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Abstract: The imperative role of 'cloud computing' in modern technology brings attention to Resource apportionment as a pivotal facet. 

This paper introduces a Hybridized Optimization algorithm that combines the effectiveness of the 'Shuffled Frog Leaping Algorithm' 

(SFLA) and the 'Firefly Algorithm.' This innovative approach overcomes limitations seen in current works like the HABCCS algorithm, 

GTS algorithm task, and the krill herd algorithm, while amalgamating the unique features of both SFLA and the Firefly Algorithm. Within 

this methodology, the SFLA section oversees initial steps, encompassing the initialization of request size, request generation, estimation 

of SFLA's fitness value, sorting, division, and evaluation of user requests. SFLA is recognized for its rapid convergence and straightforward 

implementation, boasting the capability for global optimization and widespread utilization across diverse domains. Concurrently, the 

Firefly Algorithm takes on pivotal operations such as initialization, request generation, fitness function evaluation, modification, and the 

assessment of new solutions. The Firefly Algorithm is characterized by its ease of evaluation and suitability for complex situations, 

providing a notable advantage. In this system, the evaluation of request speed and sizes plays a critical role in Resource apportionment on 

the server side, contributing to reduced computation times. Experimental results substantiate the efficacy of this hybrid approach, 

illustrating its superior performance in comparison to additional similar technique. 
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1. Introduction 

Cloud Computing (CC) is a revolutionary computing 

approach centered on the Internet, capitalizing on the data 

repository capabilities of cloud servers and drawing in 

multitudes of users. [1]. This model thrives on the shared 

utilization of hardware resources, offering a compelling 

computing paradigm that caters to the dynamic allotment of 

resources as needed [2] . Information delivery is tailored to 

the specific requirements of computers and other devices, 

reflecting a notable surge in the usage, services, and delivery 

models associated with the Internet. The three primary 

service models include 'Infrastructure as a Service' (IaaS), 

'Platform as a Service' (PaaS), and 'Software as a Service' 

(SaaS). In the realm of Cloud Computing, auctions emerge 

as a strategic method for selling cloud assets on a user 

network through intense competition. Typically, cloud users 

actively participate in these auctions by placing bids for the 

specific resources they require [3]. 

In the dynamic landscape of cloud computing, two pivotal 

roles are played by cloud users and cloud providers. The 

providers, armed with an array of computing resources 

housed in expansive data centers, embrace a 'pay-per-use' 

model, leasing these resources to users. 

 

This not only serves as a revenue catalyst but also optimizes 

the utilization of resources. Simultaneously, cloud users, 

navigating applications with varying workloads, 

strategically lease resources from providers, activating their 

applications with minimal expenditure. Users frequently 

seek multiple resources for specific tasks or cloudlets, 

aiming to enhance performance and ensure timely 

completion [4]. 

The adoption of this computing paradigm has proven highly 

advantageous for organizations, providing comprehensive 

solutions that translate into tangible business benefits, 

including heightened flexibility, adaptability, cost 

reduction, and increased operational efficiencies. Its 

seamless integration within organizational frameworks has 

consistently contributed to annual revenue growth. 

Organizations effectively employ this computing model, 

capitalizing on its comprehensive solutions that deliver 

advantages such as increased flexibility, scalability, agility, 

cost savings, and heightened operational efficiencies [5]. Its 

integration within organizational frameworks not only 

facilitates operational improvements but also plays a pivotal 

role in annual revenue augmentation. 

The management of resources encompasses diverse stages, 

ranging from submitting the task list for final execution in 

reference to cloud, this management process involves two 

pivotal stages: (1) resource scheduling and (2) resource 

provisioning [6]. Resource apportionment (RA) emerges as 

a noteworthy element in both grid and distributed 
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computing paradigms Implementing a utility-centered 

technique in Resource apportionment (RA) is essential 

across various levels of grid computing structured around 

the concept of utility. The prevalence of utility-centric 

computing is on the rise, seamlessly integrating into not just 

user-facing scenarios but also seamlessly weaving through 

diverse business environments. A cloud incorporating 

utility features delivers services tailored to the diverse 

resource requirements of users. (Fig. 1). The allocation of 

services in the cloud depends on models centered around 

bidding, combinations, and various financial frameworks—

all crafted to optimize the revenue for the owner of the 

cloud. These financial paradigms stimulate client requests 

and boost earnings through assets allocation. [7].  

