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Abstract: The current surge in newly reported pulmonary diseases and the possibility of further epidemics necessitate the immediate 

development of a novel Deep Learning (DL) model to facilitate early diagnosis and treatment. Lung ultrasound (LUS) has the potential to 

detect symptoms of a pulmonary infection, based on growing evidence from various nations. Several characteristics of ultrasonic imaging 

make it well-suited for routine use: Small hand-held systems, unlike X-ray or computed tomography (CT) equipment, are easier to clean 

because they are encased in a protective sheath. LUS, on the other hand, enables patient triage in settings other than hospitals, such as tents 

or homes, and it can detect lung activity during the early stages of the disease while also monitoring affected patients at the bedside on a 

daily basis. This review paper discusses the potential applications of LUS imaging for disease segmentation and categorization. The paper 

investigates the open-access LUS dataset and examines image processing algorithms that could increase pulmonary disease detection and 

segmentation accuracy. We also discuss the many segmentation strategies available for LUS images. Next, we present the currently 

available DL approaches for LUS image categorization. This survey can be extremely beneficial to researchers struggling with disease 

diagnosis using LUS images, providing excellent advice on how to proceed with their investigation and determine the source of the 

problem. 
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1. Introduction 

Lungs, which expand and contract to absorb oxygen and 

expel carbon dioxide, are critical components of the human 

body [1]. Pulmonary diseases (also known as lung diseases) 

are respiratory ailments that affect the lungs [2]. Both 

respiratory and pulmonary function, or the capacity to 

breathe and the efficiency with which the lungs work, can 

be affected by lung disease. A variety of lung disorders can 

be caused by infections with viruses, bacteria, and fungi [3]. 

Mesothelioma, asthma, lung cancer, and other lung diseases 

are all linked to environmental exposure [4]. Conditions like 

chronic bronchitis, Chronic Obstructive Pulmonary Disease 

(COPD), and emphysema are examples of chronic lower 

respiratory disorders. Chronic lower respiratory infections 

are a leading cause of death in the United States. Respiratory 

disorders such as asthma and COPD cause constriction or 

blocking of the airways, limiting airflow. Several lung 

disorders, including pulmonary fibrosis and pneumonia, 

impair the lungs' ability to hold air [5]. Cellular 

abnormalities are the underlying cause of lung cancer. Many 

incidences of lung cancer begin in the lungs, but 

occasionally, the illness metastasizes from elsewhere in the 

body. Small cell and non-small cell lung cancers originate 

and spread in distinct ways, and hence respond to treatment 

differently. Every year, lung cancer takes the lives of an 

incredible number of individuals. According to the statistics 

obtained, about 1.6 million people died in the year of the 

poll. One of the most frequent respiratory infections, 

pneumonia claimed the lives of 1.23 million kids younger 

than the age of five in 2020, based on the "Pneumonia and 

Diarrhea Progress Report 2020" [6]. Research from "The 

Global Impact of Respiratory Disease" conducted by the 

Forum of International Respiratory Societies estimates that 

10.4 million persons experienced mild or severe 

tuberculosis indications, with 1.4 million losing their lives 

[7]. From December 2019, a new coronavirus disease 

(COVID-19) has caused significant lung damage and 

respiratory issues. Furthermore, COVID-19 is one of several 

viruses or bacteria that can cause pneumonia. 

Overall, smoking cigarettes is the most common cause of 

lung cancer. Another risk factor for developing the illness is 

inhaling cigarette smoke [8]. Other environmental factors 

related to lung disorders are air pollution, radon gas, 

asbestos, and chemicals. Human lives can be saved, and 

survival rates improved if the aforementioned diseases are 

detected in their early stages of infection. Experts must be 

present to assess scanned images and diagnose ailments. 

According to data from the Union Health Ministry, rural 

Community Health Centers (CHCs) lack 75.1% of the 

doctors they need [9]. As a result, using DL algorithms 

allows for a novel approach. DL is a branch of artificial 

intelligence that deals with representation learning. The 

potential of this technology to take visual data, evaluate it, 

and then deliver insights based on previously trained data. 

DL algorithms can extract features and patterns from image 
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datasets and then apply these features to categorize new test 

images that the model has never seen before. Extensive 

research has been conducted by scholars from around the 

world, with hopeful results. These works can strengthen 

existing approaches or open the path for previously 

unachievable ones. Improvements in this area have the 

potential to accelerate illness identification and 

categorization, resulting in the quick eradication of 

infectious diseases. 

