either full or partial, from PES

College of Engineering. We extend our appreciation to our

colleagues at PES College who served as subject experts, offering

invaluable insights and expertise that greatly contributed to this

research. While they may not endorse all interpretations or

conclusions presented in this paper, their assistance was

indispensable. Sincere gratitude to the supervisor for unwavering

support throughout the research process.

Author contributions

Shruthi.P.S: Conceptualization, Philosophy, Programming,

Composing - Unique draft, Composing audit and Altering, Dr.D.R

Umesh: Conceptualization, Technique, Approval, Composing -

survey and altering ,Management.

Conflicts of Interest

The creators affirm that they don't have any contending monetary

interests or individual connections that might have affected the

work introduced in this paper.

References

[1] Sara Kardani-Moghaddam, Rajkumar Buyya,” ADRL: A Hybrid

Anomaly-Aware Deep Reinforcement Learning-Based Resource

Scaling in Clouds”, IEEE Transactions on Parallel and Distributed

Systems, VOL. 32, NO. 3, March 2021.

[2] Yisel Garí, David A. Monge, Elina Pacini, Cristian Mateos, Carlos

García Garino, “Reinforcement Learning-based Application

Autoscaling in the Cloud: A Survey”, arXiv:2001.09957, Top of Form

https://doi.org/10.48550/arXiv.2001.09957,2020

[3] Mohit Kumar S.C. Sharma, Anubhav sGoel, S.P. Singh, “A

comprehensive survey for scheduling techniques in cloud computing”,

Published by Elsevier Ltd Journal of Network and Computer

Applications 143 (2019) 1–33, 2019.

[4] Raouf Boutaba, Mohammad A. Salahuddin, Noura Limam, Sara

Ayoubi, Nashid Shahriar, Felipe Estrada-Solano and Oscar M.

Caicedo, “A comprehensive survey on machine learning for

networking: evolution, applications and research opportunities”,

Journal of Internet Services and Applications, by Springer Open,2018.

[5] Guangyao Zhou, Wenhong Tian, Rajkumar Buyya, “Deep

Reinforcement Learning-based Methods for Resource Scheduling in

Cloud Computing: A Review and Future”, arXiv preprint

arXiv:2105.04086, 2021.

[6] Teemu J. Ikonen, Keijo Heljanko, Iiro Harjunkoski, “Reinforcement

learning of adaptive online rescheduling timing and computing time

allocation” in Computers and Chemical Engineering volume 141, 25

June 2020.

[7] Seyed Mohammad Reza Nouri, Han Li Srikumar Venugopal, Wenxia

Guo, MingYun He, Wenhong Tian “Autonomic decentralized

elasticity based on a reinforcement learning controller for cloud

applications”, Elsevier Future Generation Computer Systems 94

(2019) 765–780, 2018.

[8] Merzoug Soltane, Yudith Cardinale, Rafael Angarita, Philippe

Rosse, Marta Rukoz, Derdour Makhlouf, Kazar Okba, “A Self-

adaptive Agent-based System for Cloud Platforms ” , IEEE explorer

3rd International Conference on Pattern Analysis and Intelligent

Systems (PAIS),2019.

[9] Junjie Cen and Yongbo Li,” Resource Allocation Strategy Using Deep

Reinforcement Learning in Cloud-Edge Collaborative Computing

Environment” Hindawi Mobile Information Systems Volume 2022,

Article ID 9597429, 10 pages.

[10] J. V. Bibal Benifa, D. Dejey, “RLPAS: Reinforcement Learning-based

Proactive Auto-Scaler for Resource Provisioning in Cloud

Environment”, Springer Science+Business Media, Mobile Networks

and Applications 24:1348–1363, 2019.

[11] Yisel Garı´, David A. Monge, Cristian Mateos, Carlos Garcı´a Garino,

“Learning budget assignment policies for autoscaling scientific

workflows in the cloud”, Springer Science+Business Media, LLC,

Cluster Computing (2020) 23:87–105.

[12] YiWei , Daniel Kudenko,Shijun Liu , Li Pan , LeiWu,Xiangxu Meng,

“A Reinforcement Learning Based Auto-Scaling Approach for SaaS

Providers in Dynamic Cloud Environment” Hindawi Mathematical

Problems in Engineering Volume 2019, Article ID 5080647, 11 pages.

[13] Seyed Mohammad Reza Nouri, Han Li, Srikumar Venugopal, Wenxia

Guo, MingYun He, Wenhong Tian, “Autonomic decentralized

elasticity based on a reinforcement learning controller for cloud

applications”, Future Generation Computer Systems by Elsevier, 94

(2019) 765–780, 2018.

[14] Mostafa Ghobaei-Arani a, Sam Jabbehdari b, Mohammad Ali

Pourmina,” An autonomic resource provisioning approach for service-

based cloud applications: A hybrid approach”, Future Generation

Computer Systems by Elsevier, 78 (2018) 191–210.

[15] Xin Sui, Dan Liu, Li Li, Huan Wang, Hongwei Yang, “Virtual

machine scheduling strategy based on machine learning algorithms for

load balancing” EURASIP Journal on Wireless Communications and

Networking (2019) 2019:160 by Springer Open.

[16] Bin Wang, Fagui Liu, Weiwei Lin, “Energy-efficient VM scheduling

based on deep reinforcement learning”, Future Generation Computer

Systems 125 (2021) 616–628 by Elsevier.

[17] Xingjia Li, Li Pan, Shijun Liu, “A DRL-based online VM scheduler

for cost optimization in cloud brokers”, Springer Science+Business

Media, LLC by Springer, 2023.

https://doi.org/10.48550/arXiv.2001.09957
https://doi.org/10.48550/arXiv.2001.09957
https://ieeexplore.ieee.org/author/37086581084
https://ieeexplore.ieee.org/author/37829291300
https://ieeexplore.ieee.org/author/37085695806
https://ieeexplore.ieee.org/author/37086578794
https://ieeexplore.ieee.org/author/37086578794
https://ieeexplore.ieee.org/author/37393626000
https://ieeexplore.ieee.org/author/37567740000
https://ieeexplore.ieee.org/author/38093613300
https://ieeexplore.ieee.org/xpl/conhome/8579098/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8579098/proceeding
https://ieeexplore.ieee.org/xpl/conhome/8579098/proceeding

