

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370 | 1364

Enhancing Efficiency in Cloud Computing Entails Optimizing Resource

Apportionment Through the Utilization of the Shuffled Frog-Leaping

Algorithm (SFLA) and Firefly Algorithm

Namrata H. Patadiya*1, Dr. Nirav V. Bhatt2

Submitted: 03/02/2024 Revised: 11/03/2024 Accepted: 17/03/2024

Abstract: The imperative role of 'cloud computing' in modern technology brings attention to Resource apportionment as a pivotal facet.

This paper introduces a Hybridized Optimization algorithm that combines the effectiveness of the 'Shuffled Frog Leaping Algorithm'

(SFLA) and the 'Firefly Algorithm.' This innovative approach overcomes limitations seen in current works like the HABCCS algorithm,

GTS algorithm task, and the krill herd algorithm, while amalgamating the unique features of both SFLA and the Firefly Algorithm. Within

this methodology, the SFLA section oversees initial steps, encompassing the initialization of request size, request generation, estimation

of SFLA's fitness value, sorting, division, and evaluation of user requests. SFLA is recognized for its rapid convergence and straightforward

implementation, boasting the capability for global optimization and widespread utilization across diverse domains. Concurrently, the

Firefly Algorithm takes on pivotal operations such as initialization, request generation, fitness function evaluation, modification, and the

assessment of new solutions. The Firefly Algorithm is characterized by its ease of evaluation and suitability for complex situations,

providing a notable advantage. In this system, the evaluation of request speed and sizes plays a critical role in Resource apportionment on

the server side, contributing to reduced computation times. Experimental results substantiate the efficacy of this hybrid approach,

illustrating its superior performance in comparison to additional similar technique.

Keywords: Cloud Computing, Shuffled frog leaping Algorithm, Firefly Algorithm, Resource apportionment

1. Introduction

Cloud Computing (CC) is a revolutionary computing

approach centered on the Internet, capitalizing on the data

repository capabilities of cloud servers and drawing in

multitudes of users. [1]. This model thrives on the shared

utilization of hardware resources, offering a compelling

computing paradigm that caters to the dynamic allotment of

resources as needed [2] . Information delivery is tailored to

the specific requirements of computers and other devices,

reflecting a notable surge in the usage, services, and delivery

models associated with the Internet. The three primary

service models include 'Infrastructure as a Service' (IaaS),

'Platform as a Service' (PaaS), and 'Software as a Service'

(SaaS). In the realm of Cloud Computing, auctions emerge

as a strategic method for selling cloud assets on a user

network through intense competition. Typically, cloud users

actively participate in these auctions by placing bids for the

specific resources they require [3].

In the dynamic landscape of cloud computing, two pivotal

roles are played by cloud users and cloud providers. The

providers, armed with an array of computing resources

housed in expansive data centers, embrace a 'pay-per-use'

model, leasing these resources to users.

This not only serves as a revenue catalyst but also optimizes

the utilization of resources. Simultaneously, cloud users,

navigating applications with varying workloads,

strategically lease resources from providers, activating their

applications with minimal expenditure. Users frequently

seek multiple resources for specific tasks or cloudlets,

aiming to enhance performance and ensure timely

completion [4].

The adoption of this computing paradigm has proven highly

advantageous for organizations, providing comprehensive

solutions that translate into tangible business benefits,

including heightened flexibility, adaptability, cost

reduction, and increased operational efficiencies. Its

seamless integration within organizational frameworks has

consistently contributed to annual revenue growth.

Organizations effectively employ this computing model,

capitalizing on its comprehensive solutions that deliver

advantages such as increased flexibility, scalability, agility,

cost savings, and heightened operational efficiencies [5]. Its

integration within organizational frameworks not only

facilitates operational improvements but also plays a pivotal

role in annual revenue augmentation.

