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Abstract: In recent years, Cloud Computing has become increasingly appealing to service providers seeking to run applications on large 

data centres, primarily due to the advantages of highly available hardware, on-demand provisioning, and pay-as-you-go models. This 

technology harnesses the power of virtualization, which allows for the consolidation of multiple Virtual Machines (VMs) onto a minimal 

number of servers. By employing dynamic VM provisioning, VM consolidation, and strategically switching servers on and off as needed, 

data centres can maintain the desired Quality-of-Service (QoS) while achieving greater server utilization and energy efficiency. In our 

proposed work, we focus on managing the inter-relationship between energy consumption, the number of VM migrations, SLA (Service 

Level Agreement) violations, and application performance. Our approach tackles the issue of over-utilized servers by migrating the most 

suitable VMs to appropriate destination servers. To accomplish this, we have devised VM selection and VM placement strategies. 

Additionally, for overload detection, we have utilized the exponential smoothing technique. Our chosen platform for implementing these 

approaches is the cloudsim simulator. The results of our study demonstrate significant benefits. Specifically, we observed a reduction in 

energy consumption of up to 17.57%, a decrease in the number of VM migrations, and overall improvements in application performance 

across various scenarios. 

Keywords cloud computing; virtual machine consolidation; energy consumption; virtual machine migration; hotspot mitigation. 

1. Introduction 

In recent years, Cloud computing has emerged as a 

transformative paradigm for large-scale parallel and 

distributed computing. It offers convenient and on-

demand network access to a shared pool of configurable 

computing resources, including networks, servers, 

storage, applications, and services [1]. These resources 

can be rapidly provisioned and released with minimal 

management effort, making it an attractive option for 

service providers due to its pay-as-you-go policy and the 

absence of upfront capital investment. Consequently, 

distributed large-scale data centers, comprising thousands 

of hosts, have become the preferred infrastructure for 

offering services. 

 Cloud Computing is a rapidly emerging technique that 

provides online computing resources, storage, and 

infrastructure. Its main characteristics include on-demand 

self-service network access, resource pooling, and rapid 

elasticity of service availability. Cloud Computing has 

four main deployment models: Private Cloud, Public 

Cloud, Community Cloud, and Hybrid Cloud. 

Additionally, it offers three different service models: 

Infrastructure as a Service (IaaS), Platform as a Service 

(PaaS), and Software as a Service (SaaS). One of the 

significant concerns in Cloud Computing is load 

balancing. Ensuring load balancing is crucial to avoid 

scenarios where tasks are waiting in a queue for service at 

one resource, while another capable idle resource remains  

unused. Load balancing algorithms aim to minimize such 

situations as much as possible [2]. Swarm intelligence 

techniques have demonstrated their effectiveness in 

solving load balancing problems. They offer promising 

solutions for achieving load balancing by minimizing the 

load difference between the heaviest and lightest nodes. 

This paper proposes a distributed swarm intelligence-

inspired scheduling and load balancing algorithm called 

Ant Colony Optimization (ACO). 

However, the operation of these data centers comes with 

significant challenges related to energy consumption. The 

substantial number of hosts and the inefficient load 

distribution on servers lead to excessive heat generation 

by overloaded servers, necessitating more cooling, which, 

in turn, results in high carbon dioxide emissions [3]. 

Beyond the operational costs, the considerable energy 

consumption poses reliability concerns, as the failure rate 

of hosts doubles for every 10-degree increase in 

temperature [4]. Therefore, the critical task at hand is to 

find ways to reduce energy consumption without 

compromising performance while managing cloud data 

center operations effectively. Virtualization Technology 

has revolutionized server capabilities by allowing 

multiple Virtual Machines (VMs) to run concurrently on a 

single server. VM consolidation is a widely used approach 

to reduce energy costs, achieved through live VM 

migration operations, which balance the workload and 
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optimize computing resources by relocating VMs from 

one server to another. This process consolidates VMs onto 

a smaller number of active hosts, increasing the number 

of inactive hosts. Leveraging virtualization capabilities, 

we can dynamically scale up or down computing 

resources to accommodate fluctuating workloads 

effectively. During non-overloaded periods, we can add 

more VMs, and during underutilized times, we can 

consolidate VMs, minimizing active hosts and even 

turning off idle hosts. Notably, idle hosts consume a 

significant amount of power, with completely idle hosts 

wasting over 70% of their peak load [5]. Hence, powering 

off idle hosts results in considerable power savings. 

