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Abstract: Parkinson's disease (PD) is a complex and prevalent central nervous syndrome characterized by the emergence of 

unintended or uncontrollable movements, accompanied by symptoms. The global prevalence of PD has escalated to an estimated 9.4 

million individuals, indicating a substantial rise from 6 million. This alarming surge underscores the urgent need for proactive measures 

to address the growing burden of this neurodegenerative disease and its profound impact on society. The machine learning algorithms 

used on PD dataset are designed to find the optimum approach for examining the seriousness of the Parkinson disease. The primary 

focus of this research centers on employing machine learning algorithms to enhance our ability for early prediction of Parkinson's 

disease accurately. This research attempts to find the best model by investigating a wide variety of classification algorithms. The 

objective is to enhance early identification and diagnosis, therefore improving patient outcomes and lowering the load on healthcare 

providers. For this purpose, we have opted various Machine Learning algorithms such as the NB, RF, KNN, GB and XGboost. The 

evaluation of each algorithm's performance is meticulously conducted through rigorous experimentation, taking into account metrics 

such as Jaccard similarity, precision, sensitivity, F1score and accuracy. The dataset utilized in this study encompasses valuable clinical 

and demographic information of PD patients, which enables us to develop and train the mentioned algorithms. We demonstrated the 

Gradient boosting (GB) algorithm's significant performance across all machine learning algorithms to predict patients with PD. The 

results are encouraging and reveal the potential for ML algorithms to accurately and efficiently predict symptoms that are undetectable 

to a medical professional. 

Keywords: Parkinson's disease (PD), Machine Learning (ML), Baseline features, fundamental frequency features, Naive Bayes (NB), 

Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boosting (GB), XGBoost (XGB). 

 

1. Introduction 

Parkinson's disease, which impacts the human motor system, is a 

chronic degenerative disorder. Named after James Parkinson, this 

disease shows its symptoms slowly, giving rise to problems with 

cognition, sleep, behaviour, and the sensory system. PD is usually 

caused when the nerve cells of the brain, get impaired or die, 

leading to less secretion of dopamine. Dopamine is one of the 

important chemicals released by the brain cells and is important 

for communication between the nerve cells. Along with 

dopamine, another chemical released at the end of the nerves is 

norepinephrine, which controls many functions of the body [1]. 

Parkinson’s disease deals with a heavy dataset, for whose 

analysis various machine learning algorithms have been put to 

use. ML is a subfield of computer science and artificial 

intelligence that deals with data and algorithms. It is used for 

making classifications and predictions when working on data 

mining projects. Machine learning algorithms are created using 

an accelerating framework for solution development [2]. 

Parkinson Disease is the neurodegenerative illness which occurs 

due to the combination of genetic and environmental factors. 

These factors are most likely to generate abnormal aggregation in 

the selected groups of neurons which cause the misfunctioning 

and eventually death. The PD can be diagnosed clinically and to 

exclude other causes of Parkinsonism, high index of suspicion is 

expected. Methods and surgeries have been introduced to diagnose 

and treat PD at the earliest stage. Further studies are being carried 

out to modify the drugs offering neuroprotection against PD and 

further development in the field of PD treatment is likely to take 

place [3-4]. The researcher approached to diagnose PD using the 

acoustic signal feature. They opted machine learning techniques 

along with deep learning like KNN, Support Vector Machine, 

Random Forest, and Multilayer Perceptron Amongst all the 

performed algorithms the researchers found the best results for 

SVM with accuracy 95% and MLP with accuracy 98.31% [5]. 

Trained the classifier using the Machine Learning algorithms. The 

Boosted Logistic Regression was observed by researcher to give 

the best performance and can thus be used in prediction of PD [6]. 

Dataset from Parkinson’s Progression Markers Initiative (PPMI) 

was chosen to perform the required Machine Learning Algorithm. 

Along with biomarkers including tests of CSF fluid and imaging 

of the dopamine transporter, it also took into account non-motor 

symptoms. [7]. 

Authors focused on the early stages of Parkinson's disease, 
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marked by subtle symptoms such as hand tremors, facial rigidity, 

and speech alterations [8].  

Diverse feature extraction methods were employed for binary 

classification, with KNN, SVM, DT, and RF classifiers. 

Combining data from various motor tasks, maximum accuracy 

was obtained by merging the most significant features from both 

hands [9]. 

An innovative deep learning technique was introduced to identify 

PD in its early stage. Comparative analysis with twelve machine 

learning approaches highlighted the superior performance of the 

deep learning model. It provided insights into feature importance 

using the Boosting method [10].  

