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Abstract: The early stage of Colorectal cancer (CRC)  prediction is useful to decrease the mortality and morbidity rate and also to increase 

the diagnosis efficiency of the patient-specific treatments. CRCs are treatable if the polyps are detected in the earliest stages. Colonoscopy 

has established itself as a useful diagnostic method for examining abnormalities in the lower digestive system and can accurately localize 

lesions. We propose a novel segmentation network, Fully Convolutional Generator Network(FCG-Net), for automatic localization and 

segmentation of polyps using colonoscopy images. The generator model based on the fully convolutional network can realize the 

segmentation network's end-to-end output and enrich the semantic information of polyps through transverse connections. FCG-Net can 

also input the segmentation prediction images and the labeled images into the discriminant convolutional network and improve the 

segmentation accuracy of polyps by further enhancing the essential characteristics of learning data through the confrontation training of 

generators and discriminators. The experimental results demonstrate that higher performance is provided by the newly developed FCGN-

Net predictive model when compared to other comparative algorithms while considering the negative and positive metrics. 

Keywords: Colonoscopy; Colorectal Cancer; CNN; Normal analysis. 

1. Introduction 

Colorectal cancer (CRC), one of the ultimate stages of the 

GI tract polyp, is caused by the abnormal development or 

swelling of tissues in the GI tract.  Currently, CRCs are 

treatable if the polyps are detected in the earliest stages. 

Colonoscopy has established itself as a useful diagnostic 

method for examining abnormalities in the lower digestive 

system and can accurately localize lesions. Traditional 

colonoscopy, however, is uncomfortable and intrusive and 

is ineffective for treating abnormalities in the small 

intestine. Lesion form, color, irregularity, size, and texture 

are only a few of the difficulties that are currently present in 

this field.  Numerous computer-based strategies are used for 

polyp segmentation.  CRC being the third most prevalent 

type of cancer in the world and having a high mortality rate, 

colorectal cancer (CRC) is one of the largest health 

problems[1]. The early stage of Colo-rectal cancer (CRC)  

prediction is useful to decrease the mortality and morbidity 

rate and also to increase the diagnosis efficiency of the 

patient-specific treatments. Existing CRC prediction 

approaches suffer from several limitations because of 

unreliable human false-positive predictive outcomes. The 

deep learning-based diagnosis methodology provides higher 

prediction accuracy and earlier detection of Polyps from the 

collected data set. But, the researchers face several 

challenges in the prediction of thyroid nodules from large 

dimensional dataset with higher prediction accuracy. 

Colonoscopy is the gold standard approach for CRC 

screening [2] and implementing population-based CRC 

screening programs is an effective way to lower the 

incidence and mortality of CRC [3]. The purpose of these 

screening programs is to find and remove adenomatous 

polyps that may eventually lead to CRC [4]. Additionally, it 

is known that an early CRC diagnosis can raise the 5-year 

survival percentage from 18 to 88.5% [5]. Therefore, the 

screening and treatment of colorectal cancer are an urgent 

requirement. Many image processing techniques are finding 

their way into medical image analysis as digital technology 

advances and the usage of imaging improves dramatically 

in healthcare and diagnostics. Researchers worldwide are 

putting massive efforts into enhancing automated diagnosis 

systems, making it one of the most active research areas. 

The fundamental reason behind making (CAD) based 

systems widely accessible and useful involves medical 

image segmentation as it has been used as a popular image 

processing technique to ease and automate medical imaging 

tasks. During medical segmentation, the main objective is to 

extract the specific region of interest (ROI) from the medical 

images based on the intended application. 

Accurate segmentation of rectal cancer and rectal wall is the 

primary task to guide the staging of rectal cancer and 

determine a suitable treatment plan. For several reasons, the 

segmentation of medical images is challenging. The images 

are captured under various different protocols and settings, 

so they have low contrast and are non-homogeneous in 

appearance, leading to problems like under-segmentation 

[6] or over-segmentation. There is a significant variation in 
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the scale and shape of images [7-8], due to which we can’t 

construct a prior shape model. The various types of polyps, 

including large, small isochromatic, and diminutive polyps 

are shown in Figure 1. 