However, virtualization also introduces challenges in 

resource management due to resource sharing among 

multiple VMs on a single server [6]. This sharing can lead 

to performance uncertainties for VMs, primarily caused 

by server overload [7]. Thus, striking a balance between 

avoiding overload for better performance and dynamically 

consolidating VMs for greener computing becomes 

crucial. Efficiently managing cloud resources poses 

additional difficulties, as interactive service applications 

often generate dynamic and non-deterministic resource 

demands due to frequently changing workloads. Active 

VM consolidation can lead to performance degradation in 

such scenarios. As a consequence, there is a trade-off 

between energy efficiency and performance, which can 

lead to Service Level Agreement (SLA) violations. SLAs 

are agreements between service providers and consumers 

to ensure reliable Quality-of-Service (QoS). 

To achieve server consolidation, live migration techniques 

[8] are employed, creating a direct relationship between 

VM consolidation and overload avoidance, ultimately 

leading to improved performance while adhering to SLAs. 

Live migration allows the seamless movement of a 

running VM or application between different servers 

without disrupting client or application connections. This 

approach enhances performance and reduces energy 

consumption by effectively addressing underutilization 

and overutilization issues. Numerous research efforts have 

been dedicated to handling VM migration, considering 

that each migration introduces some performance 

degradation, leading to increased SLA violations and 

operational costs. Therefore, careful consideration is 

required to determine which VMs should be migrated and 

where they should be migrated. 

The primary objective of our work is twofold: reducing 

energy consumption and minimizing the number of VM 

migrations while maintaining low SLA violations. 

Excessive VM migrations can cause network congestion 

and add overhead for tracking VM migration information. 

To address these challenges, we employ future forecasting 

methods for load prediction, enabling us to proactively 

avoid server overload problems. This predictive capability 

also aids in deciding whether a VM migration should be 

performed, helping to minimize the overall number of 

migrations. Throughout this process, we ensure that 

performance remains at acceptable levels. Our main areas 

of focus are as follows: 

• Proposing VM selection approaches based on VM's 

CPU load and RAM size to handle over-utilized 

servers effectively. 

• Introducing VM placement approaches based on 

VM's CPU load to optimize server utilization 

efficiently. 

2. Related Work 

Over the past few years, researchers have been 

increasingly concerned about the substantial energy 

consumption of cloud data centers. As a response, 

numerous energy-aware and VM consolidation algorithms 

have been developed. Within this context, two critical 

issues have been addressed: The first issue is overload 

avoidance, which involves the use of load prediction 

algorithms to forecast future resource demands. These 

predictions are utilized to apply migration techniques, 

ensuring that server loads remain below the upper 

threshold of utilization. By proactively managing resource 

allocation, the aim is to prevent servers from becoming 

overloaded and optimize their performance. The second 

issue pertains to VM consolidation, which aims to reduce 

the number of active hosts by migrating VMs from 

underutilized servers. By consolidating VMs onto fewer 

hosts, the data center can achieve better resource 

utilization and energy efficiency. 

In summary, researchers have focused on developing 

energy-aware and VM consolidation algorithms to tackle 

the challenges of high energy consumption in cloud data 

centers. These algorithms address overload avoidance 

through load prediction and migration techniques, as well 

as VM consolidation to enhance resource utilization. [9] 

utilizes monitoring of VMs and hosts' CPU and memory. 