This research paper utilized voice data from both PD and healthy 

control (HC) groups. ML algorithms, such as SVM, KNN, and 

RF were compared and PCA was applied to reduce the initial 26 

voice features into two principal components, optimizing data for 

PD and HC classification. This model effectively improved F1 

score and AUC, enabling the practical differentiation of PD and 

HC patients, as indicated by ROC curve values nearing 1. and 

Random Forest achieved the highest accuracy [11]. This study 

uses a large dataset from the UCI ML repository of 5876 × 22 

fields, which includes details about both Parkinson's and healthy 

people, to assess how well deep learning and machine learning 

techniques work in determining the most effective and precise 

method for diagnosing Parkinson's disease early on [12]. A 

computer approach based on auditory features extracted from 

sustained vowel recordings is proposed to distinguish between 

individuals with PD and healthy individuals [13-14]. 

This work aims to introduce new techniques in feature 

engineering and machine learning for vowel phonation-based 

diagnostics, as well as to update earlier studies. ML approaches 

and further features were added [15]. 

Various machine learning models were compared to assess the 

performance of a range of ML models for the accurate prediction 

of Parkinson's disease severity [16]. The primary objective was to 

develop a highly effective and precise model, enabling early 

disease diagnosis. It contributed to more timely medical 

interventions and improved recovery opportunities for PD 

patients [17]. The goal of our research is to increase prediction 

accuracy by offering a thorough analysis of the factors that 

contribute to PD. The features of acoustic and their effects on PD 

are explained in detail in the section that follows.   

2. Data Set and Feature Analysis 

This section describes about the data set and explains different 

features. Researchers are able to evaluate the risk variables and 

connections related to Parkinson's disease by using these features 

along with other characteristics. The growth of Parkinson's 

disease management, early detection, and prevention measures is 

greatly aided by this thorough understanding.  

The data used in this research was gathered from Kaggle [18]. 

The detailed description of data set is given in table 1 and The 

Figure 1 shows the count of patients with Parkinson disease 

(PD) and non-Parkinson disease (NPD) 

  2.1 Feature description and analysis 

Total 8 features are used for the diagnosis of Parkinson.  Only 

one feature is having categorical values i.e. Gender. One of the 

initial signs of PD is speech impairment, which can be 

automatically assessed to corroborate the finding and evaluate 

the severity of the condition in both genders. 

 

 
   Fig. 1. Patients count with Parkinson disease (PD) and non-Parkinson 

disease (NPD) 

 

This research examines how voice signals are processed to 

estimate the prevalence of PD in both women and men. Table I 

shows Parkinson’s data set contains different audio tasks were 

recorded using microphone. The results indicate that the 

likelihood of men developing Parkinson's disease is higher than 

that of women. 

   Remaining 7 features are pitch period entropy, 

detrended fluctuation analysis, recurrence period density 

entropy, number of pulses, mean of periodic pulses, standard 

deviation of periodic pulses, jitter with values in numerical 

range shown in Table II. 

2.1.1 Pitch Period Entropy (PPE) 

    It is one of the baseline features which is used to measure of 

dysphonia for distinguishing PD patients from those in good 

health.  It uses a logarithmic scale to quantify the loss of basic 

frequency control. Pitch Period Entropy (PPE) may withstand a 

range of erratic confounding variables, including noisy 

environments and normal, healthy variations in voice 

frequency.  
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Table 1. Data Set Description 

 Men Women Total  Total Data 

Set Collection 

Range of Age 

Patients with 

Parkinson 

107 81 188 Each 
sample is 

collected 

with three 

repetitions. 

564 with ages ranging 

from 33 to 87 

Healthy Person 23 41 64 192  with ages varying 

between 41 and 82 
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2.1.2 Detrended Fluctuation Analysis (DFA)  

     It is an essential baseline element for the investigation of far-

reaching temporal correlations in time series for 

electrophysiological recordings. In DFA, data are linearly 

detrended and separated into segments of length L.                          

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As a function of L, fluctuation of the slackened data is examined 

[19]. A linear relationship between the logarithm of the fluctuation 

and the logarithm of L can be used to show that the spectrum 

exhibits power law behavior.  