The management of resources encompasses diverse stages,

ranging from submitting the task list for final execution in

reference to cloud, this management process involves two

pivotal stages: (1) resource scheduling and (2) resource

provisioning [6]. Resource apportionment (RA) emerges as

a noteworthy element in both grid and distributed

1Ph.D Scholar, School of Engineering, RK University, Rajkot, India
2 Professor, School of Engineering, RK University, Rajkot, India

* Corresponding Author Email: namrata1124@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370 | 1365

computing paradigms Implementing a utility-centered

technique in Resource apportionment (RA) is essential

across various levels of grid computing structured around

the concept of utility. The prevalence of utility-centric

computing is on the rise, seamlessly integrating into not just

user-facing scenarios but also seamlessly weaving through

diverse business environments. A cloud incorporating

utility features delivers services tailored to the diverse

resource requirements of users. (Fig. 1). The allocation of

services in the cloud depends on models centered around

bidding, combinations, and various financial frameworks—

all crafted to optimize the revenue for the owner of the

cloud. These financial paradigms stimulate client requests

and boost earnings through assets allocation. [7].

Numerous recent research efforts have suggested methods

for Resource apportionment in pervasive computing that are

customized to prioritize energy efficiency. While numerous

studies on allotment of resources in Cloud Computing are

available, they fail to specifically focus on the fundamental

challenges associated with energy saving allocation of

assets in cloud environments. Previous studies have not

adequately addressed the crucial aspect of energy saving

assets management when viewed from the standpoint of

software engineering.

Cloud users benefit from cost-effective, high-quality

services provided by their service providers. The efficiency

and excellence of these services depend on the specific

assets allocation process within the service realms.

Providers optimize the allocation of resources to clients

using a variety of Resource apportionment (RA) models in

the cloud setting. These models employ distinct algorithms

and methods, as elucidated in the survey of prior works on

RA models within the cloud environment, with a particular

emphasis on RA methodologies.

Consequently, there is a proposed evaluation of RA

application in the realm of Cloud Computing (CC). This

approach is well-suited for proficient RA based on user

requests, leading to reduced processing time and energy

consumption. The subsequent sections introduce an

innovative technique designed to elevate system

performance through a hybrid algorithm, addressing

observed performance deterioration in existing metho

The paper's structure unfolds as follows: Section 2

scrutinizes pertinent works with respect to the method that

has been proposed. Section 3 highlights a concise

illustration of the proposed methodology, while Section 4

delves into the exploratory outcomes. Finally, Section 5

draws conclusions derived from the paper.

2. Literature Survey

Jitendra and Narander [8] proposed Spider Monkey

Optimization (SMO) for optimized Resource apportionment

in cloud computing, considering key parameters like

application time, migration time, and resource utilization. It

addresses energy consumption through the Green Cloud

Scheduling Model (GCSM), prioritizing energy-efficient

nodes for deadline-constrained tasks. Evaluation is done

using a cloud simulator, with energy consumption as the

primary metric. The proposed approach outperforms

existing strategy in aspects of response time, makespan,

energy depletion, and resource utility.

Seyed Hasan Hosseini, Javad Vahidi, Seyed Reza Kamel

Tabbakh, Ali Asghar Shojaei [9] proposed Whale

optimization strategy to mitigate the assets distribution in

the cloud environment. Cloud computing's "pay-per-use"

model is popular, but efficient Resource apportionment is

challenging due to high demand. This document presented

an innovative whale optimization-based algorithm for

optimizing Resource apportionment in the cloud. The

algorithm employs a discrete whale representation, defining

a new distance function. Spiral and search-prey functions

aid movement. Results indicate the algorithm effectively

addresses Resource apportionment problems, offering

efficient solutions in cloud environments. Proper adjustment

of the transition from exploration to exploitation phases is

crucial for algorithm success.

R.Vadivel, Sudalai Muthu T[10] proposed an innovative

approach, merging Hybrid Particle Swarm Optimization

(HPSO) and a modified Genetic Algorithm for dynamic

Resource apportionment among Virtual Machines (VMs).