 

Fig 1. Examples of polyp detection in still-image analysis 

(dataset A). (a) Polypoid polyps, (b,c) isochromatic fat 

polyps, and (d) distant, diminutive polyp. 

Early detection of polyps diseases is vital., Convolutional 

Neural Networks (CNNs) and Vision Transformers (ViTs) 

have emerged as effective tools for medical image analysis 

with the advent of deep learning. These technologies have 

shown exceptional performance in a variety of diagnostic 

tasks. Using a Cascade CNN-ViT model, which blends the 

capabilities of Inception-V3, ResNet-50, and Vision 

Transformer architectures, we suggest a novel method in 

this study to detect the polyps. This method makes use of a 

Cascade CNN-ViT model. Each of these components adds 

its own unique set of characteristics and advantages, which 

enables improved illness categorization based on retinal 

image features and more accurate feature representation 

[14].  It has been demonstrated that convolutional neural 

networks (CNNs), such as Inception-V3 and ResNet-50, are 

very adept at learning hierarchical representations of images 

from their inputs. Inception-V3 makes use of inception 

modules to capture multi-scale features, whilst ResNet-50 

implements skip connections as a solution to problems with 

disappearing gradients[29-30].  

These architectures are particularly effective at extracting 

local and spatial features, which are necessary for 

determining abnormalities and detailed structures present in 

colonoscopy images. On the other hand, have attracted a lot 

of attention because of their capacity to incorporate self-

attention processes. This ability enables the model to 

capture global contextual information as well as long-range 

relationships inside the image. ViTs are able to gain a more 

comprehensive grasp of the colonoscopy images as a result 

of this because they are able to learn the relationships 

between the various image regions and consider the 

interactions that occur between the various anatomical 

structures in the colonoscopy images. A Cascade CNN-ViT 

model has been presented, with the goal of improving the 

performance of polyps detection. This model takes 

advantage of the complementing qualities of both CNNs and 

Vision Transformers. By feeding the local features derived 

by Inception-V3 and ResNet-50 into the Vision 

Transformer, the model is able to successfully combine fine-

grained local information with a semantically relevant 

global context. As a result, the model has better 

discriminative power when it comes to disease 

categorization[14].  

In addition, the Cascade CNN-ViT model that was 

developed demonstrates the broader potential of synergistic 

integration of deep learning architectures for increasing 

medical image analysis, particularly in difficult and high-

dimensional medical datasets. This was accomplished by 

using the model. Retinal illnesses, Cascade CNN-ViT, 

Inception-V3, ResNet-50, Vision Transformer, Deep 

learning, Medical image analysis, Early diagnosis, 

Multimodal retinal imaging, and Vision Transformer are 

some of the keywords that have been associated with this 

topic. The paper is structured as follows: Section 2 reviews 

related work. Section 3 describes the main steps of the 

research methodology. In Section 4, the dataset is described 

and ablation experiments are performed to evaluate 

performance metrics, demonstrate the working principle of 

the Polyp method, and provide directions for future 

research. Section 5 concludes the paper. 

2. Related Works 

Polyps are an essential sign of early colon cancer, so the 

main purpose of the examination is to detect them as early 

as possible to improve patient survival rates. Automatic 

detection and localization of polyps in video frames of 

gastrointestinal endoscopy can help reduce missed and false 

detections in manual manipulation, improve detection 

quality and efficiency, and have positive implications for the 

early detection of pre-cancerous lesions. 

Later, some researchers developed an interest in learning the 

temporal relationship among the images. For segmenting 

the ROI from the medical images, they used recurrent neural 

networks (RNNs) to predict the temporal dependency 

among the image sequences. In this field, researchers have 

integrated RNNs with different architectures to improve 

performance. Gao et al. [9] enhanced segmentation accuracy 

by integrating CNN and LSTM to learn the time-dependent 

relationship between different images. To obtain 

spatiotemporal information, Bai et al. [10] used RNN and 

FCN for aortic sequence segmentation. The RNNs are 

generally employed to determine the image’s global and 

local spatial features when the context is considered. 

