

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1669

Dynamic Load balancing Approaches with Optimal Virtual Machine

Migration in Cloud Environments

Rudresh Shah1*, Suresh Jain2, Kailash Chandra Bandhu3

Submitted: 29/01/2024 Revised: 07/03/2024 Accepted: 15/03/2024

Abstract: In recent years, Cloud Computing has become increasingly appealing to service providers seeking to run applications on large

data centres, primarily due to the advantages of highly available hardware, on-demand provisioning, and pay-as-you-go models. This

technology harnesses the power of virtualization, which allows for the consolidation of multiple Virtual Machines (VMs) onto a minimal

number of servers. By employing dynamic VM provisioning, VM consolidation, and strategically switching servers on and off as needed,

data centres can maintain the desired Quality-of-Service (QoS) while achieving greater server utilization and energy efficiency. In our

proposed work, we focus on managing the inter-relationship between energy consumption, the number of VM migrations, SLA (Service

Level Agreement) violations, and application performance. Our approach tackles the issue of over-utilized servers by migrating the most

suitable VMs to appropriate destination servers. To accomplish this, we have devised VM selection and VM placement strategies.

Additionally, for overload detection, we have utilized the exponential smoothing technique. Our chosen platform for implementing these

approaches is the cloudsim simulator. The results of our study demonstrate significant benefits. Specifically, we observed a reduction in

energy consumption of up to 17.57%, a decrease in the number of VM migrations, and overall improvements in application performance

across various scenarios.

Keywords cloud computing; virtual machine consolidation; energy consumption; virtual machine migration; hotspot mitigation.

1. Introduction

In recent years, Cloud computing has emerged as a

transformative paradigm for large-scale parallel and

distributed computing. It offers convenient and on-

demand network access to a shared pool of configurable

computing resources, including networks, servers,

storage, applications, and services [1]. These resources

can be rapidly provisioned and released with minimal

management effort, making it an attractive option for

service providers due to its pay-as-you-go policy and the

absence of upfront capital investment. Consequently,

distributed large-scale data centers, comprising thousands

of hosts, have become the preferred infrastructure for

offering services.

 Cloud Computing is a rapidly emerging technique that

provides online computing resources, storage, and

infrastructure. Its main characteristics include on-demand

self-service network access, resource pooling, and rapid

elasticity of service availability. Cloud Computing has

four main deployment models: Private Cloud, Public

Cloud, Community Cloud, and Hybrid Cloud.

Additionally, it offers three different service models:

Infrastructure as a Service (IaaS), Platform as a Service

(PaaS), and Software as a Service (SaaS). One of the

significant concerns in Cloud Computing is load

balancing. Ensuring load balancing is crucial to avoid

scenarios where tasks are waiting in a queue for service at

one resource, while another capable idle resource remains

unused. Load balancing algorithms aim to minimize such

situations as much as possible [2]. Swarm intelligence

techniques have demonstrated their effectiveness in

solving load balancing problems. They offer promising

solutions for achieving load balancing by minimizing the

load difference between the heaviest and lightest nodes.

This paper proposes a distributed swarm intelligence-

inspired scheduling and load balancing algorithm called

Ant Colony Optimization (ACO).

However, the operation of these data centers comes with

significant challenges related to energy consumption. The

substantial number of hosts and the inefficient load

distribution on servers lead to excessive heat generation

by overloaded servers, necessitating more cooling, which,

in turn, results in high carbon dioxide emissions [3].

Beyond the operational costs, the considerable energy

consumption poses reliability concerns, as the failure rate

of hosts doubles for every 10-degree increase in

temperature [4]. Therefore, the critical task at hand is to

find ways to reduce energy consumption without

compromising performance while managing cloud data

center operations effectively. Virtualization Technology

has revolutionized server capabilities by allowing

multiple Virtual Machines (VMs) to run concurrently on a

single server. VM consolidation is a widely used approach

to reduce energy costs, achieved through live VM

migration operations, which balance the workload and

1,2,3 Medi-Caps University, Indore, India

* Corresponding Author Email: rudresh.shah@medicaps.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1670

optimize computing resources by relocating VMs from

one server to another. This process consolidates VMs onto

a smaller number of active hosts, increasing the number

of inactive hosts. Leveraging virtualization capabilities,

we can dynamically scale up or down computing

resources to accommodate fluctuating workloads

effectively. During non-overloaded periods, we can add

more VMs, and during underutilized times, we can

consolidate VMs, minimizing active hosts and even

turning off idle hosts. Notably, idle hosts consume a

significant amount of power, with completely idle hosts

wasting over 70% of their peak load [5]. Hence, powering

off idle hosts results in considerable power savings.