The authors propose a fixed threshold value to limit 

resource utilization. [10] introduces a resource 

management system based on virtualization to reduce 

energy consumption while maintaining QoS. [11] presents 

push and pull load balancing algorithms that involve VM 

migrations. [12] proposes various energy-efficient VM-to-

host mapping methods, including three VM selection 

policies: "minimization of migration," "highest potential 

growth," and "random choice." In later work, [7] 

addresses continuously changing CPU utilization 

thresholds due to varying workloads, introducing adaptive 

techniques like Median Absolute Deviation (MAD) and 

Inter Quartile Range (IQR). For VM placement, [13] 

suggests strategies based on overloaded and under-loaded 
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PMs using push and pull approaches. [14] decides VM 

migrations and destination selection based on forecasting 

heuristics and smoothening techniques. 

In [15], the author introduces two strategies for automated 

live migration of virtual machines, based on overloaded 

and under-loaded Physical Machines (PMs). The first 

strategy, known as the push strategy, involves PMs with 

loads exceeding a threshold acting as sellers, while the 

VMs resident on these PMs are auctioned items. 

Information shared with buyers includes CPU load and 

memory usage. The second strategy, called the pull 

strategy, features under-loaded PMs acting as sellers, 

providing information about available free resources. In 

[13], the authors propose a method for deciding resource 

reallocation of virtual machines, addressing the 

dependency problem present in application migration. 

Instead of using fixed threshold methods, they define a 

stochastic model based on cumulative sum. This 

stochastic method effectively eliminates unwanted VM 

migrations caused by slight changes in CPU load. For 

destination host selection, a best-fit method is employed. 

In [14], the author first determines whether VM migration 

is required based on forecasting heuristics. If migration is 

deemed necessary, an appropriate destination is selected. 

Both VM migration and destination selection employ 

smoothing techniques. VM migration occurs in two main 

cases: when the server load is above the dynamic 

threshold and when server loads fall below the lower 

threshold. In the latter case, all VMs from the 

underutilized server need to be migrated. If server 

utilization exceeds the upper threshold, the predicted load 

is checked, and if it is also high, VM migration takes 

place. For destination selection, the authors propose a 

novel approach that considers the host's future load to 

ensure it remains unburdened when the migrated VM 

resumes operation.  The Ant Colony Algorithm (ACO) 

was first proposed by Marco Dorigo and his colleagues in 

1992, inspired by the behaviour of real ants. When 

searching for food, ants can efficiently discover the path 

between their nest and the food source. During this search, 

ants wander randomly and leave chemical substances 

called pheromones on the ground during their return trip. 

Other ants can then follow these pheromone trails to find 

the path to the food source and return to the nest. By 

following the pheromone trails with the highest density, 

ants can reach the food sources effectively, allowing for 

indirect communication and enabling them to find the 

shortest paths. 

In [16], the proposed technique builds upon ACO, aiming 

to identify overloaded nodes in the shortest time and 

balance the load among nodes while maximizing resource 

utilization. In [17], an initial heuristic algorithm is applied 

to modify Ant Colony Optimization for service allocation 

and scheduling mechanisms in cloud systems. This 

modification supports minimizing the Makespan of the 

cloud system services. In [18], [19], a cloud task 

scheduling policy based on Load Balancing Ant Colony 

Algorithm is proposed. The approach aims to balance the 

entire system load while minimizing the Makespan of 

given tasks. In [20], an ACO-based approach is developed 

as an effective load balancing algorithm capable of 

maximizing or minimizing different parameters. In [21], a 

technique based on ACO is proposed for redistributing 

overloaded nodes based on a Threshold value. If the load 

on the current node is less than the threshold, ants will 

search among the available nodes, and their movement 

will be restricted to one direction. 