 

2.1.3 Recurrence period density entropy (RPDE) 

     It is a baseline feature which characterizes the periodicity of a 

signal. Given the noise caused by turbulent airflow, these 

restrictions are anticipated to be less stringent for speakers who 

have dysphonia. Using the information-theoretic concept of 

entropy, RPDE measures the uncertainty in the calculation of the 

vocal fold cycle time. It has been used effectively to find 

anomalies in speech signals [20].    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Figure 2 illustrates the estimated probability density curves of 

PPE, DFA and RPDE respectively. Plots of the probability density 

curves for Parkinson disease patients and healthy individuals are 

shown in blue and orange, respectively.  

It is observed from Figure 2(a) the probability density curve of 

PPE is reached to 4.0 for patients with PD while it is less than 1.5 

for the case of non-PD. Whereas from Figure 2(b) the probability 

Table 2. shows numerical statistics of feature with the values of its minimum, maximum and mean. 

SN 
Baseline features/fundamental frequency 

features 
Minimum Value Maximum Value Mean Value 

1.  Pitch Period Entropy    

 (PPE) 
0.041551 0.907660 0.746284 

2.  Detrended Fluctuation 

Analysis (DFA) 
0.543500 0.852640 0.700414 

3.  Recurrence Period 
Density Entropy     (RPDE) 

0.154300 0.871230 0.489058 

4.  Number of pulses and periods  

 
2.000000 907.000000 323.972222 

5.  Mean periodic pulses 

 
0.002107 0.012966 0.006360 

6.  Standard deviation of periodic pulses 
 

0.000011 0.003483 0.000383 

7.  Jitter 

 
0.000210 0.027750 0.002324 

 

  
                                                             (a)                                                       (b)                                                      (c) 

Fig.2. Estimated probability density functions of (a) Pitch Period Entropy (b) Detrended Fluctuation Analysis (c ) Recurrence period 
density entropy for patients with PD and healthy person. 
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density curve of DFE is greater than 3.5 for patients with PD 

while it is 1.5 for the case of non-PD. From the figure 2(c) The 

probability density curves suggest that PD patients' mean RPDE 

values are higher than those of normal people. 

 

 

 2.1.4 Fundamental frequency features  
 

Parkinson's disease identification relies heavily on finding 

features of voice samples. Four different types of dysphonia 

features were used in this research. These traits were identified 

based on the finding that vocal fold vibrations are regular in 

healthy persons but irregular in PD patients. In PD patients, 

fundamental frequency variability considerably increased. 

The number of pulses and periods, mean, standard deviation, and 

jitter parameters are utilized to determine the frequency of the 

voice signal [21]. 
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Jitter variants are used to record instabilities in the oscillation 

pattern of the vocal folds, and this feature sub-set measures the 

fundamental frequency fluctuations from cycle to cycle. 

The dataset showed that, as compared to healthy individuals, 

patients with Parkinson's disease had a striking change in these 

characteristics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is depicted from Figure 3 (a) In PD patients, the probability     

density curve for the number of pulses reaches 0.0035, whereas in 

non-PD patients, it is less than 0.0010. and from Figure 3 (b) For 

patients with PD, the probability density curve of mean periodic 

pulses exceeds 175 while going below 75 in the case of non-PD 

 
(a)                                                                   (b) 

Fig. 3. Estimated probability density functions of (a) Number of pulses (b) Mean Periodic pulses 
 

 
(a)                                                                                    (b) 

 

Fig. 4. Estimated probability density functions of (a) Standard deviation of periodic pulses (b) Jitter 
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patients. The graphical analysis demonstrated that the 

aforementioned features exhibit greater variability in patients 

with Parkinson’s. 

It can be seen in Figure 4 (a) The probability density curve for the 

standard deviation of periodic pulses is larger than 1000 in PD 

patients compared to less than 400 in non-PD patients. and from 

Figure 4 (b) The probability density curve of jitter reaches 200 

for Parkinson's disease patients, while it drops to below 150 for 

people without PD. The statistical study revealed that the above 

features were more variable in the PD patients. 

 

3. Methodology 

This section evaluates the ability of five distinct machine learning 

algorithms to detect and diagnose Parkinson's disease using a 

consistent methodology. The steps included in the evaluation 

process are shown in the figure 5: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.1. Preprocessing 

A large-scale dataset was acquired that included clinical and 

demographic data from people with and without Parkinson's 

disease. The machine learning models were trained and assessed 

using this dataset as the basis. Preprocessing was done in order to 

get the data ready for model training. In order to make training 

the algorithms easier, the processes for preparing made sure the 

data was presented correctly. In preprocessing first step is 

splitting the data and second is feature scaling. The dataset was 

split into training and evaluation sets in order to facilitate 

efficient model training and precise performance evaluation. This 

division allowed the model to learn patterns from a portion of the 

data and assess its ability to generalize to unseen data. In 

addition, feature scaling was performed to normalize the 

numerical features within the dataset. This crucial step aimed to 
bring the features to a comparable scale, preventing any particular 

feature from overpowering the learning process due to differences 

in magnitudes.  