However, virtualization also introduces challenges in

resource management due to resource sharing among

multiple VMs on a single server [6]. This sharing can lead

to performance uncertainties for VMs, primarily caused

by server overload [7]. Thus, striking a balance between

avoiding overload for better performance and dynamically

consolidating VMs for greener computing becomes

crucial. Efficiently managing cloud resources poses

additional difficulties, as interactive service applications

often generate dynamic and non-deterministic resource

demands due to frequently changing workloads. Active

VM consolidation can lead to performance degradation in

such scenarios. As a consequence, there is a trade-off

between energy efficiency and performance, which can

lead to Service Level Agreement (SLA) violations. SLAs

are agreements between service providers and consumers

to ensure reliable Quality-of-Service (QoS).

To achieve server consolidation, live migration techniques

[8] are employed, creating a direct relationship between

VM consolidation and overload avoidance, ultimately

leading to improved performance while adhering to SLAs.

Live migration allows the seamless movement of a

running VM or application between different servers

without disrupting client or application connections. This

approach enhances performance and reduces energy

consumption by effectively addressing underutilization

and overutilization issues. Numerous research efforts have

been dedicated to handling VM migration, considering

that each migration introduces some performance

degradation, leading to increased SLA violations and

operational costs. Therefore, careful consideration is

required to determine which VMs should be migrated and

where they should be migrated.

The primary objective of our work is twofold: reducing

energy consumption and minimizing the number of VM

migrations while maintaining low SLA violations.

Excessive VM migrations can cause network congestion

and add overhead for tracking VM migration information.

To address these challenges, we employ future forecasting

methods for load prediction, enabling us to proactively

avoid server overload problems. This predictive capability

also aids in deciding whether a VM migration should be

performed, helping to minimize the overall number of

migrations. Throughout this process, we ensure that

performance remains at acceptable levels. Our main areas

of focus are as follows:

• Proposing VM selection approaches based on VM's

CPU load and RAM size to handle over-utilized

servers effectively.

• Introducing VM placement approaches based on

VM's CPU load to optimize server utilization

efficiently.

2. Related Work

Over the past few years, researchers have been

increasingly concerned about the substantial energy

consumption of cloud data centers. As a response,

numerous energy-aware and VM consolidation algorithms

have been developed. Within this context, two critical

issues have been addressed: The first issue is overload

avoidance, which involves the use of load prediction

algorithms to forecast future resource demands. These

predictions are utilized to apply migration techniques,

ensuring that server loads remain below the upper

threshold of utilization. By proactively managing resource

allocation, the aim is to prevent servers from becoming

overloaded and optimize their performance. The second

issue pertains to VM consolidation, which aims to reduce

the number of active hosts by migrating VMs from

underutilized servers. By consolidating VMs onto fewer

hosts, the data center can achieve better resource

utilization and energy efficiency.

In summary, researchers have focused on developing

energy-aware and VM consolidation algorithms to tackle

the challenges of high energy consumption in cloud data

centers. These algorithms address overload avoidance

through load prediction and migration techniques, as well

as VM consolidation to enhance resource utilization. [9]

utilizes monitoring of VMs and hosts' CPU and memory.

The authors propose a fixed threshold value to limit

resource utilization. [10] introduces a resource

management system based on virtualization to reduce

energy consumption while maintaining QoS. [11] presents

push and pull load balancing algorithms that involve VM

migrations. [12] proposes various energy-efficient VM-to-

host mapping methods, including three VM selection

policies: "minimization of migration," "highest potential

growth," and "random choice." In later work, [7]

addresses continuously changing CPU utilization

thresholds due to varying workloads, introducing adaptive

techniques like Median Absolute Deviation (MAD) and

Inter Quartile Range (IQR). For VM placement, [13]

suggests strategies based on overloaded and under-loaded

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1671

PMs using push and pull approaches. [14] decides VM

migrations and destination selection based on forecasting

heuristics and smoothening techniques.

In [15], the author introduces two strategies for automated

live migration of virtual machines, based on overloaded

and under-loaded Physical Machines (PMs). The first

strategy, known as the push strategy, involves PMs with

loads exceeding a threshold acting as sellers, while the

VMs resident on these PMs are auctioned items.

Information shared with buyers includes CPU load and

memory usage. The second strategy, called the pull

strategy, features under-loaded PMs acting as sellers,

providing information about available free resources. In

[13], the authors propose a method for deciding resource

reallocation of virtual machines, addressing the

dependency problem present in application migration.