Our approach makes use of the ant colony optimization 

technique to estimate the VM selection of the host which 

helps us to mitigate the problem of unnecessary VM 

migrations. In our work, we represent the interrelationship 

between energy consumption, the number of VM 

migration, average SLA violation, and Performance 

degradation 

scheduling framework. In the context of cloud computing, 

the task scheduling problem becomes more intricate due 

to the need for additional steps such as VM migration, 

server consolidation, and ensuring compliance with 

Service Level Agreements (SLAs). To address these 

complexities, a framework is designed and developed for 

server consolidation, as depicted in Figure 1. Interactive 

applications in the cloud are dynamic, with varying 

resource requirements and loads. The primary objectives 

of the research discussed in this chapter are to devise 

approaches that efficiently utilize resources and minimize 

energy consumption. Achieving these goals necessitates 

VM migration. 

However, VM migration poses challenges as it introduces 

system overheads, including reallocation of VMs and the 

need to keep track of VM migration information. 

Additionally, an excessive number of VM migrations can 

lead to network congestion. In this research work, 

comprehensive solutions are developed to address all 

three aforementioned problems: (i) determining when to 

migrate VM(s), (ii) identifying which VM(s) to migrate, 

and (iii) determining where to migrate VM(s) to optimize 

resource utilization and minimize energy consumption. 

 

Fig 1. The proposed framework to server consolidation. 
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The proposed framework addresses all three problems and 

presents an illustrative representation of server 

consolidation approaches in Figure 1. To address the first 

problem, an algorithm for host overload detection is 

proposed, which involves determining an adaptive 

threshold for CPU utilization and implementing efficient 

load forecasting techniques. These forecasting techniques 

help predict resource utilization patterns, enabling timely 

decisions about VM migration. For the second problem, 

VM selection algorithms are introduced to choose one or 

more VM(s) for migration from overloaded servers. VM 

selection is based on the CPU and RAM usage of VMs on 

the over-utilized servers. Lastly, the framework addresses 

the third problem through the introduction of VM 

placement algorithms. These algorithms focus on 

effectively placing VMs in suitable destination hosts, 

ensuring optimized resource utilization and minimizing 

energy consumption. 

3. Proposed Work 

In accordance with our problem statement, our approach 

involves several steps. Initially, we determine the upper 

threshold of CPU utilization to establish a basis for 

identifying potential host overloads. We proceed to select 

the appropriate VM that will be migrated from an 

overloaded host. To achieve this, we introduce Ant colony 

optimization VM selection algorithm in the subsequent 

subsection. we present the VM placement algorithm, 

which is responsible for choosing the destination host for 

the selected VM from the previous step. 

3.1. Host overload detection 

To achieve an adaptive and dynamic utilization threshold 

for our system, we recognized that a static threshold is 

inadequate in a diverse and fluctuating workload 

environment where various types of applications share 

cloud resources, each with different utilization demands. 

To address this challenge, we adopted the MAD technique 

(median of the absolute deviations from the data set 

median) as discussed in the following sub-section. The 

MAD technique serves as a statistical dispersion measure 

and proves to be more effective in handling outliers in the 

data set compared to the standard deviation. By leveraging 

the MAD technique, our approach dynamically adjusts the 

utilization threshold based on the resource demands of the 

workload. This ensures that the threshold remains relevant 

and responsive to the varying workload conditions, 

allowing for more accurate and efficient performance in 

our system. 

The MAD, denoted as MAD(X), is computed from the 

univariate data set  X={x1,x2,…….xn} 

MAD(X)= median (|xi – median(X)|) 

……………………………… (1) 

The upper utilization threshold, denoted as uT, is 

determined by the formula: 

uT= median(X) – s.MAD(X) 

Here, s ∈ R+ is a safety parameter that influences the 

system's VM consolidation strategy. Smaller values of s 

lead to reduced energy consumption but may result in 

higher SLA violations during VM migration handling. we 

introduce our overload detection algorithm, which takes 

into account the upper threshold of the host's CPU 

utilization. To calculate the upper threshold, we utilize the 

MAD technique. This allows us to evaluate the 

effectiveness and accuracy of MAD technique in 

estimating the load of the host's CPU utilization, 

providing valuable insights into the performance of our 

overload detection algorithm. 