The paper is structured as follows: Section I discusses 

pulmonary disease and the need for DL in diagnosis. Section 

II outlines why we choose LUS over other modalities. 

Section III depicts the research flow of lung disease 

diagnosis with LUS images. Section IV discusses data 

acquisition and the necessary data processing steps. 

Sections V and VI describe the different approaches for 

segmentation and classification of LUS images. Section VII 

discusses the challenges of DL and LUS image processing. 

Section VIII concludes the survey. 

2. Why Ultrasound Image 

People all throughout the world are concerned about a lack 

of trustworthy tools for detecting and tracking lung 

illnesses. Chest X-rays and CT are the gold standard for 

detecting and monitoring specific lung illnesses [10]. 

However, ionizing radiation, which is essential to these 

modalities but can be harmful to patients in high doses or 

when used frequently, especially during continuous 

monitoring, is a major concern [11, 12]. One of the risks 

identified by the US Food and Drug Administration is an 

increased risk of acquiring cancer in later life. Young people 

are particularly concerned about radiation exposure because 

they are more vulnerable to its effects than adults. 

Furthermore, CT is both expensive and not usually available 

at the bedside. Invasive intracardiac hemodynamics and 

devices, biomarker measures, and chest X-rays are now 

used to monitor some disorders, such as pulmonary edema, 

that cannot be observed with CT. 

Ultrasound technology may surpass the limitations of 

current monitoring systems by providing a more secure, 

portable, and cost-effective option [13]. To start, as a 

radiation-free diagnostic option, ultrasonography could be 

very helpful for patients experiencing many examinations, 

pregnant women, and kids. Second, because ultrasound 

equipment is so portable, patients in developing countries, 

rural areas, and other remote locales may have access to 

them. Third, the cost of ultrasound instruments and 

examinations is significantly lower than that of CT or MRI, 

allowing a larger range of facilities to adopt the technology 

and help more patients. As a result, ultrasonography is 

especially crucial for long-term healthcare concerns related 

to an aging population and rising chronic illness rates. Since 

the 1990s, there has been conjecture that ultrasonic imaging 

could provide useful diagnostic information regarding lung 

tissue [14]. 

In addition, there is no need to transfer the patient for LUS, 

thanks to the portability of ultrasound instruments, which 

could reduce the danger of infection that follows. 

Acute lung damage, cardiogenic pulmonary edema, 

pneumonia, and other lung disorders can all be effectively 

evaluated with LUS [15]. Figure 1 depicts four frequent 

features used to detect various problems in LUS. The A-line 

represents a normal lung surface since air comprises most of 

a healthy lung. This artifact is a horizontal pleural 

reverberation effect that results from repeated reflections. 

As a consequence, A-lines are created when the visceral 

pleural plane reflects ultrasonic waves, which in turn cause 

acoustic reverberations across the skin surface and the 

pleural plane. The interlobular septum, or B-lines, is shown 

by a vertical hyperechoic artifact that extends from the top 

to the bottom of the screen, resembling a laser. The decrease 

in the air-to-tissue-to-fluid ratio causes the pleural plane to 

stop reflecting light, resulting in the formation of B-lines. 

This causes the pleural plane to show several isolated B-

lines, which point to changes in the subpleural tissue. The 

pulmonary interstitial syndrome is visually represented by a 

wide region of B-lines in the intercostal space, which is also 

called fusion B-lines or B2-lines. Lastly, a liver-like echo 

pattern of the lung parenchyma, measuring 15.0 mm in 

thickness, is indicative of a pulmonary consolidation. 

  

Fig. 1. LUS image features [16] 

3. Pulmonary Diseases Detection Methodology 

Pulmonary disease detection using LUS images is divided 

into two stages: segmentation and classification. In both 

stages, the first step involves image pre-processing to 

enhance the image quality to achieve better accuracy. 

Segmentation is performed to accurately predict the affected 

region, and it is based on two types: discontinuity and 

dissimilarity. For classification, the best option is a DL 

model to handle more complex tasks with reliable outcomes. 

Finally, the results of both segmentation and classification 

are evaluated to identify the best techniques. The 

methodology workflow is depicted in Figure 2. 
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Fig. 2. Research flow of pulmonary disease detection. 