Common techniques employed for feature scaling include 

standardization or normalization. The choice of scaling 

technique depended on the characteristics of the features and the 

requirements of the machine learning algorithm being 

employed. 

3.2. Model Training 

Five distinct machine learning algorithms were utilized in this 

study: K-Nearest Neighbors (KNN), Naive Bayes (NB), 

Random Forest, Gradient Boosting, and XGBoost. Each 

algorithm was trained on the preprocessed dataset using a 

designated portion of the data for the training phase. 

 3.2.1 KNN 

  K-Nearest Neighbors (KNN) is different because it 

doesn't make assumptions about the data and relies on the 

examples in the dataset to make predictions. When it encounters 

a new data point, it looks at the closest existing data points and 

takes a vote to decide which category the new point belongs to. 

Preprocessed data that has been set aside expressly for training 

is used to train the KNN algorithm. To get the greatest results 

with KNN, like with any machine learning algorithm, it is 

crucial to carefully preprocess the data, choose the right 

hyperparameters, and assess its performance.     

3.2.2 Naive Bayes 

The popular classification algorithm Naive Bayes, 

which is known for its ease of use and effectiveness, uses Bayes' 

theorem to generate predictions. When evaluating the class 

label, it presumes that a dataset's features are independent of 

one another. When working with high-dimensional data and text 

classification jobs, this statistical technique is quite helpful. 

Operating on the basis of prior knowledge about each class, the 

algorithm estimates the probability that features belong to 

distinct classes. It determines, given the observable features, the 

conditional probability of a certain class. Despite its simplicity, 

the algorithm often delivers competitive results and serves as a 

strong baseline for more complex classification models. 

3.2.3 Gradient Boosting 

   Gradient Boosting is an advanced and powerful 

machine learning algorithm that has gained widespread 

popularity due to its exceptional predictive capabilities. The 

fundamental principle behind Gradient Boosting lies in its 

ability to construct accurate predictive models by effectively 

combining multiple weak models, often decision trees.  

Through an iterative process, the algorithm continuously trains 

new models on the training data, with a primary focus on 

correcting errors made by previous models. It actively pays 

extra attention to data points that were previously not accurately 

predicted, resulting in remarkable model performance 

improvements. 

The essence of Gradient Boosting is to iteratively minimize a 

special loss function, which serves as a crucial driving force for 

Dataset 

Evaluation 

Model Training: ML algorithm 

• K-Nearest Neighbour 

(KNN) 

• Naive Bayes (NB) 

• Gradient Boosting (GB) 

• XG Boost (XGB) 

• Random Forest (RF) 

   Preprocessing 

Validation 

Fig.5. Steps for evaluation of Machine Learning models 
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its continuous refinement.  

For instance, mean squared error is commonly used for 

regression tasks, where the objective is to predict numerical 

values, while log loss is frequently employed for classification 

tasks, involving the categorization of data points into discrete 

classes. Throughout the boosting process, Gradient Boosting 

meticulously seeks to minimize the loss function. 

3.2.4 XG Boost 

   XGBoost, also known as Extreme Gradient Boosting, 

is an advanced machine learning algorithm used for regression 

and classification tasks. It builds upon the gradient boosting 

algorithm and integrates additional techniques to enhance its 

performance and efficiency. 

Like gradient boosting, XGBoost trains weak models, such as 

decision trees, in a sequential manner to rectify the mistakes 

made by previous models. 

 However, XGBoost introduces several improvements to make 

the training process more powerful. It incorporates 

regularisation techniques to prevent overfitting, parallelization 

to accelerate training, and a specialised loss function to optimise 

the model's performance. 

3.2.5 Random Forest 

By randomly choosing a subset of each tree's 

characteristics and training data, Random Forest creates a 

number of decision trees. This randomization is beneficial 

because it helps prevent overfitting and enables the model to 

generalize well to unseen data. In the training process, the 

Random Forest algorithm grows numerous decision trees, each 

one learning patterns and making predictions independently. In 

classification tasks, this is achieved through majority voting, 

while in regression tasks, the predictions are averaged. 