Instead of using fixed threshold methods, they define a

stochastic model based on cumulative sum. This

stochastic method effectively eliminates unwanted VM

migrations caused by slight changes in CPU load. For

destination host selection, a best-fit method is employed.

In [14], the author first determines whether VM migration

is required based on forecasting heuristics. If migration is

deemed necessary, an appropriate destination is selected.

Both VM migration and destination selection employ

smoothing techniques. VM migration occurs in two main

cases: when the server load is above the dynamic

threshold and when server loads fall below the lower

threshold. In the latter case, all VMs from the

underutilized server need to be migrated. If server

utilization exceeds the upper threshold, the predicted load

is checked, and if it is also high, VM migration takes

place. For destination selection, the authors propose a

novel approach that considers the host's future load to

ensure it remains unburdened when the migrated VM

resumes operation. The Ant Colony Algorithm (ACO)

was first proposed by Marco Dorigo and his colleagues in

1992, inspired by the behaviour of real ants. When

searching for food, ants can efficiently discover the path

between their nest and the food source. During this search,

ants wander randomly and leave chemical substances

called pheromones on the ground during their return trip.

Other ants can then follow these pheromone trails to find

the path to the food source and return to the nest. By

following the pheromone trails with the highest density,

ants can reach the food sources effectively, allowing for

indirect communication and enabling them to find the

shortest paths.

In [16], the proposed technique builds upon ACO, aiming

to identify overloaded nodes in the shortest time and

balance the load among nodes while maximizing resource

utilization. In [17], an initial heuristic algorithm is applied

to modify Ant Colony Optimization for service allocation

and scheduling mechanisms in cloud systems. This

modification supports minimizing the Makespan of the

cloud system services. In [18], [19], a cloud task

scheduling policy based on Load Balancing Ant Colony

Algorithm is proposed. The approach aims to balance the

entire system load while minimizing the Makespan of

given tasks. In [20], an ACO-based approach is developed

as an effective load balancing algorithm capable of

maximizing or minimizing different parameters. In [21], a

technique based on ACO is proposed for redistributing

overloaded nodes based on a Threshold value. If the load

on the current node is less than the threshold, ants will

search among the available nodes, and their movement

will be restricted to one direction.

Our approach makes use of the ant colony optimization

technique to estimate the VM selection of the host which

helps us to mitigate the problem of unnecessary VM

migrations. In our work, we represent the interrelationship

between energy consumption, the number of VM

migration, average SLA violation, and Performance

degradation

scheduling framework. In the context of cloud computing,

the task scheduling problem becomes more intricate due

to the need for additional steps such as VM migration,

server consolidation, and ensuring compliance with

Service Level Agreements (SLAs). To address these

complexities, a framework is designed and developed for

server consolidation, as depicted in Figure 1. Interactive

applications in the cloud are dynamic, with varying

resource requirements and loads. The primary objectives

of the research discussed in this chapter are to devise

approaches that efficiently utilize resources and minimize

energy consumption. Achieving these goals necessitates

VM migration.

However, VM migration poses challenges as it introduces

system overheads, including reallocation of VMs and the

need to keep track of VM migration information.

Additionally, an excessive number of VM migrations can

lead to network congestion. In this research work,

comprehensive solutions are developed to address all

three aforementioned problems: (i) determining when to

migrate VM(s), (ii) identifying which VM(s) to migrate,

and (iii) determining where to migrate VM(s) to optimize

resource utilization and minimize energy consumption.

Fig 1. The proposed framework to server consolidation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1672

The proposed framework addresses all three problems and

presents an illustrative representation of server

consolidation approaches in Figure 1. To address the first

problem, an algorithm for host overload detection is

proposed, which involves determining an adaptive

threshold for CPU utilization and implementing efficient

load forecasting techniques. These forecasting techniques

help predict resource utilization patterns, enabling timely

decisions about VM migration. For the second problem,

VM selection algorithms are introduced to choose one or

more VM(s) for migration from overloaded servers. VM

selection is based on the CPU and RAM usage of VMs on

the over-utilized servers. Lastly, the framework addresses

the third problem through the introduction of VM

placement algorithms. These algorithms focus on

effectively placing VMs in suitable destination hosts,

ensuring optimized resource utilization and minimizing

energy consumption.

3. Proposed Work

In accordance with our problem statement, our approach

involves several steps. Initially, we determine the upper

threshold of CPU utilization to establish a basis for

identifying potential host overloads. We proceed to select

the appropriate VM that will be migrated from an

overloaded host. To achieve this, we introduce Ant colony

optimization VM selection algorithm in the subsequent

subsection. we present the VM placement algorithm,

which is responsible for choosing the destination host for

the selected VM from the previous step.