4. Data Acquisition and Processing 

The reliable data collection from a publicly accessible 

dataset and its processing are detailed in this section. 

4.1. Data Collection 

The accuracy of pulmonary detection results is highly 

influenced by the quality of the data used. There are two 

methods for gathering LUS image data: creating your own 

from hospitals or obtaining data from a website. This section 

gives an overview of the freely accessible dataset. 

Pneumonia, lung collapse, COVID-19, benign, and 

malignant pulmonary diseases are all included in these 

datasets. It is commonly advised, and often required, to use 

large datasets for AI training. Data samples from popular 

LUS datasets are summarized in Table 1. 

Table 1: Public dataset of LUS images 

Ref Dataset Disease Samples 

[17] POCUS  

 

COVID-19, 

Pneumonia, and 

Normal 

654-C, 277-P and 

172- N 

[18] Enlarged 

POCUS  

33 images and 106 

videos. 

63-C, 34-BP, 7-VP 

and 35-N. 

[19] New POCUS  59 images and 202 

videos. 

[20] ICLUS-DB COVID-19,  

Normal 

30 cases of COVID-

19  

[21] Extended 

ICLUS-DB 

COVID-19,  

Normal 

277- Videos from 35 

Individuals. 

17-C, 4-SC and 14-N 

[22] COVIDx-US COVID-19,  

pneumothorax, 

lung collapse and 

normal 

173 ultrasound videos 

and 21,570 processed 

images of 147 patients 

[23] UDIAT   

 

Benign and 

Malignant 

163 US images, 110-

B, and 53-M 

[24] BUSI  630 US images, 421-

B and 209-M. 
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[25] OASBUD 100 US images, 48-B, 

and 52-M. 

[26] RODTOOK 149 US images, 59-B, 

and 90-M 

Note: N-Normal, C-COVID-19, P-Pneumonia, BP- Bacterial 

Pneumonia, VP- Viral Pneumonia, B- Benign, M- Malignant 

 

4.2. Data Processing 

Preprocessing is required for proper image recognition and 

categorization. Preprocessing procedures are commonly 

used for the following applications: 

• Data variability in model performance is decreased 

or eliminated by merging images from many 

datasets with different image sizes and acquisition 

parameters. 

• Increasing the image contrast. 

• Bringing the darker disease zone into sharper focus 

than in the original image. 

According to the literature, the preprocessing stage consists 

of a wide range of actions and is depicted in Figure 3. The 

pre-processing sequence typically begins with image 

resizing, followed by transformation, encoding, filtering, 

normalization, and augmentation. 

 

Fig. 3. LUS Image Pre-processing Steps 

Resize: One of the first steps in preparing images for 

computer vision is to resize them to a consistent dimension. 

Various images may have different levels of detail, aspect 

ratios, and orientations, all of which might affect the model's 

accuracy and performance. Resizing images can lower the 

model's computational cost and memory use by reducing the 

number of pixels to process [27]. It is crucial to adopt an 

appropriate scaling method, such as nearest neighbor, 

bilinear, bicubic, or Lanczos interpolation, because resizing 

images might produce distortion, loss of clarity, or aliasing 

effects. 

Transformation: Brightness transformations alter the 

brightness of pixels and are determined by their properties. 

The following are the most common operations for 

changing the brightness of pixels: Histogram equalization, 

sigmoid stretching, and gamma correction/Power Law 

Transform. 

Encoding: A variety of image encoding techniques exist, 

including binary, grayscale, and one-hot encoding that can 

be used to transform the visual appearance of images. The 

model's processing and learning times can speed up by 

applying image encoding to reduce the input's complexity 

and dimensionality. Encoding images can also aid in the 

extraction of useful information and features such as edges, 

forms, and colors [28]. Thresholding, histogram 

equalization, and principal component analysis are some of 

the image encoding procedures and techniques accessible. 