The Gini Index is a statistical measure that quantifies the degree 

of impurity or disorder in a set of elements. They are capable of 

handling high-dimensional data effectively, capturing intricate 

interactions between features, and providing estimates of feature 

importance. 

4. Experimental Results 

The results of an experiment to identify Parkinson's disease are 

covered in this section. using the given dataset and five different 

machine learning methods. The following list of quantitative 

metrics is used to evaluate the methods 

 

4.1 Confusion Matrix  

There are N target classes in this N x N confusion 

matrix. We contrast the ML model's predicted values with the 

target values in the matrix. The confusion matrix for PD 

classification is shown in table 3 

 

 

 

 

 

 

 

 

 

Following quantitative parameters are determined using values 

of confusion matrix i.e. true positive, false negative, false 

positive, and true negative. 

● The classifier's accuracy is determined by its capacity to 

recognize all cases that require naming and reject all cases 

that require rejection. This indicates that FN = FP = 0 for a 

classifier with 100% accuracy. Accuracy is an aggregate 

measure of classifier performance. 

● Precision is the number of cases generated that were 

actually applicable. To find the value of precision, we 

divide the total number of correctly identified positive data 

by the entire number of projected positive data. It measures 

the ratio of actual samples that are positive to expected 

healthy samples. The relationship provides precision. 

● Sensitivity is the model's accuracy in identifying positive 

instances. 

● Jaccard Similarity compares the individuals in two sets to 

identify the similarities and differences between them. It is 

calculated using y as the expected labels and y as the actual 

labels. 

● Log Loss one of the key measures used to evaluate the 

effectiveness of any classification task, which is based on 

probabilities. The statistic that is accurately predicted for 

each instance is the negative average of the log of 

probabilities. 

●  In essence, the AUC ROC curve is a tool for evaluating an 

ML model's performance. AUC is a summary of the ROC 

curve that indicates a binary classifier's capacity to 

discriminate between classes. ROC stands for the receiver 

operating characteristic curve is a graph that displays a 

classification model's performance over all categorization 

levels. The FP rate and TP rate can be plotted on the 

horizontal axis and vertical axis, respectively 

All five ML algorithm’s performance is evaluated using all the       

quantitative indicators. Table 4 present results.   

As can be seen from Table 4 that Gradient Boosting recorded 

the highest accuracy of 94.07%, followed by Random Forest, 

XGBoost, KNN, and Naive Byes with accuracy of 90.78%, 

84.81%, 82.83%, and 79.53%, respectively. 

    Jaccard similarity index of 86.44%, 82.44%, 82.35%, 

80.74% and 75.59% is obtained by Gradient boosting, 

XGboost, Random Forest, KNN and Naïve bayes respectively.  

   Gradient Boosting reported the highest F1-Score of 88% 

followed by 85%, 84%, 81% and 80% with Random Forest, 

XGboost, KNN and Naive Bayes respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Confusion Matrix 

   Predicted Class  

    Healthy Person Patients with Parkinson 

Actual Class 

  

Healthy Person True Positive (TP) False Negative (FN) 

Patients with Parkinson False Positive (FP) True Negative (TN) 

 

Table 4. Assessment of Machine Learning Algorithms through Diverse Quantitative Metrics 

 Percentage (%) of results obtained with ML algorithms 

Evaluation Parameters KNN RF NB 
 

XGB 
GB 

Jaccard Similarity 80.74 82.35 75.59 82.44 86.77 

Precision 83 85 80 84 89 

Sensitivity 83 85 80 95 89 

F1 Score 81 85 80 84 88 

Accuracy 82.83 
 

90.78 
79.53 84.81 94.07 
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Gradient Boosting showed the highest precision of 89%, 

followed by Random Forest, XGBoost, KNN, and Naive Bayes 

with corresponding precisions of 85%, 84%, 83%, and 80%. The 

figure 6 shows the graphical values of log loss that were acquired 

using various techniques.  

Gradient Boosting yielded the lowest log loss of 0.4192, which  

was followed by Random Forest, XGBoost, KNN, and NB with 

relative log losses of 0.4302, 0.4388, 0.4949, and 0.5360.  

The figure 7 illustrates that AUC ROC value for Gradient 

Boosting is highest (93.92%) is near to 1 hence GB performed 

better as compared to other ML algorithms such as 88.48% for 

XGB, 88.44% for RF, 85.83% for KNN and 76.47% for NB. 