Algorithm 1: Host Overload Detection Algorithm 

1. Input: hostList, Output: migration decision 

2. Set flagP = flagF = false 

3. For each host in hostList do 

4. Calculate host.currentCPUutil as 

host.getCurrentRequestedMIPS() / 

host.getTotalMIPS() 

5. Obtain hostUtilData[] containing the historical 

CPU utilization data for the host 

6. Calculate the upperThreshold (Tu) as 1−s×MAD  

7. If host.currentCPUutil > upperThreshold (Tu), 

then 

8. Set flagP = true 

9. If hostUtilData[].size() < 10, then 

10. If flagP = true, then 

11. Add the host to currentOverUtilHost list (a list to 

store currently overloaded hosts) 

12. If flagP == true and flagF == true, then 

13. Return true (indicating that migration decision is 

needed) 

14. Else 

15. Return false (indicating that migration decision 

is not needed) 

The algorithm functions as follows: 

In line 2, two flags are defined: flagP for the present CPU 

utilization and flagF for the future CPU utilization. In line 

4, the current CPU utilization of the host is calculated. In 

line 5, the historical CPU utilization data is obtained from 

the utilization history. In line 6, the host's upper threshold 

is calculated using the MAD technique. This threshold is 
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used to determine if the current or future CPU utilization 

exceeds the acceptable limits. If the current utilization of 

the host is higher than the calculated upper threshold, the 

flagP is set to true, indicating that the host is currently 

experiencing an overload (lines 7 to 8). We consider this 

host to be currently overloaded. If the historical utilization 

data for the host contains less than 10 data values (10 

being a suitable value that provides sufficient data for the 

MAD calculation; other values such as 8, 12, 14, etc., can 

also be chosen), the currently overloaded host is added to 

the "currently over-utilized host" list. This step is 

necessary because the MAD calculation relies on the 

previous utilization history to detect host overloads (lines 

9 to 11). However, at this point, no VM migration is 

performed yet, as it is only a preliminary step in the 

algorithm. Using this algorithm, we also exclude the 

current overutilized host from probably destination host 

list. That helps us to avoid unnecessary VM migrations. 

3.2. Extended Ant Colony optimization based 

VM selection approach (EAC) 

In the proposed load balancing approach with Extended 

Ant Colony Optimization (EAC), the main procedure can 

be broken down into three distinct steps, which are 

explained as follows: 

3.2.1 Initializing the pheromone 

In this step, the system initializes the EAC algorithm with 

necessary parameters and constructs the problem-specific 

graph representation. The graph represents the cloud 

environment, where nodes represent virtual machines 

(VMs) and edges represent the communication links or 

distances between VMs. Each VM is associated with a 

pheromone value that influences the ants' decision-

making during the optimization process. Additionally, the 

algorithm sets other ACO-specific parameters, such as the 

number of ants, evaporation rate, and heuristic 

information. The initial amount of pheromone is assumed 

to be a small positive constant xmn(t) =0. 

3.2.2 How Ants choose VMs  

During this step, multiple ants traverse the graph to 

construct candidate solutions for the load balancing 

problem. Each ant starts from a randomly chosen VM and 

follows a probabilistic decision-making process to 

determine its next move. The decision is influenced by 

both the pheromone information and the heuristic 

information, which represents the desirability of moving 

from the current VM to another one. The ants continue 

their movement, constructing feasible solutions by 

visiting VMs while adhering to constraints and balancing 

the load. In the conventional Ant Colony Optimization 

(ACO) approach, the probability of selecting the next 

operation considers pheromone trails and edge weights. 