Filter: Applying a filter to an image allows you to change or 

improve its features while extracting vital information like 

blobs, edges, and corners [29]. A kernel is a tiny array 

applied to each pixel and its neighbors in an image to define 

a filter. It discusses some of the most basic filtering 

techniques. The majority of smoothing procedures begin 

with a low-pass filter. Averaging close pixels decreases 

pixel value discrepancies and smoothes out the image. A 

high-pass filter can make an image appear sharper. Unlike 

the low-pass filter, these filters emphasize the image's finer 

features. When computing an image's first derivatives, a 

directional filter, also known as an edge detector, might be 

useful. When there is a considerable value difference 

between two neighboring pixels, the slopes or first 

derivatives become most visible. Directional filters can 

target any direction inside a specific area. A Laplacian filter 

is a type of edge detector that monitors the rate of change in 

the first derivatives and then uses that information to 

calculate the image's second derivatives. This establishes 

whether the values of neighboring pixels change 

intermittently or at the boundary. 

Normalization: Image normalization is a popular pre-

processing approach in computer vision. This requires 

transforming the image's pixel values to a specific range, 

such as [0, 1] or [-1, 1] [30]. Image normalization improves 

model stability and convergence by lowering the volatility 

and skewness of the data distribution. Image normalization 

can improve an image's brightness and contrast, allowing 

the model to better differentiate edges and features. Batch 

normalization, z-score standardization, and min-max 

scaling are three methods for normalizing images. 

Augmentation: By rotating, adding noise, cropping, 

shifting, scaling, or changing the hue, among other arbitrary 

manipulations, image augmentation can transform current 

photos into new ones [31]. Augmenting images can increase 

the quantity and variety of training data, which in turn 

improves the model's durability, generalizability, and 

decreases the likelihood of overfitting. Additionally, image 
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augmentation can mimic a variety of real-life phenomena, 

including lighting, occlusion, and perspective shifts. The 

feasibility of offline versus online image augmentation is 

dependent on the data's availability and complexity. 

5. Disease Segmentation 

Image segmentation is a necessary step in any image 

analysis method. Segmentation is the process of separating 

an image into individual pixels [32]. The difficulty at hand 

determines the extent to which the separation is applied. 

When an application's target objects are no longer visible, 

segmentation must stop. Most image segmentation 

algorithms split images based on the similarity and 

discontinuity of intensity levels. Figure 4 illustrates the 

segmentation algorithms under similarity and discontinuity 

techniques. 

 

Fig. 4. Segmentation techniques for pulmonary pathologies 

detection 

5.1. Based on Discontinuity 

Discontinuity refers to sharp shifts or breaks in pixel values, 

such as the edges or boundaries of multiple objects or 

sections in an image [33]. Discontinuities are common in 

images with a significant shift in tone, color, or texture. The 

edges of objects or other scene features may line up with 

these changes. The primary purpose of discontinuity-based 

segmentation algorithms is to capture these rapid 

alterations. This method contains algorithms for detecting 

edges. 

Edge-based: Edge detection is an essential part of image 

segmentation. Edge detection algorithms alter the grayscale 

of the source image to create edge images. Edge detection 

in computer vision and image processing is all about 

locating the important distinctions in a grayscale image and 

recognizing the geometrical and physical properties of the 

objects in the scene [34]. Recognizing the borders between 

items and the backdrop in an image, as well as their forms, 

is a fundamental process. When looking for big-intensity 

value discontinuities, edge detection is the most typical 

technique. Edge detection is a popular research topic 

because it enables more complex image processing. 

Grayscale allows you to view-point, line, and edge 

discontinuities. You can use spatial masks to detect all three 

types of image discontinuities. 

Numerous edge detection algorithms are described in the 

image segmentation literature. Roberts, Prewitt, Kirsh, 

Robinson, Sobel, Marr-Hildreth, and Canny are a few 

examples. 

5.2. Based on Similarity 

Similarity-based segmentation is based on the idea that 

pixels in the same area or object tend to have similar 

qualities, like intensity, color, or texture [35]. The attributes 

of pixels should be identical if they are part of the same 

object or area. This method is predicated on the idea that 

homogeneity or similarity in terms of particular features can 

be used to identify regions of interest. Threshold, Neural 

Network (NN), watershed, region, active contour, and 

clustering are some examples of similarity-based 

segmentation methods. 

Classical Techniques 

The four classical techniques for segmentation, namely 

threshold, region, watershed, and active contour, are 

detailed below. 