Despite the potential benefits of using RNNs in medical 

image segmentation, it is still challenging to capture 

accurate and comprehensive temporal information. The 

primary reason why RNN architectures struggle to 

effectively address medical image segmentation is the 

limited availability and poor quality of medical image 

data[17-18]. 
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In 2020, Dharmarajan et al. [11] recommended a machine-

learning approach for the prediction of polyps using 

colonoscopy images. In this, the decision tree attribute 

splitting rule has been demonstrated to classify the thyroid 

nodules very efficiently and accurately. The diagnosis of 

thyroid disease was done with the help of machine learning 

classifiers like Naïve Bayes, regression techniques, neural 

networks, decision trees, and Support Vector Machine 

(SVM). The classification accuracy of the developed model 

was higher when analysed through the prior models. 

Ronneberger et al.[16] designed U-Net for biomedical 

images. Owing to its excellent performance, U-Net and its 

variants have been widely used in various subfields of 

computer vision and image processing. Seung-Hwan Bae 

and Kuk-Jin Yoon (2018)[20] employed a partial least 

squares (PLS) approach to find polyps in 1263 private 

pictures and the CVC ColonDB. The technique's objective 

was to build an impartial detector out of an uneven database. 

An improved identification method called discriminative 

feature learning was employed since the appearance of 

polyp and non-polyp patches is comparable. The suggested 

system was tested on CVC ColonDB and yielded precision, 

recall, F1, and F2 scores of 70.67%, 70.67%, and 70.67%, 

respectively.  For the purpose of differentiating between 

polyps and healthy tissue, Wang et al. (2020)[21] used two 

straightforward features based on a co-occurrence matrix 

and a colour texture feature. Images of polyps and normal 

tissue were categorized using the SVM classifier. Seventy-

four colonoscopic images were used in the investigation, 

which yielded a sensitivity of 86.2% and an FP rate of 1.26 

marks per image. 

For the categorization of colonic polyps, Wei Wang et al. 

(2020)[22] developed a deep learning technique using 

Global Average Pooling (GAP) in two pre-trained models. 

They conducted tests on the 1000 polyp and 7000 non-polyp 

photos in the CP-CHILD-A dataset, and both models had an 

accuracy of 98%. Jorge et al. (2017)[23] conducted a 

comparison of various Convolutional Neural Networks 

(CNN) for polyp identification and hybrid techniques. They 

discovered that the CUMED, CNN-based technique 

performed well for polyp detection. The ETIS-Larib 

database was used to assess the suggested CNN, and the 

results showed that it had a precision value of 72.36%, a 

recall value of 69.23%, an F1-score of 70.76%, and an F2-

score of 69.83%.  

Two feature improvement modules were introduced to the 

detector to aid in learning more about the features, and 

Sudhir et al. (2019)[19] 2-D CNN technique was utilized to 

identify the polyp in the static images. A transfer learning 

module was included to increase the sensitivity of polyps. 

The detector's data were integrated and the decision was 

made using a correction unit based on the inter-frame 

similarity assessment. Four databases—CVC-ClinicDB, 

ETIS-Lirib, CVC-ClinicDB, and RenjiVideoDB—were 

used to assess the suggested method. On the ETIS-Larib 

dataset, the 2D CNN models generated precision values of 

83.24%, recall values of 71.63%, F1-scores of 77.00%, and 

F2-scores of 73.69%. 

3. Methodology 

3.1. PRE-PROCESSING  

Colonoscopy images of different patients have different 

dimensions. Therefore, in the first stage of preprocessing, 

the dimensions of all images are changed to 320×320. Then 

a new hybrid color space is created from the RGB and 

H×S×V color spaces. The lightness component is not 

separated from the color components in RGB color space. 

Therefore, the images are transferred from the RGB space 

to the H×S×V space. Because the polyp tissue is similar to 

the normal colon tissue, the lightness channel of the H×S×V 

color space replaces the red channel. As a result, the HSV 

color space will be created. According to Figure 2, it can be 

expected that the sharpness of the polyp edges will increase 

in the proposed hybrid color space.  

 

Fig. 2. The pre-processing stage of  RGB to HSV 

conversion. 