3.1. Host overload detection

To achieve an adaptive and dynamic utilization threshold

for our system, we recognized that a static threshold is

inadequate in a diverse and fluctuating workload

environment where various types of applications share

cloud resources, each with different utilization demands.

To address this challenge, we adopted the MAD technique

(median of the absolute deviations from the data set

median) as discussed in the following sub-section. The

MAD technique serves as a statistical dispersion measure

and proves to be more effective in handling outliers in the

data set compared to the standard deviation. By leveraging

the MAD technique, our approach dynamically adjusts the

utilization threshold based on the resource demands of the

workload. This ensures that the threshold remains relevant

and responsive to the varying workload conditions,

allowing for more accurate and efficient performance in

our system.

The MAD, denoted as MAD(X), is computed from the

univariate data set X={x1,x2,…….xn}

MAD(X)= median (|xi – median(X)|)

……………………………… (1)

The upper utilization threshold, denoted as uT, is

determined by the formula:

uT= median(X) – s.MAD(X)

Here, s ∈ R+ is a safety parameter that influences the

system's VM consolidation strategy. Smaller values of s

lead to reduced energy consumption but may result in

higher SLA violations during VM migration handling. we

introduce our overload detection algorithm, which takes

into account the upper threshold of the host's CPU

utilization. To calculate the upper threshold, we utilize the

MAD technique. This allows us to evaluate the

effectiveness and accuracy of MAD technique in

estimating the load of the host's CPU utilization,

providing valuable insights into the performance of our

overload detection algorithm.

Algorithm 1: Host Overload Detection Algorithm

1. Input: hostList, Output: migration decision

2. Set flagP = flagF = false

3. For each host in hostList do

4. Calculate host.currentCPUutil as

host.getCurrentRequestedMIPS() /

host.getTotalMIPS()

5. Obtain hostUtilData[] containing the historical

CPU utilization data for the host

6. Calculate the upperThreshold (Tu) as 1−s×MAD

7. If host.currentCPUutil > upperThreshold (Tu),

then

8. Set flagP = true

9. If hostUtilData[].size() < 10, then

10. If flagP = true, then

11. Add the host to currentOverUtilHost list (a list to

store currently overloaded hosts)

12. If flagP == true and flagF == true, then

13. Return true (indicating that migration decision is

needed)

14. Else

15. Return false (indicating that migration decision

is not needed)

The algorithm functions as follows:

In line 2, two flags are defined: flagP for the present CPU

utilization and flagF for the future CPU utilization. In line

4, the current CPU utilization of the host is calculated. In

line 5, the historical CPU utilization data is obtained from

the utilization history. In line 6, the host's upper threshold

is calculated using the MAD technique. This threshold is

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1673

used to determine if the current or future CPU utilization

exceeds the acceptable limits. If the current utilization of

the host is higher than the calculated upper threshold, the

flagP is set to true, indicating that the host is currently

experiencing an overload (lines 7 to 8). We consider this

host to be currently overloaded. If the historical utilization

data for the host contains less than 10 data values (10

being a suitable value that provides sufficient data for the

MAD calculation; other values such as 8, 12, 14, etc., can

also be chosen), the currently overloaded host is added to

the "currently over-utilized host" list. This step is

necessary because the MAD calculation relies on the

previous utilization history to detect host overloads (lines

9 to 11). However, at this point, no VM migration is

performed yet, as it is only a preliminary step in the

algorithm. Using this algorithm, we also exclude the

current overutilized host from probably destination host

list. That helps us to avoid unnecessary VM migrations.

3.2. Extended Ant Colony optimization based

VM selection approach (EAC)

In the proposed load balancing approach with Extended

Ant Colony Optimization (EAC), the main procedure can

be broken down into three distinct steps, which are

explained as follows:

3.2.1 Initializing the pheromone

In this step, the system initializes the EAC algorithm with

necessary parameters and constructs the problem-specific

graph representation. The graph represents the cloud

environment, where nodes represent virtual machines

(VMs) and edges represent the communication links or

distances between VMs. Each VM is associated with a

pheromone value that influences the ants' decision-

making during the optimization process. Additionally, the

algorithm sets other ACO-specific parameters, such as the

number of ants, evaporation rate, and heuristic

information. The initial amount of pheromone is assumed

to be a small positive constant xmn(t) =0.

3.2.2 How Ants choose VMs

During this step, multiple ants traverse the graph to

construct candidate solutions for the load balancing

problem. Each ant starts from a randomly chosen VM and

follows a probabilistic decision-making process to

determine its next move. The decision is influenced by

both the pheromone information and the heuristic

information, which represents the desirability of moving

from the current VM to another one. The ants continue

their movement, constructing feasible solutions by

visiting VMs while adhering to constraints and balancing

the load. In the conventional Ant Colony Optimization

(ACO) approach, the probability of selecting the next

operation considers pheromone trails and edge weights.