Threshold-based: Thresholding is the user-friendly, simple, 

and efficient segmentation technique for LUS images, as 

well as the most prevalent. It classifies image pixels directly 

into areas based on features (standard deviation, mean, 

intensity, color, and so on), using either a threshold or many 

thresholds [36]. Assume there is a threshold 𝑡ℎ that 

separates pixels in an image into two groups. Global 

thresholding is a method in which 𝑡ℎ remains constant 

throughout the image, whereas adaptive/local thresholding 

describes a method in which 𝑡ℎ varies based on local 

features. Global thresholding becomes ineffective in 

situations when there is poor object-background contrast, 

excessive noise, or inconsistent lighting. On the other hand, 

global thresholding works quickly and effectively when the 

background and object intensity distributions are 

sufficiently divergent. 

Region-based: Based on the concept of homogeneity, this 

technique considers the fact that neighboring pixels within 

a region share similar characteristics but differ from pixels 

outside of that region [37]. The purpose of region-based 

segmentation is to extract a bigger, more uniform region 

from the image while minimizing outliers. Regardless of 

how homogeneous the zones are, there is a way to detect 

major changes in the characteristics of the pixels around 

them. The simplest technique to segment the image using 

the similarity assumption is to compare each pixel to its 

neighbor and check for similarities. A single pixel is 

"added" to an existing pixel, just as a region is "grown" 

when the conclusion is positive. When the likeness test 

produces an inaccurate result, growth is halted. Region-
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based approaches can be divided into two categories: 

Methods for developing regions as well as splitting and 

merging them. 

Watershed-based: The watershed transformation is a typical 

image segmentation method for grayscale images that treats 

an image's gradient magnitude as a topographic surface. 

Watershed lines serve as region boundaries and are 

represented by pixels with the highest gradient magnitude 

intensities [38]. When precipitation falls on any pixel inside 

a shared watershed line, it finally reaches a common local 

intensity minimum. A segment is represented by a catch 

basin, which is built up of pixels that drain to the same 

minimum. Grayscale images can be viewed as topographic 

reliefs, with each pixel's grey level reflecting its height 

within the relief. As a raindrop descends on a topographic 

relief, it finally reaches a local minimum. To the untrained 

eye, the borders of neighboring raindrop catchment basins 

reveal the relief's watershed. Various types of watershed 

lines can be computed using image processing. Graphs can 

define watershed lines using nodes, edges, or a mix of the 

two. The continuous domain can also be used to establish 

watershed boundaries. Additionally, there are several 

watershed computation algorithms. 

Active Contour: Image segmentation and Active Contour 

models have a long history of collaborating. Many 

applications, including image segmentation and motion 

tracking, have made substantial use of it over the last ten 

years. Under certain image constraints, active contour seeks 

to alter an initial curve to the object's borders [39, 40]. From 

an implementation standpoint, active contour investigates 

two fundamental models: level sets and snakes. Snakes 

employ a predetermined movement pattern to conserve 

energy. The contour is moved particularly in a level set 

using a certain degree of function. To begin, active contour 

models can be quickly constructed using a systematic 

energy minimization approach, allowing for the 

consolidation of several prior knowledge sources. Second, 

as a segmentation output, they can generate simple, smooth, 

and closed contours that can be easily applied to other 

applications such as form analysis and recognition. Because 

of its speed and efficacy in detecting object boundaries, the 

active contour method was frequently used for image 

segmentation. 

Advanced Techniques 

The two advanced techniques for segmentation, namely 

clustering, and neural network, are detailed below. 

Clustering Based: Clustering is the most used method 

because most image pixels lack labels. Clustering methods 

are often classified in two ways: hierarchical and partitional, 

depending on how the clusters arise [41]. Hierarchical 

clustering groups data at various levels of similarity using a 

dendrogram, which is a tree-like structure. The most 

frequent ways of hierarchical splitting are agglomerative 

and divisive. Partitional clustering is a more popular and 

preferred method than hierarchical clustering, especially for 

large datasets, due to its processing efficiency. This 

clustering algorithm uses similarity as a measure. In a 

typical partitional clustering situation, data items are 

divided into clusters based on an objective function, to 

increase the similarity of data items inside each cluster. This 

is performed by comparing each data item's similarity to 

each cluster. The aim function in partitional clustering is 

frequently the minimization of the within-cluster similarity 

criterion, which is usually determined using the Euclidean 

distance. Each created cluster is assessed using the objective 

function, which returns the best representation. There are 

two types of partitional clustering algorithms: soft clustering 

and hard clustering. 