3.2 FCGAN for poly segmentation 

 The Full Convolution Generate Network (FCGN) model 

is used to predict the segmentation image, which is then 

fed to the discriminant convolutional network for training 

together with the real labeled segmented image. The goal 

of the proposed method is to make accurate discrimination 

between the Discriminant Convolutional Network (DCN) 

and FGN impossible. To optimize the generator's 

performance and to improve the accuracy of the 

segmentation, through adversarial mutual learning 

between the generator and discriminator. Two improved 

approaches based on the generation adversarial network 

are performed: 1) Instead of using a convolutional network 

as a generated model, utilize a full convolutional generate 

network and pixel-level semantic classification instead of 

image-level semantic classification to create end-to-end 

segmentation results and speed up segmentation 
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computations. 2) Directly utilize the segmentation output 

from the FGN and the real label input to DCN for more 

comprehensive classification. 

3.2.1 Full Convolution Generate Network.  

A fully convolutional network model as a generator. This 

network structure combines the advantages of FCN and U-

Net to reduce the size of the U-Net in terms of network 

depth, reduce the loss of low-level semantic information, 

and result in end-to-end image polyps segmentation. Figure 

3 depicts the model structure. The network structure is made 

up of seven hidden layers, with the feature compression path 

and the recovery restoration path being the most important. 

The feature compression approach uses the max-pooling 

operation and contains three convolutional layer groups, 

each followed by a downsampling layer. The intermediate 

feature map is obtained using a layer of 33% convolution in 

the fourth layer. The feature extraction pipeline consists of 

three upsampling layers. The 1x1 and softmax activation 

functions are used to translate multi-channel features into 

relevant categories in the final set of convolutional layers. 

Each of the six groups of convolutional layers in the 

compression and feature restoration paths consists of two 

sets of convolution operations, and convolutions from the 

same cluster of convolutional layers have the same 

convolution kernel parameters, including batch processing 

and activation functions. As in the case of the U-Net 

network, the feature recovery path will merge the output of 

the feature extraction portion across the skip connection, 

resulting in an upsampled feature map that not only has deep 

high-level semantic information but also has rich low-level 

semantic information to improve segmentation accuracy. 

 

Fig.3. The structure diagram of the FGN 

The semantic information loss of the fully convolutional 

network is one element of the loss function of the FGN, 

while the adversarial loss created by the GAN is the other. 

Note that the challenge of poly segmentation has a severe 

category imbalance. Normal tissue or black backdrop 

accounts for 98.46% of the area, 1.02% of the edema region, 

0.29% of the enhancing tumor, and a minimum of 0.23% of 

the necrotic and non-enhanced occupied region[32]. For 

better task prediction and estimation, this paper uses the 

combined weighted cross entropy (WCE) [33]  and the 

generalized dice loss (GDL)[31] for semantic information 

loss and the binary cross entropy loss to combat the loss. 

Therefore, the definition of the combined loss function is as 

follows, 

                           (2) 

Weighted cross entropy (WCE) is a cross-entropy loss 

modification in which all positive samples are multiplied by 

a weighting coefficient to tackle the problem of category 

imbalance and mitigate the disparity between training 

samples and assessment metrics. The loss function 

generalized dice (GDL) is often utilized in medical image 

segmentation. When there are numerous locations in a 

lesion (such as polys), each category will have a dice 

(DICE), and the GDL will combine the DICE of multiple 

classes, allowing the model to focus on the difficult-to-learn 

samples. However, when GDL is working with very 

unbalanced data, training stability is not assured. GDL is 

responsible for predicting the segmentation area, and WCE 

is used for the classification of tissue cells. This mixed-loss 

function can lift the gradient of difficult-to-classify data 

while decreasing the gradient of easy-to-classify samples, 

which may partially mitigate the problem of category 

imbalance in poly segmentation. The calculation formula 

for these two parameters is, 

                                            (3) 

                                           (4)                                                                

where I is the total number of labels, which wi means the 

weight assigned to the i-th label. pi and ki denote the pixel 

value of the segmented binary image and the binary ground 

truth image, respectively. LCE represents the adversarial loss 

function generated by the DCN, and the calculation formula 

is given in Equ. (5). The DCN generates the loss function, 

which is used to decide if the source is valid, and the error 

is fed back to the Full Convolution Generate network, 

allowing the segmentation model to attain better accuracy. 

                      
(5) 

Where  y  belongs to (0,1)  is the label value,  D (G(X
inputs)) 

is the probability that the discriminator predicts the 

generator to predict that the sample is a positive number. 