Users initiate the process by collecting data online,

including details on system resources. The algorithm

optimizes Resource apportionment by sorting features,

efforts directed towards reducing processing time and

elevating overall performance. The focus is on user-driven

efficiency in data collection and extraction steps.

Javad Vahidi, Maral Rahmati [11] paper addresses the

Resource apportionment challenges in cloud computing

caused by the popularity of Pay-Per-Use models. It

introduces the Grasshopper Optimization Algorithm (GOA)

as an innovative solution, demonstrating its superior

performance through MATLAB simulations and

comparisons with Genetic Algorithm (GA) and SEIRA.

Results strongly support GOA's effectiveness in optimizing

Resource apportionment, emphasizing its capability to

explore problem spaces and provide viable solutions.

In their study, Sharma and Guddeti [12] introduced a

Euclidean distance-centered Resource apportionment model

for VMs and migration policies in data centers. Using the

HGAPSO hybrid approach (Genetic Algorithm and Particle

Swarm Optimization), they efficiently distributed VMs

across Physical Machines (PMs). This, coupled with virtual

machine migration, reduced energy utilization, minimized

resource wastage, and prevented SLA violations in cloud

data centers. Experimental comparisons in heterogeneous

and homogeneous data centers demonstrated that HGAPSO

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370 | 1366

and VM migration outperformed a bound and branch-based

exact algorithm in achieving optimal resource utilization,

energy efficiency, and SLA compliance.

Kayalvili and Selvam [13] proposed a Cloud Computing

(CC) Resource apportionment (RA) method using

virtualization technology and Virtual Machines (VMs).

VMs were strategically employed for optimal outcomes by

adjusting placement and layout. Addressing the NP-Hard

problem of distributing cloud resources based on user

requests, heuristic methodologies for RA optimization were

utilized. The hybrid SFLA-GA (Shuffled Frog Leaping

Algorithm - Genetic Algorithm) approach demonstrated

efficiency in achieving optimal resource distribution in the

CC environment.

Mireslami et al. [14] proposed an economically

advantageous solution that optimizes performance

algorithm that reduced deployment costs while meeting

Quality of Service (QoS) requirements. The algorithm

optimally selected web application usage in the cloud from

the customer's perspective, instantly decreasing costs and

enhancing QoS performance. Validated through

experiments on various workloads in two different cloud

service providers, the results highlighted the algorithm's

ability to determine an optimal combination of cloud

resources, striking a balanced equilibrium between

performance standards and implementation expenses in a

relatively short time.

2.1. Hybridization of Shuffled Frog Leap Algorithm and

Firefly

The hybrid algorithm blends SFLA's collaborative

exploration and Firefly Algorithm's adaptability for efficient

exploration and exploitation in cloud computing. By

concurrently utilizing their parallel search capabilities, the

algorithm swiftly explores multiple solutions, adjusting the

population based on attractiveness values. This

hybridization leverages SFLA's diversity preservation with

the Firefly Algorithm's intensification, balancing diversity

while focusing on promising solutions. Through iterative

cycles, the algorithm dynamically adapts to changing cloud

conditions, converging towards optimal or near-optimal

solutions that adhere to knapsack constraints in Resource

apportionment.

2.2. Hybrid Shuffled Frog-Leaping Algorithm and

Firefly Algorithm (Hybrid SFLA-FA)

The human face is a varying object. With the passing of

time, everything changes, including a person's appearance,

which has an impact on the facial recognition system. To

improve the chances of recognizing a person with aging

effects by using a large dataset for face images, which

included images of the same person; taken at various times

throughout his/ her life.

1. Initialization:

• Initialize the population of frogs and fireflies with

random solutions.

• Calculate the fitness values for each solution in both

populations.

2. Shuffled Frog-Leaping Phase:

• Divide the frog population into subgroups and shuffle

the frogs within each subgroup.

• Apply local search to each frog in its subgroup and

update their solutions.

• Select the best frogs from each subgroup to form a new

set of frogs.

• Determine the global mean and move the frogs towards

the global mean.