However, there is a recognized need to incorporate 

machine load as a crucial factor in this probability 

calculation. To address this requirement, the Load 

Balancing ACO introduces an additional parameter - 

Machine load. The traditional ACO algorithm does not 

take into consideration the machine load factor, which is 

crucial for minimizing idle time and achieving load 

balancing in the system. When a machine assigned to a 

particular operation is heavily loaded, the probability of 

completing that operation decreases, leading to a 

preference for other operations assigned to less burdened 

machines. In the proposed Load Balancing ACO, the ant 

determines the next node to visit based on equation 1, 

which incorporates the machine load as a significant 

parameter in the decision-making process. 

∑ 𝑃(𝑚, 𝑛) =

{
𝑥(𝑚,𝑛)𝛼∗𝑦(𝑚,𝑛)𝛽∗𝑧(𝑚,𝑛)𝛾

∑ 𝑢𝜖 𝑆𝑘  𝑥(𝑚,𝑢)𝛼∗𝑦(𝑚,𝑢)𝛽∗𝑧(𝑚,𝑢)𝛾

0,                                             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
    𝑖𝑓 𝑛 𝜖𝑆𝑘……

………. (1) 

In the equation, x(m,n) represents the pheromone trail, 

y(m,n) represents the edge weight and z(m,n) represents 

the total execution time of the machine associated with a 

specific operation. An array is utilized to store the total 

execution time for each machine. When a machine is 

already busy executing an operation, selecting the next 

operation to be executed on the same machine can lead to 

increased idle times for other machines. To mitigate this 

issue and reduce idle time, the machine load parameter is 

taken into account. Consequently, machines with lower 

execution times are favoured, resulting in an overall 

reduction of idle time across the system. The parameters 

α, β and Γ determine the relative importance of the 

pheromone level compared to the edge weight. By 

adjusting the values of α, β and Γ the node with an edge 

of lower weight and higher pheromone levels is favoured 

in the path selection process. Once the path is selected, the 

ants deposit pheromone according to equation 2. 

3.2.3 Pheromone Update 

After all ants complete their tours and construct solutions, 

this step involves updating the pheromone values on the 

graph. The pheromone update strengthens the paths taken 

by the ants that led to good solutions and weakens the less 

successful paths. Based on the constructed solutions, the 

algorithm performs load transfer between VMs to achieve 

better load balancing. The VMs' load is adjusted according 

to the solutions found by the ants, effectively 

redistributing the workload. 

𝑥(𝑚, 𝑛) = (1 − 𝜌) ∗ 𝑥(𝑚, 𝑛) +  𝜌 ∗ ∆𝑥(𝑚, 𝑛)……… (2) 

Where ρ= decay, 0 < ρ < 1 and Δx(m,n) is calculated by 

formula (3). 
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∆𝑥(𝑚, 𝑛) =

{
𝐺𝑔𝑏             ,𝑖𝑓(𝑚,𝑛) ∈ 𝑔𝑜𝑏𝑙𝑒 𝑏𝑒𝑠𝑡 𝑡𝑜𝑢𝑟

0                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
………………. (3) 

The ant system possesses a crucial characteristic known 

as pheromone evaporation, where the deposited 

pheromone gradually decreases over time. This property 

plays a significant role in preventing premature 

convergence to a sub-optimal solution. By allowing 

pheromone levels to decrease, the system maintains 

exploration opportunities, enhancing the chances of 

finding better and more optimal solutions instead of 

getting stuck in local optima. These three steps constitute 

the core process of the load balancing approach with 

ACO. The algorithm iterates through these steps multiple 

times until a satisfactory load-balanced state is achieved 

in the cloud environment. Through the intelligent 

movement of ants and the dynamic pheromone updates, 

the ACO-based approach effectively optimizes the 

distribution of tasks among VMs, improving the overall 

performance and resource utilization in the cloud system. 