3.3.2 Discriminant Convolutional Network(DCN) 

  

DCN  uses CNN to evaluate whether the input data is true 

or false. The genuine segmentation result is given a label of 
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1, whereas the anticipated segmentation result is given a 

label of 0. The model structure is shown in Figure 4, 

 

Fig.4. The structure diagram of the DCN 

The DCN consists of six layers, each of which is divided 

into two parts: the first four convolutional layers for feature 

extraction and the second two fully connected layers for 

decreasing the influence of feature location. Each of the first 

four convolutional layer groups has two convolutions with 

the same convolution kernel size, with 64, 128, 256, and 512 

convolution kernels, respectively. The convolution group's 

step size of convolution is set to 2 in order to perform the 

down-sampling process. To give the model greater 

nonlinear capabilities, the first four convolutional layers 

employ LeakyRelu as the activation function. The fifth and 

sixth layers are fully connected layers with a sigmoid 

activation function to obtain probability values for real 

labeled samples and anticipated segmentation result images. 

The binary cross-entropy as the loss function of the DCN, is 

still used to measure the error between the real result and the 

predicted result, the larger the error, the poorer the 

segmentation model, and conversely the smaller the error 

the higher the accuracy of the model segmentation, as 

defined by Equ.6. 

                  
(6) 

Where  LD is the loss function of the DCN,  D ( ) is the 

classification result of the DCN, and G ( )  is the predicted 

segmentation result. 

4. Data Set Description and Performance 

Measures 

4.1. Dataset Description 

The experiment was performed using publicly available 

databases such as ETIS-Larib [25], this dataset contains 196 

polyp images. The second Dataset CVC-ClinicVideoDB 

[26] consists of 11,954 images in total with 10,025 images 

of polyp. The third Data set Kvasir-SEG [27] consists of 

1000 polyp images. Colonoscopy images of 592 subjects are 

randomly divided into a training set of 572 cases and a test 

set of 65 subjects, , which are completely separated from the 

training set. Data augmentation includes random horizontal 

flip and random vertical filp. The performance of the 

method is evaluated by performing multi-class 

segmentation (i.e., segmenting rectal cancer and rectal wall) 

and calculating the DSC, specificity, and sensitivity of the 

targets in the segmentation map and the objects in the 

manual annotation results. 

4.2. Performance Measures 

In this study, three widely adopted metrics are used to 

evaluate the final segmentation results: dice similarity 

coefficient (DSC), specificity (Spec.) and sensitivity 

(Sen.).It is given in the following eqns.
                     

 

 

5. Results and Discussion 

5.1. PERFORMANCE OF PROPOSED FCGN 

METHOD 

To better verify the advantages of the proposed FCGN on 

polyp segmentation, quantitative and qualitative analyses 

are introduced for experiment analysis, and detailed 

experiments are carried out on these three public datasets. 

The comparison experiment is first carried out for each 

dataset and advanced segmentation models to demonstrate 

the superiority of the proposed FCGN on polyp 

segmentation. Second, ablation research is also carried out 

to demonstrate the viability of each network block that has 

been proposed. To compare intuitive performance, the 

visualization experiment is also run on the experiment 

datasets. The specific experiment details and results are 

given as follows. 

5.1.1. Performance on Kvasir-SEG Dataset 

To demonstrate the superior performance of the proposed 

FCGN, a comparative experiment is conducted in this paper. 

Here, some segmentation models performed in the Kvasir-

SEG dataset in recent years served as comparison networks, 

including CNN-based methods such as U-Net, 

Deeplabv3+,UNet++,CE-Net  and Inf-Net. The 

experimental results of FCGN on Kvasir-SEG  dataset is 

given in Table 1. 
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Table 1 Experimental results of  FCGN and Other models on the Kvasir-SEG  dataset 

Method IoU DSC Acc Se Sp Pr 

U-Net++[18] 94.24 97.21 97.89 97.44 98.51 97.11 

DeepLabv3+[2

8] 

93.23 95.28 97.42 96.19 97.67 96.89 

ECA-net[21] 92.53 96.88 97.12 97.29 97.67 96.89 

UNet [16] 92.23 97.88 96.98 96.19 97.67 96.89 

Ce-Net [17] 90.11 94.22 92.34 92.21 92.23 92.21 

Inf-Net[19] 91.61 95.12 91.89 90.12    92.11      92.23 

FCGN  97.34 98.74 98.34 98.63 98.23 97.89 

 