Numerous recent research efforts have suggested methods 

for Resource apportionment in pervasive computing that are 

customized to prioritize energy efficiency. While numerous 

studies on allotment of resources in Cloud Computing are 

available, they fail to specifically focus on the fundamental 

challenges associated with energy saving allocation of 

assets in cloud environments. Previous studies have not 

adequately addressed the crucial aspect of energy saving 

assets management when viewed from the standpoint of 

software engineering. 

Cloud users benefit from cost-effective, high-quality 

services provided by their service providers. The efficiency 

and excellence of these services depend on the specific 

assets allocation process within the service realms. 

Providers optimize the allocation of resources to clients 

using a variety of Resource apportionment (RA) models in 

the cloud setting. These models employ distinct algorithms 

and methods, as elucidated in the survey of prior works on 

RA models within the cloud environment, with a particular 

emphasis on RA methodologies. 

Consequently, there is a proposed evaluation of RA 

application in the realm of Cloud Computing (CC). This 

approach is well-suited for proficient RA based on user 

requests, leading to reduced processing time and energy 

consumption. The subsequent sections introduce an 

innovative technique designed to elevate system 

performance through a hybrid algorithm, addressing 

observed performance deterioration in existing metho 

The paper's structure unfolds as follows: Section 2 

scrutinizes pertinent works with respect to the method that 

has been proposed. Section 3 highlights a concise 

illustration of the proposed methodology, while Section 4 

delves into the exploratory outcomes. Finally, Section 5 

draws conclusions derived from the paper. 

2. Literature Survey 

Jitendra and Narander [8] proposed Spider Monkey 

Optimization (SMO) for optimized Resource apportionment 

in cloud computing, considering key parameters like 

application time, migration time, and resource utilization. It 

addresses energy consumption through the Green Cloud 

Scheduling Model (GCSM), prioritizing energy-efficient 

nodes for deadline-constrained tasks. Evaluation is done 

using a cloud simulator, with energy consumption as the 

primary metric. The proposed approach outperforms 

existing strategy in aspects of response time, makespan, 

energy depletion, and resource utility. 

Seyed Hasan Hosseini, Javad Vahidi, Seyed Reza Kamel 

Tabbakh, Ali Asghar Shojaei [9] proposed Whale 

optimization strategy to mitigate the assets distribution in 

the cloud environment. Cloud computing's "pay-per-use" 

model is popular, but efficient Resource apportionment is 

challenging due to high demand. This document presented 

an innovative whale optimization-based algorithm for 

optimizing Resource apportionment in the cloud. The 

algorithm employs a discrete whale representation, defining 

a new distance function. Spiral and search-prey functions 

aid movement. Results indicate the algorithm effectively 

addresses Resource apportionment problems, offering 

efficient solutions in cloud environments. Proper adjustment 

of the transition from exploration to exploitation phases is 

crucial for algorithm success. 

R.Vadivel, Sudalai Muthu T[10] proposed an innovative 

approach, merging Hybrid Particle Swarm Optimization 

(HPSO) and a modified Genetic Algorithm for dynamic 

Resource apportionment among Virtual Machines (VMs). 

Users initiate the process by collecting data online, 

including details on system resources. The algorithm 

optimizes Resource apportionment by sorting features, 

efforts directed towards reducing processing time and 

elevating overall performance. The focus is on user-driven 

efficiency in data collection and extraction steps. 

Javad Vahidi, Maral Rahmati [11] paper addresses the 

Resource apportionment challenges in cloud computing 

caused by the popularity of Pay-Per-Use models. It 

introduces the Grasshopper Optimization Algorithm (GOA) 

as an innovative solution, demonstrating its superior 

performance through MATLAB simulations and 

comparisons with Genetic Algorithm (GA) and SEIRA. 

Results strongly support GOA's effectiveness in optimizing 

Resource apportionment, emphasizing its capability to 

explore problem spaces and provide viable solutions. 

In their study, Sharma and Guddeti [12] introduced a 

Euclidean distance-centered Resource apportionment model 

for VMs and migration policies in data centers. Using the 

HGAPSO hybrid approach (Genetic Algorithm and Particle 

Swarm Optimization), they efficiently distributed VMs 

across Physical Machines (PMs). This, coupled with virtual 

machine migration, reduced energy utilization, minimized 

resource wastage, and prevented SLA violations in cloud 

data centers. Experimental comparisons in heterogeneous 

and homogeneous data centers demonstrated that HGAPSO 
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and VM migration outperformed a bound and branch-based 

exact algorithm in achieving optimal resource utilization, 

energy efficiency, and SLA compliance. 

Kayalvili and Selvam [13] proposed a Cloud Computing 

(CC) Resource apportionment (RA) method using 

virtualization technology and Virtual Machines (VMs). 