3.3. VM placement algorithm 

We conducted a comparison of our results with two VM 

placement algorithms in the CloudSim simulator. The first 

algorithm is the Power Aware Best-Fit Decreasing 

(PABFD) algorithm, as simulated by Calheiros et al. 

(2011). The primary focus of PABFD is on the energy 

factor, and it allocates the host to a migratable VM whose 

energy difference after allocation is minimized. However, 

this approach may lead to a host overload problem in the 

near future, after each time period. The second algorithm 

used in our work is the First-Fit algorithm, which we had 

previously proposed (Choudhary et al., 2016). The First-

Fit algorithm maps the VM to a host by finding the first 

suitable host in the host list. This algorithm significantly 

reduces the time complexity to O(mn), where m is the 

number of feasible destination hosts (equation (4)) and n 

is the number of migratable VMs. In some cases, the First-

Fit algorithm performs better than PABFD because it 

allocates the host without concentrating on energy factors, 

which reduces the probability of host overload in the near 

future. While PABFD may have benefits in terms of 

energy efficiency, the First-Fit algorithm's focus on 

immediate suitability can lead to improved overall 

performance by preventing host overload issues. 

𝐹𝐷𝐻 = (𝑇𝑜𝑡𝑎𝑙 ℎ𝑜𝑠𝑡 −

 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑜𝑣𝑒𝑟𝑙𝑜𝑎𝑑𝑒𝑑 ℎ𝑜𝑠𝑡)…… (4) 

Where FDH is feasible destination host. We proposed the 

destination host CPU utilisation aware VM placement 

algorithm 2. 

Algorithm 2: Host Utilization-Based Algorithm 

1. Input: hostList, VMList Output: Allocation 

map of VMs 

2. For each VM in VMList do 

3. Set minPower to double.MAXVALUE 

4. Set allocatedHost to NULL 

5. Set hostSelect to NULL 

6. For each host in getHostList() do 

7. if (currentOverloadHost.contains(host)) then 

8. continue to the next host 

9. if (host.isSuitableVM(VM)) then 

10. if (getUtilOfCpuMips(host != 0 && 

isHostOverUtilAfterAllocation(host,VM)) then 

11. continue to the next host 

12. Increment totalhost 

13. hostu=hostu+ host.getUtilOfCpu() 

14. hostavg=hostu/totalhost 

15. utildiff=Double.MAX_VALUE 

16. for (host : getHostList()) do 

17. repeat step 7-8 

18. if (host.isSuitableForVM(VM)) then 

19. repeat step 10-11 

20. hostutil=host.getUtilOfCpu() 

21. if (0<(hostutil-hostavg)<utildiff) then 

22. utildiff=|hostutil-hostavg| 

23. Allocation.add(VM,allocatedHost) 

24. if(allocatedHost != NULL) then 

25. call First-Fit or EABFD 

26. return Allocation 

The algorithm is called for each migratable VM, as shown 

in lines 2 to 26. For each defined host (lines 6 to 14), the 

algorithm calculates the average CPU utilization of the 

hosts. It checks whether the host is a feasible destination 

for the VM (lines 7 to 8). If the host is suitable in terms of 

CPU utilization, RAM, and bandwidth, it further checks 

whether allocating the VM will cause the host to overload. 

If it will, the algorithm moves to the next probable 

destination host; otherwise, it calculates the CPU 

utilization of that host (lines 9 to 13). The algorithm 

calculates the average CPU utilization of all suitable 

destination hosts (line 14). To find the mapping of VMs to 

destination hosts, the algorithm once again accesses each 

host (lines 16 to 25). The algorithm repeats the 2nd step 

(lines 17 to 21) to further explore suitable destination 
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hosts for the VM. It calculates the current utilization of the 

host's CPU (line 22). Next, the algorithm searches for a 

host whose CPU utilization is approximately close to the 

average utilization calculated in step 3, with a positive 

difference. It then allocates that host to the migratable 

VM. If the algorithm fails to find any suitable destination 

host in the previous step, it resorts to calling either the 

First-Fit or PABFD algorithm for the mapping of 

migratable VMs to hosts. 