5.1.2. PERFORMANCE ON CVC-ClinicVideoDB 

DATASET 

 The performance of the FCGN Net on the CVC-

ClinicVideoDB data set is given in Table 3. It can be 

concluded from Table 2 that, when employing the same 

model, the segmentation performance of the CVC-

ClinicVideoDB dataset is marginally worse to that of the 

Kvasir-SEG dataset. The U-Net has the greatest specificity 

and precision metrics values, at 97.11 and 94.21, 

respectively. 

Table 2 Experimental results of  FCGN and Other models on the CVC-ClinicVideoDB dataset. 

Method IoU DSC Acc Se Sp Pr 

U-Net++[18] 92.23 96.88 97.12 96.19 97.67 96.89 

DeepLabv3+[28

] 

90.98 93.98 96.84 96.13    97.17      94.21 

ECA-net[21] 85.99 92.81 97.12 96.89 97.34 89.26 

UNet [16] 90.98 93.98 96.84 96.13    97.17      94.21 

Ce-Net [17] 94.14 97.21 97.89 97.11 98.51 97.11 

Inf-Net[19] 91.61 95.12 91.89 90.12    92.11      92.23 

FCGN  96.23 97.67 98.34 98.78 98.45 96.89 

5.1.3. PERFORMANCE ON ETIS-Larib DATASET 

ETIS-Larib Data set has a limited number of images with 

varying resolutions. Every image was scaled down to 256 

256 while preserving its aspect ratio. By flipping and 

mirroring the photos, the training set's original 400 images 

were increased to 500. Table 3 provides a summary of the 

performance comparisons. Figures 5 and 6 show the results 

of polyp segmentation using a different approach and a 0.5 

IoU threshold for Kvasir-SEG and ETIS-Larib, 

respectively. 

Table 3 Experimental results of  FCGN and Other models on the ETIS-Larib dataset. 

Method Io

U 

DS

C 

Acc Se Sp Pr 

U-

Net++[18] 

92.5

3 

96.8

8 

97.1

2 

97.2

9 

97.

67 

96.89 

        

DeepLabv3+[28

] 

95.2

3 

97.8

8 

96.9

8 

96.1

9 

94.

61 

95.67 

ECA-

net[21] 

86.1

1 

91.1

3 

93.3

3 

95.3

4 

95.3

4 

88.54 

UNet [16] 92.5

3 

96.8

8 

97.1

2 

97.2

9 

97.

67 

96.89 

Ce-Net 

[17] 

85.9

9 

92.8

1 

97.1

2 

96.8

9 

97.3

4 

89.26 

Inf-

Net[19] 

94.1

4 

97.2

1 

97.8

9 

97.1

1 

98.

51 

97.11 

FCGN  97.9

8 

96.9

8 

97.8

4 

98.1

3 

   98.17      

97.21 
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Fig 5: Experimental results of the proposed method on 

Kvasir-SEG  Dataset 

 

Fig 6: Experimental results of the proposed method on 

ETIS-Larib DATASET, the segmentation part of the 

proposed method is marked in Green, and the Ground truth 

is marked in white. 

6. Conclusion 

This work proposes an efficient architecture based on FCG-

Net with improved and efficient performance. Unlike 

previously proposed variants of fully conventional 

Generator models, the proposed model gives promising 

results in segmenting the given medical image by 

effectively reducing the over-fitting and computational 

requirements.  It can also input the segmentation prediction 

images and the labeled images into the discriminant 

convolutional network and improve the segmentation 

accuracy of CRC by further enhancing the essential 

characteristics of learning data through the confrontation 

training of generators and discriminators. FCG-Net can also 

input the segmentation prediction images and the labeled 

images into the discriminant convolutional network and 

improve the segmentation accuracy of polyps by further 

enhancing the essential characteristics of learning data 

through the confrontation training of generators and 

discriminators. In conclusion, the choice of a deep learning 

model depends on several factors, and it is not always 

necessary to use the deepest model to achieve the best 

performance on a specific task. It is important to evaluate 

different models and select the one that best suits the 

specific needs of the project. 
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