However, there is a recognized need to incorporate

machine load as a crucial factor in this probability

calculation. To address this requirement, the Load

Balancing ACO introduces an additional parameter -

Machine load. The traditional ACO algorithm does not

take into consideration the machine load factor, which is

crucial for minimizing idle time and achieving load

balancing in the system. When a machine assigned to a

particular operation is heavily loaded, the probability of

completing that operation decreases, leading to a

preference for other operations assigned to less burdened

machines. In the proposed Load Balancing ACO, the ant

determines the next node to visit based on equation 1,

which incorporates the machine load as a significant

parameter in the decision-making process.

∑ 𝑃(𝑚, 𝑛) =

{
𝑥(𝑚,𝑛)𝛼∗𝑦(𝑚,𝑛)𝛽∗𝑧(𝑚,𝑛)𝛾

∑ 𝑢𝜖 𝑆𝑘 𝑥(𝑚,𝑢)𝛼∗𝑦(𝑚,𝑢)𝛽∗𝑧(𝑚,𝑢)𝛾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑖𝑓 𝑛 𝜖𝑆𝑘……

………. (1)

In the equation, x(m,n) represents the pheromone trail,

y(m,n) represents the edge weight and z(m,n) represents

the total execution time of the machine associated with a

specific operation. An array is utilized to store the total

execution time for each machine. When a machine is

already busy executing an operation, selecting the next

operation to be executed on the same machine can lead to

increased idle times for other machines. To mitigate this

issue and reduce idle time, the machine load parameter is

taken into account. Consequently, machines with lower

execution times are favoured, resulting in an overall

reduction of idle time across the system. The parameters

α, β and Γ determine the relative importance of the

pheromone level compared to the edge weight. By

adjusting the values of α, β and Γ the node with an edge

of lower weight and higher pheromone levels is favoured

in the path selection process. Once the path is selected, the

ants deposit pheromone according to equation 2.

3.2.3 Pheromone Update

After all ants complete their tours and construct solutions,

this step involves updating the pheromone values on the

graph. The pheromone update strengthens the paths taken

by the ants that led to good solutions and weakens the less

successful paths. Based on the constructed solutions, the

algorithm performs load transfer between VMs to achieve

better load balancing. The VMs' load is adjusted according

to the solutions found by the ants, effectively

redistributing the workload.

𝑥(𝑚, 𝑛) = (1 − 𝜌) ∗ 𝑥(𝑚, 𝑛) + 𝜌 ∗ ∆𝑥(𝑚, 𝑛)……… (2)

Where ρ= decay, 0 < ρ < 1 and Δx(m,n) is calculated by

formula (3).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1674

∆𝑥(𝑚, 𝑛) =

{
𝐺𝑔𝑏 ,𝑖𝑓(𝑚,𝑛) ∈ 𝑔𝑜𝑏𝑙𝑒 𝑏𝑒𝑠𝑡 𝑡𝑜𝑢𝑟

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
………………. (3)

The ant system possesses a crucial characteristic known

as pheromone evaporation, where the deposited

pheromone gradually decreases over time. This property

plays a significant role in preventing premature

convergence to a sub-optimal solution. By allowing

pheromone levels to decrease, the system maintains

exploration opportunities, enhancing the chances of

finding better and more optimal solutions instead of

getting stuck in local optima. These three steps constitute

the core process of the load balancing approach with

ACO. The algorithm iterates through these steps multiple

times until a satisfactory load-balanced state is achieved

in the cloud environment. Through the intelligent

movement of ants and the dynamic pheromone updates,

the ACO-based approach effectively optimizes the

distribution of tasks among VMs, improving the overall

performance and resource utilization in the cloud system.

3.3. VM placement algorithm

We conducted a comparison of our results with two VM

placement algorithms in the CloudSim simulator. The first

algorithm is the Power Aware Best-Fit Decreasing

(PABFD) algorithm, as simulated by Calheiros et al.

(2011). The primary focus of PABFD is on the energy

factor, and it allocates the host to a migratable VM whose

energy difference after allocation is minimized. However,

this approach may lead to a host overload problem in the

near future, after each time period. The second algorithm

used in our work is the First-Fit algorithm, which we had

previously proposed (Choudhary et al., 2016). The First-

Fit algorithm maps the VM to a host by finding the first

suitable host in the host list. This algorithm significantly

reduces the time complexity to O(mn), where m is the

number of feasible destination hosts (equation (4)) and n

is the number of migratable VMs. In some cases, the First-

Fit algorithm performs better than PABFD because it

allocates the host without concentrating on energy factors,

which reduces the probability of host overload in the near

future. While PABFD may have benefits in terms of

energy efficiency, the First-Fit algorithm's focus on

immediate suitability can lead to improved overall

performance by preventing host overload issues.