VMs were strategically employed for optimal outcomes by 

adjusting placement and layout. Addressing the NP-Hard 

problem of distributing cloud resources based on user 

requests, heuristic methodologies for RA optimization were 

utilized. The hybrid SFLA-GA (Shuffled Frog Leaping 

Algorithm - Genetic Algorithm) approach demonstrated 

efficiency in achieving optimal resource distribution in the 

CC environment. 

Mireslami et al. [14] proposed an economically 

advantageous solution that optimizes performance 

algorithm that reduced deployment costs while meeting 

Quality of Service (QoS) requirements. The algorithm 

optimally selected web application usage in the cloud from 

the customer's perspective, instantly decreasing costs and 

enhancing QoS performance. Validated through 

experiments on various workloads in two different cloud 

service providers, the results highlighted the algorithm's 

ability to determine an optimal combination of cloud 

resources, striking a balanced equilibrium between 

performance standards and implementation expenses in a 

relatively short time. 

2.1. Hybridization of Shuffled Frog Leap Algorithm and 

Firefly 

The hybrid algorithm blends SFLA's collaborative 

exploration and Firefly Algorithm's adaptability for efficient 

exploration and exploitation in cloud computing. By 

concurrently utilizing their parallel search capabilities, the 

algorithm swiftly explores multiple solutions, adjusting the 

population based on attractiveness values. This 

hybridization leverages SFLA's diversity preservation with 

the Firefly Algorithm's intensification, balancing diversity 

while focusing on promising solutions. Through iterative 

cycles, the algorithm dynamically adapts to changing cloud 

conditions, converging towards optimal or near-optimal 

solutions that adhere to knapsack constraints in Resource 

apportionment. 

2.2. Hybrid Shuffled Frog-Leaping Algorithm and 

Firefly Algorithm (Hybrid SFLA-FA) 

The human face is a varying object. With the passing of 

time, everything changes, including a person's appearance, 

which has an impact on the facial recognition system. To 

improve the chances of recognizing a person with aging 

effects by using a large dataset for face images, which 

included images of the same person; taken at various times 

throughout his/ her life. 

1. Initialization: 

• Initialize the population of frogs and fireflies with 

random solutions. 

• Calculate the fitness values for each solution in both 

populations. 

2. Shuffled Frog-Leaping Phase: 

• Divide the frog population into subgroups and shuffle 

the frogs within each subgroup. 

• Apply local search to each frog in its subgroup and 

update their solutions. 

• Select the best frogs from each subgroup to form a new 

set of frogs. 

• Determine the global mean and move the frogs towards 

the global mean. 

3. Firefly Algorithm Phase: 

• Calculate the attractiveness between fireflies based on 

their brightness and distance. 

• Update the position of each firefly by moving towards 

brighter fireflies while introducing randomness. 

• Update the light intensity of each firefly based on its new 

position and objective function value. 

4. Hybridization Strategy: 

Begin 

1. Initialize the population size, number of memplex m, 

total frogs P = Mn 

2. Generate required population (X_{i}) i = 1 to m by 

random generation. 

3. Evaluate the fitness values for each X 

4. Determine the best frog with the best robotness value. 

5. while ≤ max generation do 

     for i = 1, 2, ... , m do 

Perform local search using SFLA on the memplex X_{i} 

Evaluate the fitness value F_{i} = f(X_{i}) 

Move fireflies towards brighter solutions using Firefly 

Algorithm 

Update positions based on attractiveness and 

randomization 

Evaluate the fitness value F_{j} for the attracted firefly 

X_{j} 

         if (F_{j} > F_{i}) then 

Replace frog X_{i} with firefly X_{j} 

End if 

Perform global search using SFLA on the entire 

population 

Abandon a fraction P * of the worst frogs to create 

new solutions 

Keep the best frog with the highest quality 

solution. 

Rank the frogs and find the best one 

End while 

End 
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• Combine the frog population and the firefly population 

to create a hybrid population. 

• Apply a strategy to select solutions from the hybrid 

population, such as alternating between SFLA and FA 

steps, or choosing solutions based on their fitness values. 

5. Exploration and Termination: 

• Repeat the hybrid steps for a certain number of iterations 

or until a termination criterion is met. 

6. Solution Extraction: 

• After the hybrid iterations, select the best solution 

obtained from both algorithms as the final solution to the 

optimization problem. 