3. Firefly Algorithm Phase:

• Calculate the attractiveness between fireflies based on

their brightness and distance.

• Update the position of each firefly by moving towards

brighter fireflies while introducing randomness.

• Update the light intensity of each firefly based on its new

position and objective function value.

4. Hybridization Strategy:

Begin

1. Initialize the population size, number of memplex m,

total frogs P = Mn

2. Generate required population (X_{i}) i = 1 to m by

random generation.

3. Evaluate the fitness values for each X

4. Determine the best frog with the best robotness value.

5. while ≤ max generation do

 for i = 1, 2, ... , m do

Perform local search using SFLA on the memplex X_{i}

Evaluate the fitness value F_{i} = f(X_{i})

Move fireflies towards brighter solutions using Firefly

Algorithm

Update positions based on attractiveness and

randomization

Evaluate the fitness value F_{j} for the attracted firefly

X_{j}

 if (F_{j} > F_{i}) then

Replace frog X_{i} with firefly X_{j}

End if

Perform global search using SFLA on the entire

population

Abandon a fraction P * of the worst frogs to create

new solutions

Keep the best frog with the highest quality

solution.

Rank the frogs and find the best one

End while

End

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370 | 1367

• Combine the frog population and the firefly population

to create a hybrid population.

• Apply a strategy to select solutions from the hybrid

population, such as alternating between SFLA and FA

steps, or choosing solutions based on their fitness values.

5. Exploration and Termination:

• Repeat the hybrid steps for a certain number of iterations

or until a termination criterion is met.

6. Solution Extraction:

• After the hybrid iterations, select the best solution

obtained from both algorithms as the final solution to the

optimization problem.

2.3. Flowchart of Shuffled frog leap and firefly

algorithm

Algorithmic representation for the hybrid optimization

SFLA-FA algorithm

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370 | 1368

3. Findings and Analysis

The presented approach aims to alleviate challenges

associated with knapsack problems in resource allocation.

This not only reduces computation duration and competence

constraints but is also executed in java programming

language leveraging cloudSim. The data repository serves

as a benchmark for addressing fundamental scheduling

issues.

Fig.1. Comparative evaluations of suggested framework

with current systems for resource elapsed time. face

3.1. Computational time:

In comparison to other current systems, the suggested

system has a short execution time. The SFLA-FA

outperforms the HABCCS algorithm, krill herd algorithm,

Shuffled Frog Leap Algorithm, Firefly and SFLA-FA in

terms of time required for execution. The execution time is

calculated as

 PT = E(t)- S(t)

where PT is the processing time, E(t) denotes the end time

of the process, and S(t) is the start time of the process.

Figure 1 depicts a juxtaposition of the executing times of the

present and new methods. In Fig. 1, the names of several

strategies for optimization are written along the x- axis, and

the execution time is written along the y-axis.

3.2. Conveyance rate:

Conveyance rate refers to the volume of data transmitted

between locations within a defined time period. It is also

used to test the efficiency of storage drives, memory,

Internet connectivity. The suggested system ought to have a

higher conveyance rate than the current one. The

conveyance rate estimated as:

 Ct = It /t

where It is the amount of data transmitted, and t is the

duration. Figure 2 compares and displays the conveyance

rate of several algorithms. In Fig. 2, the x-axis has the names

of the different algorithms, while the y-axis contains the

quantity.

Fig. 2. Evaluation of the conveyance rate of resources in

the existing system against the newly introduced system.

3.3. Job Turnaround:

Job Turnaround time in computing is the entire amount of

time that passes between sending a procedure for execution

and receiving the final outcome back from the client or user.

It could differ for different programming languages based

on who created the program or software. Turnaround time

may be defined as the whole amount of time after a program

is begun that it takes to give the user the desired result.