𝐹𝐷𝐻 = (𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑠𝑡 −

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ℎ𝑜𝑠𝑡)…… (4)

Where FDH is feasible destination host. We proposed the

destination host CPU utilisation aware VM placement

algorithm 2.

Algorithm 2: Host Utilization-Based Algorithm

1. Input: hostList, VMList Output: Allocation

map of VMs

2. For each VM in VMList do

3. Set minPower to double.MAXVALUE

4. Set allocatedHost to NULL

5. Set hostSelect to NULL

6. For each host in getHostList() do

7. if (currentOverloadHost.contains(host)) then

8. continue to the next host

9. if (host.isSuitableVM(VM)) then

10. if (getUtilOfCpuMips(host != 0 &&

isHostOverUtilAfterAllocation(host,VM)) then

11. continue to the next host

12. Increment totalhost

13. hostu=hostu+ host.getUtilOfCpu()

14. hostavg=hostu/totalhost

15. utildiff=Double.MAX_VALUE

16. for (host : getHostList()) do

17. repeat step 7-8

18. if (host.isSuitableForVM(VM)) then

19. repeat step 10-11

20. hostutil=host.getUtilOfCpu()

21. if (0<(hostutil-hostavg)<utildiff) then

22. utildiff=|hostutil-hostavg|

23. Allocation.add(VM,allocatedHost)

24. if(allocatedHost != NULL) then

25. call First-Fit or EABFD

26. return Allocation

The algorithm is called for each migratable VM, as shown

in lines 2 to 26. For each defined host (lines 6 to 14), the

algorithm calculates the average CPU utilization of the

hosts. It checks whether the host is a feasible destination

for the VM (lines 7 to 8). If the host is suitable in terms of

CPU utilization, RAM, and bandwidth, it further checks

whether allocating the VM will cause the host to overload.

If it will, the algorithm moves to the next probable

destination host; otherwise, it calculates the CPU

utilization of that host (lines 9 to 13). The algorithm

calculates the average CPU utilization of all suitable

destination hosts (line 14). To find the mapping of VMs to

destination hosts, the algorithm once again accesses each

host (lines 16 to 25). The algorithm repeats the 2nd step

(lines 17 to 21) to further explore suitable destination

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1675

hosts for the VM. It calculates the current utilization of the

host's CPU (line 22). Next, the algorithm searches for a

host whose CPU utilization is approximately close to the

average utilization calculated in step 3, with a positive

difference. It then allocates that host to the migratable

VM. If the algorithm fails to find any suitable destination

host in the previous step, it resorts to calling either the

First-Fit or PABFD algorithm for the mapping of

migratable VMs to hosts.

Our proposed VM placement algorithm (Algorithm 2)

effectively reduces the number of overloaded hosts by

allocating migratable VMs to hosts with average

utilization, thus optimizing the distribution of workload.

Additionally, it minimizes the need for migrations, leading

to enhanced resource utilization and improved overall

performance in the cloud environment.

4. SIMULATION And RESULT

CloudSim 3.0 [22] serves as the simulation tool employed

in this study. The simulation is conducted under the

following scenario: The tasks to be executed are

independent of each other. Tasks vary in computational

sizes, with the length of each task presented in Millions of

Instructions (MI). The experiments are carried out on 20

tasks and 75 virtual machines (VMs). The cloud simulator

s configured with the parameter settings outlined in Table

I.

Table I Parameters Setting of CloudSim.

Type of

Entity
Parameters Values

Task

(cloudlet)

Length of

task

1000-20000

(MI)

Total Num of

Task
20

Virtual

Machine

Total

Number of

VMs

75

MIPS 500-2000

VM memory 256-2048

Bandwidth 70-100

Number Of

PEs

Requirement

01-Apr

Datacenter

Number of

datacenter
1

Number of

Host
02-Jun

Vmscheduler

Space_shared

and

Time_share

Table II shows selected parameters of Extended ACO and

ACO taken into experiments for simulation.

Table II Parameters Setting of CloudSim.