2.3. Flowchart of Shuffled frog leap and firefly 

algorithm 

Algorithmic representation for the hybrid optimization 

SFLA-FA algorithm 

 

 

   



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1364–1370  |  1368 

3. Findings and Analysis 

The presented approach aims to alleviate challenges 

associated with knapsack problems in resource allocation. 

This not only reduces computation duration and competence 

constraints but is also executed in java programming 

language leveraging cloudSim. The data repository serves 

as a benchmark for addressing fundamental scheduling 

issues. 

 

Fig.1. Comparative evaluations of suggested framework 

with current systems for resource elapsed time. face 

3.1. Computational time: 

In comparison to other current systems, the suggested 

system has a short execution time. The SFLA-FA 

outperforms the HABCCS algorithm, krill herd algorithm, 

Shuffled Frog Leap Algorithm, Firefly and SFLA-FA in 

terms of time required for execution. The execution time is 

calculated as 

 PT = E(t)- S(t) 

where PT is the processing time, E(t) denotes the end time 

of the process, and S(t) is the start time of the process. 

Figure 1 depicts a juxtaposition of the executing times of the 

present and new methods. In Fig. 1, the names of several 

strategies for optimization are written along the x- axis, and 

the execution time is written along the y-axis. 

3.2. Conveyance rate: 

Conveyance rate refers to the volume of data transmitted 

between locations within a defined time period. It is also 

used to test the efficiency of storage drives, memory, 

Internet connectivity. The suggested system ought to have a 

higher conveyance rate than the current one. The 

conveyance rate estimated as: 

    Ct = It /t 

where It    is the amount of data transmitted, and t is the 

duration. Figure 2 compares and displays the conveyance 

rate of several algorithms. In Fig. 2, the x-axis has the names 

of the different algorithms, while the y-axis contains the 

quantity. 

 

 

Fig. 2. Evaluation of the conveyance rate of resources in 

the existing system against the newly introduced system. 

3.3. Job Turnaround: 

Job Turnaround time in computing is the entire amount of 

time that passes between sending a procedure for execution 

and receiving the final outcome back from the client or user. 

It could differ for different programming languages based 

on who created the program or software. Turnaround time 

may be defined as the whole amount of time after a program 

is begun that it takes to give the user the desired result. 

J(t) = E(t)- O(t) 

J(t) = Mean completion time 

E(t)= End time of the operation 

O(t)= Onset time 

 

Fig. 3. Comparative evaluations of suggested framework 

with current systems for job turnaround time 

3.4. Latency: 

Latency is the amount of time that must pass between 

making a request and when the requested action or service 

is actually provided. It can also mean the entire amount of 

time a process waits in a ready queue in order to get to the 

CPU. The difference between a process's turnaround and 

cycle time is known as the waiting time. Another way to 

think of waiting time is the interval of time that passes 

between finishing one task and beginning another. 

W(a)Avg = U(a)Avg – T(a) 
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M(a)Avg = depicts Average latency time 

U(a)Avg =   depicts Average turnaround 

time 

T(a) = Task Duration 

 

Fig. 4. Comparative evaluations of suggested framework 

with current systems for latency 

 

Fig. 5. Comparative evaluations of suggested framework 

with current systems for allocation mechanisms 

 

Here is a comparison between the suggested system and the 

current system using this Mechanism. The hybrid SFLA-FA 

optimization method performs better overall when it comes 

to Resource apportionment in cloud environments. Fig. 5 

shows a comparison of this method. In Figure 5, the 

assignment proportion is calculated along the vertical axis 

and the optimization procedure is taken along the horizontal 

axi

4. Conclusion and Future Work 

In this scholarly work, the SFLA-FA strategy is developed 

to curtail allocation Knapsack Dilemma for the granting of 

assets in a Cloud Computing context. The optimization 

problem is tackled in the suggested system by utilizing 

hybrid SFLA and Firefly algorithm optimization 

techniques. The suggested RA is implemented using the 

JAVA working platform and Cloud Sim. The suggested 

work and the current framework are contrasted. The 

suggested work's time to execution was found to be 6000 

ms, the conveyance rate was 60 s, the time needed for job 

fulfillment was short, the 'time frame' was short, and the 

apportionment proportion was 92. The previous systems, 

such as HABCSS, SFLA, FA, and krill herd, demonstrated 

extended run time, conveyance rate, time frame, and 

proportion of Resource apportionment, which may result in 

a significant reduction in total system efficiency, as seen by 

the experimental findings. The study has shown that the 

suggested works outperformed the existing approaches 

pertaining of waiting time and assignment procedures. This 

work might be improved by increasing the efficacy of the 

suggested work. 
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