Our proposed VM placement algorithm (Algorithm 2) 

effectively reduces the number of overloaded hosts by 

allocating migratable VMs to hosts with average 

utilization, thus optimizing the distribution of workload. 

Additionally, it minimizes the need for migrations, leading 

to enhanced resource utilization and improved overall 

performance in the cloud environment. 

4. SIMULATION And RESULT 

CloudSim 3.0 [22] serves as the simulation tool employed 

in this study. The simulation is conducted under the 

following scenario: The tasks to be executed are 

independent of each other. Tasks vary in computational 

sizes, with the length of each task presented in Millions of 

Instructions (MI). The experiments are carried out on 20 

tasks and 75 virtual machines (VMs). The cloud simulator 

s configured with the parameter settings outlined in Table 

I. 

Table I Parameters Setting of CloudSim. 

Type of 

Entity 
Parameters Values 

Task  

(cloudlet) 

Length of 

task 

1000-20000 

(MI) 

Total Num of 

Task 
20 

Virtual 

Machine 

Total 

Number of 

VMs 

75 

MIPS 500-2000 

VM memory 256-2048 

Bandwidth 70-100 

Number Of 

PEs 

Requirement 

01-Apr 

Datacenter 

Number of 

datacenter 
1 

Number of 

Host 
02-Jun 

Vmscheduler 

Space_shared 

and 

Time_share 

 

Table II shows selected parameters of Extended ACO and 

ACO taken into experiments for simulation. 

Table II Parameters Setting of CloudSim. 

Parameter Alpha Beta Gamma Rho G tmax 

EACO 0.1 0.9 5 0.4 100 100 

ACO 0.2 1 0 0.4 100 100 

 

 

Fig 2 Energy Vs Threshold 

 

Fig 3 Active Host Vs Threshold 

 

Fig 4 VM Migration Vs Threshold 
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Fig 5 SLA violation Vs Threshold 

 

Fig 6 Shutdown host Vs Threshold 

According to the X-axis and Y-axis, Figure 2 displays the 

threshold from 0.1 to 0.5 together with the matching 

energy values. Figure 3 displays the active host on the Y-

axis together with the threshold, which ranges from 0.1 to 

0.5. The threshold, which range from 0.1 to 0.5, are shown 

in Figures 4,5 and 6, together with the associated VM 

migration values, SLA violation and in active host on the 

Y-axis. The graph unequivocally shows that the EACA 

algorithm performs better than the fundamental ACO 

method. This result shows that, when compared to the 

standard ACO method, the suggested EACA algorithm 

performs better in terms of minimizing the energy, active 

host and optimizing the VM allocation. The graph 

unequivocally shows that the suggested EACA performs 

better than both the original ant colony algorithm 

approach. This result shows that EACA successfully 

optimizes VM allocation and achieves a perfect load 

balance throughout the entire system, resulting in a better-

balanced system load. 

5. Conclusion 

In conclusion, it can be affirmed that our suggested 

methodologies outperform others across various 

scenarios, with the exception of the average SLA violation 

percentage. Notably, we observe a substantial reduction in 

energy consumption by up to 17.57%, accompanied by a 

decrease in the frequency of VM migrations. Furthermore, 

performance enhancements are evident across all 

approaches in diverse scenarios when compared to the 

dynamic threshold benchmark. We also present 

comparative graphs illustrating the application of dynamic 

load on VM. In this study, we employ the extended ant 

colony optimization, which aids in making informed 

decisions regarding VM migrations and selecting 

appropriate destination hosts. The evaluation of our 

proposed framework is conducted using the CloudSim 

simulator. The aforementioned outcomes underline the 

interconnected nature of energy consumption, VM 

migration frequency, average SLA violation, and 

performance decline. 
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