Neural Network: The sophistication of image features and 

object differences (such as size and posture) has increased 

significantly with the advancement of image-collecting 

technologies. Because of the complexity of modern image 

segmentation and the difficulty of extracting useful 

information from low-level features (such as color, 

brightness, and texture) using feature extraction methods 

based on manual or heuristic rules, there is a growing 

demand for image segmentation models with greater 

generalizability [42]. Before the introduction of DL, image 

segmentation frequently used random forests and semantic 

texton forests to construct semantic segmentation 

classifiers. The segmentation effect and performance have 

improved significantly in recent years as DL algorithms are 

increasingly used in segmentation activities. The initial 

method used pixel classification with an NN trained on 

small parts of the image. This patch classification method 

was utilized since the NN's fully connected layers require 

images of a specific size. The accessible NNs include 

LeNet-5, AlexNet, DenseNet, UNet, Inception, ResNet, 

Spatial Pyramid Pooling Net, Long Short-Term Memory 

(LSTM), DeepLab, Recurrent Neural Network (RNN), 

feature pyramid network, and VGG [43-45]. 

6. Disease Detection using DL Model 

DL models outperform more conventional ML algorithms 

in terms of accuracy. It has several applications, but image 

classification is one of its primary ones. The identification 

of novel DL network topologies and advancements in 

technology have led to an enormous rise in the accuracy and 

reliability of DL models used for categorizing images in 

recent years. Some of the most commonly used DL models 

for pulmonary disease prediction are presented in Figure 5. 
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Fig. 5. DL Classifiers for Pulmonary Pathologies Detection 

Convolutional Neural Network (CNN) 

CNNs are the foundation of image classifiers. CNNs are a 

subset of NNs with similar layer designs. CNNs have four 

layer types: pooling, fully connected, ReLU, and 

convolutional [46]. An image classifier makes use of these 

layers to assign labels to images. The convolutional layer 

extracts image features by scanning filters. The ReLU layer 

corrects all negative values to zero. Increasing the model's 

non-linearity is the goal. One way to reduce the size of an 

image's file while simultaneously enhancing calculation 

speed is by using pooling layers. Max pooling is the most 

popular approach since it takes the maximum value from 

each subregion. Finally, a completely connected layer is 

utilized by the CNN. It gathers all the data, sorts it by 

importance, and then finds the final category. 

RNN:  

Typically, RNNs are trained using data that is given in a 

sequential or time-series format. Ordinal or temporal 

challenges that utilize these DL approaches include 

language transformation, speech identification, and image 

captioning, among others [47]. Similar to Feed-Forward 

Neural Networks (FFNN) and CNNs, RNNs acquire new 

knowledge through training data [48]. The information 

they've stored in their "memory" can affect both the current 

input and its result. The three main categories of RNNs are 

Bi-directional-RNNs, LSTMs, and GRUs. 

Deep Autoencoder (AE): 

There is a type of NN called an AE that can learn how to 

describe raw data in a compressed way. The encoder and the 

decoder are the two main components of an AE [49]. The 

input is compressed by the encoder, and then an attempted 

reconstruction of the original input is done using the 

compressed version by the decoder. The encoder model is 

retained after training while the decoder is eliminated. The 

next step is to train another AI model using the encoder's 

features extracted from raw data. 

Deep Belief Network (DBN): 

DBNs, a subtype of DL algorithms, overcome the 

difficulties associated with standard NNs. This is 

accomplished through the use of stochastic latent variable 

layers that make up the network. Binary latent variables, 

such as feature detectors and hidden units, are referred to as 

stochastic since they can take on any value within a certain 

range. After the first two levels of a DBN, there is no 

direction at all, although there are directed connections to 

the layers below. DBNs differ from more traditional NNs in 

that they can be both generative and discriminative models. 

Another distinction between DBNs and other DL networks, 

such as Restricted Boltzmann Machines and AEs, is that 

they do not use raw inputs. Rather, they begin with an input 

layer that employs one neuron for each input vector, 

iterating through several levels, and then, in the final layer, 

they use the activations of the preceding layers to calculate 

output probabilities [50]. 

Deep Boltzmann Machine (DBM) 

A DBM is a model that includes additional hidden layers 

and non-directional connections between nodes [51]. DBM 

learns features from raw data through a hierarchical 

technique, applying them as hidden variables to each 

subsequent layer. DBM, like DBN, uses a Markov random 

field to pre-train each layer for the large unlabeled data set, 

with the upper layer feeding back to the lower levels [52]. 