Parameter Alpha Beta Gamma Rho G tmax

EACO 0.1 0.9 5 0.4 100 100

ACO 0.2 1 0 0.4 100 100

Fig 2 Energy Vs Threshold

Fig 3 Active Host Vs Threshold

Fig 4 VM Migration Vs Threshold

0

0.1

0.2

0.3

0.4

0.1 0.2 0.3 0.4 0.5

En
er

gy
Lower Utilization threshold

ACO EACO

0

5

10

15

20

0.1 0.2 0.3 0.4 0.5

A
ct

iv
e

h
o

st

Lower utilization threshold

ACO EACO

0

20

40

60

80

0.1 0.2 0.3 0.4 0.5

V
M

 M
ig

ra
ti

o
n

Lower Utilization threshold

ACO EACO

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1676

Fig 5 SLA violation Vs Threshold

Fig 6 Shutdown host Vs Threshold

According to the X-axis and Y-axis, Figure 2 displays the

threshold from 0.1 to 0.5 together with the matching

energy values. Figure 3 displays the active host on the Y-

axis together with the threshold, which ranges from 0.1 to

0.5. The threshold, which range from 0.1 to 0.5, are shown

in Figures 4,5 and 6, together with the associated VM

migration values, SLA violation and in active host on the

Y-axis. The graph unequivocally shows that the EACA

algorithm performs better than the fundamental ACO

method. This result shows that, when compared to the

standard ACO method, the suggested EACA algorithm

performs better in terms of minimizing the energy, active

host and optimizing the VM allocation. The graph

unequivocally shows that the suggested EACA performs

better than both the original ant colony algorithm

approach. This result shows that EACA successfully

optimizes VM allocation and achieves a perfect load

balance throughout the entire system, resulting in a better-

balanced system load.

5. Conclusion

In conclusion, it can be affirmed that our suggested

methodologies outperform others across various

scenarios, with the exception of the average SLA violation

percentage. Notably, we observe a substantial reduction in

energy consumption by up to 17.57%, accompanied by a

decrease in the frequency of VM migrations. Furthermore,

performance enhancements are evident across all

approaches in diverse scenarios when compared to the

dynamic threshold benchmark. We also present

comparative graphs illustrating the application of dynamic

load on VM. In this study, we employ the extended ant

colony optimization, which aids in making informed

decisions regarding VM migrations and selecting

appropriate destination hosts. The evaluation of our

proposed framework is conducted using the CloudSim

simulator. The aforementioned outcomes underline the

interconnected nature of energy consumption, VM

migration frequency, average SLA violation, and

performance decline.

Acknowledgements

The authors wish to extend their profound gratitude to the

editor and reviewers for their invaluable assistance in

enhancing and facilitating the publication of the

manuscript.

Author contributions

Rudresh Shah contributed to design, implementation, and

analysis of the results; Suresh Jain and Kailash Chandra

Bandhu suggested for final manuscript preparation.

Conflicts of interest

The authors declare no conflicts of interest.

Reference

[1] P. M. Mell and T. Grance, “The NIST definition of

cloud computing,” National Institute of Standards

and Technology, 2011. doi: 10.6028/nist.sp.800-

145.

[2] Y. Li and Z. Lan, “A Survey of Load Balancing in

Grid Computing,” Heidelberg: springer Berlin,

2005.

[3] J. Luo, L. Rao, and X. Liu, “eco-IDC: Trade Delay

for Energy Cost with Service Delay Guarantee for

Internet Data Centers,” in 2012 IEEE International

Conference on Cluster Computing, IEEE, Sep. 2012.

doi: 10.1109/cluster.2012.23.

[4] K. W. Cameron, R. Ge, and X. Feng, “High-

performance, power-aware distributed computing

for scientific applications,” Computer (Long Beach

Calif), vol. 38, no. 11, pp. 40–47, Nov. 2005, doi:

10.1109/mc.2005.380.

[5] Y. Ma, B. Gong, R. Sugihara, and R. Gupta,

“Energy-efficient deadline scheduling for

heterogeneous systems,” J Parallel Distrib Comput,

vol. 72, no. 12, pp. 1725–1740, Dec. 2012, doi:

10.1016/j.jpdc.2012.07.006.

[6] X. Kong, C. Lin, Y. Jiang, W. Yan, and X. Chu,

“Efficient dynamic task scheduling in virtualized

data centers with fuzzy prediction,” Journal of

Network and Computer Applications, vol. 34, no. 4,

0

2

4

6

0.1 0.2 0.3 0.4 0.5

SL
A

 v
io

la
ti

o
n

Lower utilization threshold

ACO EACO

0

20

40

60

0.1 0.2 0.3 0.4 0.5H
o

st
 s

h
u

td
o

w
n

Lower utilization threshold

ACO EACO

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(3), 1669–1677 | 1677

pp. 1068–1077, Jul. 2011, doi:

10.1016/j.jnca.2010.06.001.