J(t) = E(t)- O(t)

J(t) = Mean completion time

E(t)= End time of the operation

O(t)= Onset time

Fig. 3. Comparative evaluations of suggested framework

with current systems for job turnaround time

3.4. Latency:

Latency is the amount of time that must pass between

making a request and when the requested action or service

is actually provided. It can also mean the entire amount of

time a process waits in a ready queue in order to get to the

CPU. The difference between a process's turnaround and

cycle time is known as the waiting time. Another way to

think of waiting time is the interval of time that passes

between finishing one task and beginning another.

W(a)Avg = U(a)Avg – T(a)

15000

12500

10500
9000

5000

0

2000

4000

6000

8000

10000

12000

14000

16000

HABCCS SFLA FA krill herd SFLA-FA

0

20

40

60

80

HABCCS SFLA FA krill herd SFLA-FA

T
im

e

Task

0

10

20

30

40

50

60

70

80

90

100

50 100 150 200

T
im

e

Number of tasks

HABCCS SFLA FA Krill Herd SFLA-FA

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370 | 1369

M(a)Avg = depicts Average latency time

U(a)Avg = depicts Average turnaround

time

T(a) = Task Duration

Fig. 4. Comparative evaluations of suggested framework

with current systems for latency

Fig. 5. Comparative evaluations of suggested framework

with current systems for allocation mechanisms

Here is a comparison between the suggested system and the

current system using this Mechanism. The hybrid SFLA-FA

optimization method performs better overall when it comes

to Resource apportionment in cloud environments. Fig. 5

shows a comparison of this method. In Figure 5, the

assignment proportion is calculated along the vertical axis

and the optimization procedure is taken along the horizontal

axi

4. Conclusion and Future Work

In this scholarly work, the SFLA-FA strategy is developed

to curtail allocation Knapsack Dilemma for the granting of

assets in a Cloud Computing context. The optimization

problem is tackled in the suggested system by utilizing

hybrid SFLA and Firefly algorithm optimization

techniques. The suggested RA is implemented using the

JAVA working platform and Cloud Sim. The suggested

work and the current framework are contrasted. The

suggested work's time to execution was found to be 6000

ms, the conveyance rate was 60 s, the time needed for job

fulfillment was short, the 'time frame' was short, and the

apportionment proportion was 92. The previous systems,

such as HABCSS, SFLA, FA, and krill herd, demonstrated

extended run time, conveyance rate, time frame, and

proportion of Resource apportionment, which may result in

a significant reduction in total system efficiency, as seen by

the experimental findings. The study has shown that the

suggested works outperformed the existing approaches

pertaining of waiting time and assignment procedures. This

work might be improved by increasing the efficacy of the

suggested work.

References

[1] Xiaoying, T., Dan, H., Yuchun, G., Changjia, C.:

Dynamic Resource apportionment in cloud download

service. J. China Univ. Posts Telecommun. 24(5), 53–

59 (2017)

https://doi.org/10.1016/S1005-8885(17)60233-4

[2] Pradhan, P., Prafulla, B.K., Ray, B.N.B.: Modified

round robin algorithm for Resource apportionment in

cloud computing. Procedia Comput. Sci. 85, 878–890

(2016) https://doi.org/10.1016/j.procs.2016.05.278

[3] Madni, S.H.H., Latiff, M.S.A., Coulibaly, Y.: Recent

advancements in Resource apportionment techniques

for cloud computing environment: a systematic

review. Clust. Comput. 20(3), 2489–2533 (2017)

https://doi.org/10.1007/s10586-016-0684-4

[4] Kumar, N., Saxena, S.: A preference-based Resource

apportionment in cloud computing systems. Procedia

Comput. Sci. 57, 104–111 (2015)

https://doi.org/10.1016/j.procs.2015.07.375

[5] Xue, C.T.S., Xin, F.T.W.: benefits and challenges of

the adoption of cloud computing in business. Int. J.