Backpropagation is used to alter the training algorithm. The 

training information, weight initialization, and adjustment 

parameters must all be defined during the DBM training 

process. When the parameters are set to their ideal values, 

the DBM predicts that temporal complexity constraints will 

arise. 

Extreme Learning Machine (ELM) 

The ELM, with its strong generalizability and lightning-fast 

processing speed, is a popular and effective classifier with 

several applications [53]. ELM is a version of FFNNs in 

which the neurons in the input and hidden layers are 

randomly assigned. ELM training is much faster than typical 

DL approaches since it eliminates the need for gradient-

based iterative adjustments. Immediate optimization of the 

resultant mapping matrix is possible after hidden node 

biases and input weights are generated at random. Its 

theoretical demonstration of universal approximation 

powers was successful. ELM demonstrated effectiveness in 

both supervised and unsupervised learning contexts [54]. 

Reinforcement Learning (RL):  

RL is one potential technique for addressing image 

classification challenges. RL is based on the concept of an 

agent learning to maximize a reward signal through trial and 

error as it interacts with its environment. To accurately 

identify images, RL algorithms must first learn to prioritize 

features and determine which actions to take. In image 

classification, the state representation includes encoding the 

raw pixel values into a format that the RL agent understands. 

CNNs are commonly used methods for extracting relevant 

features from images. The agent may choose to pick specific 
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regions for further research, modify features, or focus on 

specific spots within an image. Designing a suitable reward 

function is critical. It might be determined by how 

effectively images are identified; more incentives would be 

given for correct classifications, while penalties would be 

paid for incorrect ones [55]. The optimum strategy for 

image categorization is discovered using RL algorithms 

such as Q-learning, Deep Q Networks (DQN), or Policy 

Gradient techniques. Several recent works on pulmonary 

disease using LUS images are given in Table 2. 

Table 2. Survey on recent research on pulmonary disease using LUS images 

Ref Data Disease Pre-processing Segmentation Classification Metrics 

[56] POCUS COVID 
Resize, Crop, 

Augmentation 
- InceptionV3 

Pr-

91.85% 

Re-

91.35% 

F1-

91.35% 

[57] 
San Matteo 

Hospital 
COVID 

Resize, Color 

Transformations, 

Augmentation 

- ResNet50 

Ac-99% 

Pr-

99.4% 

Re-

98.93% 

F1-

98.94% 

  

[58] Own COVID 

Noise 

Reduction, 

Augmentation 

V-U-Net - 
DICE- 

0.8632 

[59] POCOVIDNet 
Pneumonia 

and COVID 

Resize, 

Augmentation 
U-Net U-Net 

mIoU-

0.711 

Ac-

84.9% 

Pr-

82.2% 

Re-

79.2% 

F1-

80.5% 

[60] COVIDx-US COVID Augmentation - 

COVID-Net 

US-X 

efficient 

neural 

network 

Ac-

84.6% 

AUC-

82.8% 

[61] COVIDx-US  COVID Filter - 

Hybrid 

(Inception-

V3 and GRU) 

Ac-

94.44% 

Re-

93.75% 

Pr-

95.45% 

[62] COVIDxUS 
Pneumonia 

and COVID 

Video 

Extraction, 

Normalization, 

- SqueezeNet 

Ac-

99.75% 

Augmentation 
Re-

99.4% 

  Pr-

99.6% 
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[63] 

Royal 

Melbourne 

Hospital 

pleural 

effusion 

Color 

Conversion, 

Crop, Resize 

- 

Regularised 

Spatial 

Transformer 

Network 

Ac- 

92.4%% 

[64] Own 

Abnormal 

Lung 

Parenchyma 

Augmentation - VGG-16 

Au-

88.2% 

Pr-

88.85% 

Re-

83.5% 

F1-

86.05% 

Note: Ac- Accuracy, Pr-Precision, Re-Recall, F1-F1 Score, mIoU- mean Intersection over Union 

 

7. Challenges and Solutions 

DL algorithms for the segmentation and classification of 

pulmonary disease have been nearly successful; 

nonetheless, significant challenges have to be overcome. 

This section focuses on various open challenges. 