[7] A. Beloglazov and R. Buyya, “Optimal online

deterministic algorithms and adaptive heuristics for

energy and performance efficient dynamic

consolidation of virtual machines in Cloud data

centers,” Concurr Comput, vol. 24, no. 13, pp. 1397–

1420, Oct. 2011, doi: 10.1002/cpe.1867.

[8] Clark Christopher, Keir Fraser, and S. Hand, “Live

Migration of Virtual Machines,” in 2nd Symposium

on Networked Systems Design and Implementation,

Boston Massachusetts, USA, May 2007.

[9] G. Khanna, K. Beaty, G. Kar, and A. Kochut,

“Application Performance Management in

Virtualized Server Environments,” in 2006

IEEE/IFIP Network Operations and Management

Symposium NOMS 2006, IEEE, 2006. doi:

10.1109/noms.2006.1687567.

[10] A. Beloglazov and R. Buyya, “Energy Efficient

Resource Management in Virtualized Cloud Data

Centers,” in 2010 10th IEEE/ACM International

Conference on Cluster, Cloud and Grid Computing,

IEEE, 2010. doi: 10.1109/ccgrid.2010.46.

[11] M. Forsman, A. Glad, L. Lundberg, and D. Ilie,

“Algorithms for automated live migration of virtual

machines,” Journal of Systems and Software, vol.

101, pp. 110–126, Mar. 2015, doi:

10.1016/j.jss.2014.11.044.

[12] A. Beloglazov, J. Abawajy, and R. Buyya, “Energy-

aware resource allocation heuristics for efficient

management of data centers for Cloud computing,”

Future Generation Computer Systems, vol. 28, no. 5,

pp. 755–768, May 2012, doi:

10.1016/j.future.2011.04.017.

[13] M. Andreolini, S. Casolari, M. Colajanni, and M.

Messori, “Dynamic Load Management of Virtual

Machines in Cloud Architectures,” in Cloud

Computing, Springer Berlin Heidelberg, 2010, pp.

201–214. doi: 10.1007/978-3-642-12636-9_14.

[14] S. B. Shaw and A. K. Singh, “Use of proactive and

reactive hotspot detection technique to reduce the

number of virtual machine migration and energy

consumption in cloud data center,” Computers

& Electrical Engineering, vol. 47, pp. 241–254,

Oct. 2015, doi: 10.1016/j.compeleceng.2015.07.020.

[15] M. Aldossary and K. Djemame, “Performance and

Energy-based Cost Prediction of Virtual Machines

Live Migration in Clouds,” in Proceedings of the 8th

International Conference on Cloud Computing and

Services Science, SCITEPRESS - Science and

Technology Publications, 2018. doi:

10.5220/0006682803840391.

[16] khan Shagufta and Sharma Niresh, “Effective

Scheduling Algorithm for Load balancing using Ant

Colony Optimization in Cloud Computing,”

International Journal of Advanced Research in

Computer Science and Software Engineering, vol. 4,

no. 2, Feb. 2014.

[17] S Banerjee, I Mukherjee, and P Mahanti, “Cloud

computing initiative using modified ant colony

framework,” in World Acad Sci Eng Technol, 2009,

pp. 221–224.

[18] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang,

“Cloud Task Scheduling Based on Load Balancing

Ant Colony Optimization,” in 2011 Sixth Annual

Chinagrid Conference, IEEE, Aug. 2011. doi:

10.1109/chinagrid.2011.17.

[19] M. Sohani and Dr. S. C. Jain, “Threshold based VM

Placement Technique for Load Balanced Resource

Provisioning using Priority Scheme in Cloud

Computing,” International journal of Computer

Networks & Communications, vol. 13, no. 5, pp.

1–18, Sep. 2021, doi: 10.5121/ijcnc.2021.13501.

[20] R. Mishra, “Ant colony Optimization: A Solution of

Load balancing in Cloud,” International journal of

Web & Semantic Technology, vol. 3, no. 2, pp. 33–

50, Apr. 2012, doi: 10.5121/ijwest.2012.3203.

[21] Joshi N. A., “Dynamic Load Balancing In Cloud

Computing Environments,” International Journal of

Advanced Research in Engineering and Technology,

vol. 5, no. 10, pp. 201–205, Oct. 2014.

[22] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F.

De Rose, and R. Buyya, “CloudSim: a toolkit for

modeling and simulation of cloud computing

environments and evaluation of resource

provisioning algorithms,” Softw Pract Exp, vol. 41,

no. 1, pp. 23–50, Aug. 2010, doi: 10.1002/spe.995.