Cloud Comput. Serv. Arch. (IJCCSA) 6(6), 1–15

(2016)

https://doi.org/10.5121/ijccsa.2016.6601

[6] Singh, S., Chana, I.: A survey on resource scheduling

in cloud computing: issues and challenges. J. Grid

Comput. 14(2), 217–264 (2016)

0

50

100

150

200

250

300

15 60 100 130

W
ai

ti
n
g
 t

im
e

Number of tasks

HABCCS SFLA FA krill herd SFLA-FA

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

HABCCS SFLA FA krill herd SFLA-FA

A
ll

o
ca

ti
o

n
 p

er
ce

n
ta

g
e

Opimizaiton Algorithm

https://doi.org/10.1016/S1005-8885(17)60233-4
https://doi.org/10.1016/j.procs.2016.05.278
https://doi.org/10.1007/s10586-016-0684-4
https://doi.org/10.1016/j.procs.2015.07.375
https://doi.org/10.5121/ijccsa.2016.6601

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370 | 1370

https://doi.org/10.1007/s10723-015-9359-2

[7] Kolhar, M., Abd El-atty, S.M., Rahmath, M.: Storage

allocation scheme for virtual instances of cloud

computing. Neural Comput. Appl. 28(6), 1397–1404

(2017)

https://doi.org/10.1007/s00521-015-2173-8

[8] Jitendra Kumar Samriya and Narander Kumar: Spider

Monkey Optimization based Energy-Efficient

Resource apportionment in Cloud Environment.

Trends in science 2022 19(1): 1710

https://doi.org/10.48048/tis.2022.1710

[9] Seyed Hasan Hosseini, Javad Vahidi, Seyed Reza

Kamel Tabbakh, Ali Asghar Shojaei: Resource

apportionment optimization in cloud computing using

the whale optimization algorithm. Int. J. Nonlinear

Anal. Appl. Volume 12, Special Issue, Winter and

Spring 2021, 343-360

http://dx.doi.org/10.22075/ijnaa.2021.5188

[10] R.Vadivel, Sudalai Muthu T: An effective HPSO-

MGA Optimization Algorithm for Demand based

Resource apportionment in Cloud Environment. 2020

6th International Conference on Advanced Computing

and Communication Systems (ICACCS)

https://dx.doi.org/10.1109/icaccs48705.2020.9074442

[11] Javad Vahidi, Maral Rahmati: Optimization of

Resource apportionment in Cloud Computing by

Grasshopper Optimization Algorithm. 5th Conference

on Knowledge-Based Engineering and Innovation,

Iran University of Science and Technology, Tehran,

Iran https://dx.doi.org/ 10.1109/KBEI.2019.8735098

[12] Sharma, N., Guddeti, R.M.: Multi-objective energy

efficient virtual machines allocation at the cloud data

center. IEEE Trans. Serv. Comput. (2016).

https://doi.org/10.1186/s13677-017-0086-z

[13] Kayalvili, S., Selvam, M.: Hybrid SFLA-GA

algorithm for an optimal Resource apportionment in

cloud. Clust. Comput. (2018).

https://doi.org/10.1007/s10586-018-2011-8

[14] Mireslami, S., Rakai, L., Far, B.H., Wang, M.:

Simultaneous cost and QoS optimization for cloud

Resource apportionment. IEEE Trans. Netw. Serv.

Manag. 14(3), 676–689 (2017)

https://doi.org/10.1109/TNSM.2017.2738026

https://doi.org/10.1007/s10723-015-9359-2
https://doi.org/10.1007/s00521-015-2173-8
https://doi.org/10.48048/tis.2022.1710
http://dx.doi.org/10.22075/ijnaa.2021.5188
https://dx.doi.org/10.1109/icaccs48705.2020.9074442
https://dx.doi.org/10.1109/icaccs48705.2020.9074442
https://dx.doi.org/%2010.1109/KBEI.2019.8735098
file:///C:/Users/Yogi/Downloads/).%20https:/doi.org/10.1186/s13677-017-0086-z
file:///C:/Users/Yogi/Downloads/).%20https:/doi.org/10.1186/s13677-017-0086-z
https://doi.org/10.1007/s10586-018-2011-8
https://doi.org/10.1109/TNSM.2017.2738026