Insufficient Data:  

Predicting pulmonary diseases demands a vast amount of 

data for effective training and reliable evaluation. One 

alternative is to utilize data augmentation techniques to 

artificially expand the dataset size. Another method is to 

leverage lessons from models trained on larger datasets to 

smaller ones. The third strategy, which combines the prior 

two, overcomes the problem of small samples. 

Image amplification for segmentation:  

As previously stated, data amplification is a popular 

technique in segmentation and classification to address the 

issue of limited datasets. These strategies involve 

manipulating data to generate more training data for DL 

models. However, the effectiveness of these techniques is 

influenced by the quality and diversity of the initial dataset. 

Additionally, before using the generated samples to train DL 

models, they must be validated for suitability. Data 

amplification, synthesis, and generative approaches are key 

components in training DL models for plant pest 

identification. 

Annotation Bias  

"Annotation Bias" refers to the difficulty of manually 

segmenting tumor regions when multiple medical 

practitioners or radiologists provide different annotations. 

The reported findings could be attributed to variations in the 

background, comprehension, or subjective biases of the 

annotators. The author [65] suggests that training and 

evaluating DL models for anomaly segmentation may 

encounter difficulties if the annotations produced contain 

errors or inconsistencies. To tackle this problem, it is 

necessary to collect annotations from a diverse range of 

experts, authenticate them, and subsequently subject them 

to thorough editing and revision to guarantee both 

consistency and accuracy. 

Limitation in DL 

DL holds significant promise for computer vision 

applications; however, three major drawbacks need 

addressing. First, an inadequate understanding of the 

disease's biology can lead DL models to make incorrect 

diagnoses, highlighting the limitations of our current 

knowledge of the disease. Second, due to a lack of diversity 

in the training data, the model's performance can be subpar 

in certain groups, emphasizing the importance of 

representative datasets. Third, computing demands, bias, 

overfitting, and insufficient generalizability pose additional 

challenges in image-based diagnosis. 

Moreover, the explainability of the model becomes crucial 

in image-based disease detection, given the sometimes 

complicated and hard-to-interpret data. Despite DL's great 

potential, the production, development, and deployment of 

DL models necessitate a thorough examination of these 

constraints. 

Data Privacy and Security: 

Medical data, particularly ultrasound images, are subjected 

to strong privacy restrictions due to the delicate nature of the 

content. An essential consideration revolves around the 

secure interchange and examination of such data for 

scientific objectives. It is possible to train models using 

decentralized datasets and explore federated learning 

without the need to transfer raw data. To safeguard patients' 

privacy during the construction of the model, privacy-

preserving methods such as homomorphic encryption can be 

employed, allowing for secure computation of encrypted 

data. 

Imbalance Class 

If the dataset is imbalanced, and some diseases are 

underrepresented, biased models may exhibit strong 
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performance in the majority class but perform poorly in 

minority classes. Employing generative models like 

Generative Adversarial Networks (GANs) or using data 

augmentation approaches can assist in achieving class 

distribution parity. Another option is to employ 

oversampling techniques for minority classes. These 

methods enhance the model's capacity to generalize by 

providing a comprehensive representation of all classes. 

8. Conclusion 

DL is a promising method for addressing challenging 

healthcare problems. DL has demonstrated excellence in 

disease detection through preprocessing, feature extraction, 

selection, categorization, and segmentation. This study 

evaluates the technical characteristics of DL architecture in 

the context of pulmonary disease segmentation and 

classification using LUS images. The number of articles on 

DL-based pulmonary disease detection using LUS images 

has steadily increased. However, there is a lack of 

comprehensive research papers in this field. This study aims 

to fill this knowledge gap by conducting a thorough 

literature review on DL for pulmonary disease detection 

from 1990 to 2023, reviewing a total of 65 articles. The 

paper describes the collection of open-access LUS data for 

pulmonary disease and provides detailed insights into 

various preprocessing stages such as resizing, 

normalization, encoding, transformation, and augmentation. 

It facilitates a reliable examination of pulmonary disease 

segmentation based on the similarity and discontinuity of 

LUS images, discussing promising approaches under both 

methods. The available DL architectures for the 

classification of normal and affected lungs are described in 

detail. Challenges like insufficient data, annotation bias, 

data privacy and security, class imbalance, etc., are 

explained, and potential solutions are suggested. In 

conclusion, investigating how DL has been utilized in 

pulmonary disease diagnosis is crucial to ensure that future 

research remains on track and improves the efficacy of 

disease detection systems. 
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