 

4.2 Result Discussion 

The performance of various machine learning algorithms was 

evaluated for the prediction of Parkinson’s disease from voice 

recordings in this research. The goal of the investigation was to 

examine the baseline features and fundamental frequency 

features of speech signal through the prognostic capacities of 

various algorithms in order to determine the most accurate and 

efficient technique of predicting Parkinson's disease. 

 

Fig. 7. AUC ROC Curve for various ML algorithms 

 

 

 
 

Fig. 6. Log loss values for various Machine Learning Model 
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In this research, each algorithm's performance utilizing a 

complete set of evaluation criteria such as accuracy, precision, 

sensitivity, Jaccard similarity, F1-score, and AUC-ROC. 

Individual classifier predictions were merged with ensemble 

stacking and voting procedures, and a comparative study of 

these ensemble accuracies is presented to reduce classifier bias. 

The final results verified the algorithms' performance, 

confirming their ability to accurately predict the patient with or 

without Parkinson’s disease. From the result observed that the 

model Gradient boosting performed best as compared with other 

ML models such as KNN, Random Forest, Naive Byes and 

XGboost. 

GB achieved the greatest accuracy, F1-score, precision, and 

Jaccard similarity among the algorithms, suggesting its overall 

excellence in accurately classifying instances. The sensitivity of 

a machine learning model assesses its ability to recognize 

positive instances. It is sometimes referred to as the True 

Positive Rate. The model XGB achieved high sensitivity as 

compare to other ML models hence XGB has ability to 

recognize positive instances. The cross entropy of the error 

between two probability distributions is measured by the log 

loss function. The model GB showed less log loss values, 

indicates better predictor model with best performance. 

The AUC-ROC metric assesses the algorithm’s ability to 

distinguish between positive and negative cases. The greatest 

AUC-ROC scores were obtained by GB, suggesting their 

significant discriminatory capability. The models XGB and RF 

had lower AUC-ROC values, indicating less ability to 

discriminate amongst the two classes efficiently. 

Along with predicted performance, we assessed the algorithm’s 

computational efficiency and interpretability. KNN and NB are 

simple algorithms with low computing efficiency that are easier 

to interpret. On the other hand, RF, GB, and XGB are ensemble 

approaches that need more computational resources and are 

more difficult to interpret. When selecting an algorithm for 

Parkinson's disease prediction, computational efficiency should 

be considered. 

This research presents a complete analysis of speech signal 

using various machine learning algorithms for detecting 

Parkinson's disease. Although GB demonstrated the best overall 

accuracy for prediction, XGB and RF also performed well. 

Researchers and medical practitioners may select the suitable 

algorithm based on the relationship between accuracy, 

precision, Jaccard similarity, sensitivity, AUC-ROC, and 

computing efficiency. 

5. Conclusion 
This research concludes that the values of probability density 

curves of fundamental frequency features and baseline features of 

speech signal recorded higher for patients with PD while less for 

the healthy person. In conclusion we can say that the best 

algorithms that can be performed to give earlier predictions of 

Parkinson's Disease using speech signal are Gradient Boosting 

and Random Forest. Gradient Boosting provides the highest 

accuracy of 94.07 and log loss of 0.4192 while Random Forest 

provides the accuracy of 90.78 and log loss of 0.4302. The 

algorithms with highest accuracy and low log loss prove to be the 

most satisfying and efficient for earlier predictions of Parkinson's 

Disease.  We also observed that Naive Bayes comes with least 

accuracy and highest log loss proving the algorithm to be not 

suitable to carry out PD's earliest prediction. Naive Bayes comes 

with an accuracy of 79.53 and log loss of 0.5360. This model can 

serve as the learning tool in the medical field and better accuracy 

and predictions can be obtained by introducing the necessary 

improvements. 

This demonstrates that for earlier predictions of Parkinson's 

Disease, Gradient Boosting and Random Forest emerge as the 

most promising algorithms. Both these algorithms exhibit 

competitive performance in terms of accuracy and log loss, 

making them highly effective choices for early detection of PD. 

Furthermore, the superior performance of Gradient Boosting over 

Random Forest in terms of accuracy and log loss reaffirms the 

power of ensemble methods like boosting in improving prediction 

accuracy. 

In summary, a comprehensive analysis of machine learning 

algorithms for the diagnosis of Parkinson's disease advances 

medical knowledge. By utilizing the power of these algorithms, 

healthcare professionals may provide specific treatment plans and 

make well-informed decisions, which will eventually improve 

patient outcomes.  
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