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Abstract: Wireless Sensor Networks (WSNs) are liable to Denial of Service (DoS) attacks, which can be easily executed in this context. 

This study presents a comparative analysis of five prominent deep learning architectures, namely AlexNet, VGGNet, ResNet, DenseNet, 

and Lightweight DenseNet, for their efficacy in classifying Denial of Service (DoS) attacks in Wireless Sensor Networks (WSNs). The 

evaluation is conducted using labeled instances of different types of DoS attacks from the WSN-DS and IOTID20 datasets. Various 

evaluation metrics including F1-score, recall,  precision and accuracy computational efficiency are employed to discern the suitability of 

these architectures for real-time WSN applications. Experimental results from training and testing on the WSN-DS and IOTID20 datasets 

provide insights into the performance of each architecture, aiding in the selection of optimal models for DoS attack classification in WSNs. 
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1. Introduction 

Wireless Sensor Networks (WSNs) face significant 

vulnerabilities to Denial of Service (DoS) attacks[1-3], 

which exploit the network's characteristics to disrupt normal 

operations. DoS attacks commonly take two forms: flooding 

the network with excessive traffic, causing congestion, or 

exploiting protocol vulnerabilities to disrupt legitimate 

traffic flow. Both types can severely impair WSN 

functionality, hindering data transmission and processing. 

Machine learning methods offer a proactive approach to 

detect and prevent such attacks, classifying traffic into 

normal flow, DoS flooding attacks, and other flows. These 

techniques, particularly classification engines, are dynamic, 

capable of identifying new attack types, and known for their 

adaptability, scalability, and reliability. 

Deep learning systems possess the ability to derive rich 

insights from data, extending beyond their explicit training 

domains. This versatility makes them well-suited for diverse 

tasks such as image recognition, natural language 

comprehension, and speech analysis [4-5]. 

Comprising interconnected layers of nodes, these models 

collaborate to refine predictions and classifications. 

Through complex, nonlinear transformations across these 

layers, deep learning models generate statistical outputs 

from input data. Iteratively refined until reaching 

satisfactory accuracy levels, this process, characteristic of 

deep learning, operates through multiple layers or depths, 

hence the term "deep."    

One notable advantage of deep learning lies in its automatic 

feature extraction capability, a departure from old-style 

machine learning methods that often count on manual 

feature engineering. In deep learning, neural networks 

unconventionally discern relevant features right from raw 

data, obviating the need for human-designed features. This 

automation renders deep learning models highly adaptable 

to diverse tasks and data types, as they adeptly discover and 

leverage pertinent features during training. 

In the context of WSNs and DoS attack classification, 

autoencoders [6-7] can be employed to condense the 

dimensionality of the input data, effectively capturing the 

essential characteristics of network traffic patterns. Using 

existing networks such as Dense Convolutional Network 

(DenseNet) [8-9] and Residual Network (ResNet) [10] 

allows for feature extraction from convolutional layers. If 

DenseNet is selected as the feature extractor and recurrent 

layers are excluded for efficiency purposes. 

By leveraging autoencoders for dimensionality reduction 

and lightweight DenseNet architectures [11-14] for 

classification, this approach aims to enhance the accuracy 

and efficiency of DoS attack detection in WSNs. The 

program is less trustworthy if the face location is partially 

veiled, facing in any other direction, or if the light is 

insufficient. 

This paper investigates the effectiveness of this combined 

approach and evaluates its performance in terms of 

classification accuracy, computational efficiency, and real-

time applicability. The results of this research have 

significant implications for the security and reliability of 

WSNs in various practical scenarios. The reported metrics 

for the Autoencoder-Lightweight DenseNet architecture 

utilized in this work are as follows: Training Loss of 8.7% 
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and Training Accuracy of 99.7%, alongside Validation Loss 

of 12.11% and Validation Accuracy of 94.84%. 

2. Related Work  

Muhammad et al [15] proposed scheme which uses a hybrid 

feature selection approach and a deep neural network- 

(DNN-) based classifier that secures network data from 

various cyberattacks, combining feature selection and 

classification techniques to achieve higher F1-score, recall,  

precision and accuracy compared to existing methods. 

Notably, their model mitigates overfitting by removing 

redundant features, reducing time and computational 

complexity. Their future work will involve testing the model 

on other datasets and exploring additional feature selection 

techniques for further improvement. 

Zhang et al. [16] introduced a novel convolutional block 

called Lightweight Dense Block (LDB) and proposed a 

lightweight character recognition network named 

CDensenet-U. The CDensenet-U framework incorporates 

weight compression strategies, including LDB utilization, 

depth separable convolution, and a 1*1 kernel convolution 

with a scale factor to reduce input channels. Although 

CDenseNet-U demonstrated promising results, there are still 

areas to explore, such as devising more efficient techniques 

to reduce computational costs and minimize the weight sizes 

of dense blocks while retaining crucial feature information. 

Wu et al. [17] analyzed network traffic data considering 

both spatial and temporal characteristics. They introduced 

LuNet, a novel hierarchical neural network merging 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs). LuNet processes input traffic 

data, capturing intricate details in spatial and temporal 

features simultaneously. Experimentation on NSL-KDD 

and UNSW-NB15 datasets showcased LuNet's remarkable 

detection capabilities with a reduced false-positive alarm 

rate. However, LuNet faced challenges in effectively 

classifying attacks with limited samples in the training 

dataset, like Backdoors and Worms. 

Hussain et al. [18] developed a method to convert network 

traffic data into images and trained a sophisticated CNN 

model, ResNet, with impressive results. They achieved 

99.99% accuracy in detecting DoS and DDoS attacks and 

87% precision in identifying eleven attack types, 

outperforming existing techniques by 9%.  

However, ResNet faced scalability challenges as the 

network complexity grew with dataset size. Ongoing 

research focuses on addressing these scalability issues while 

sustaining high performance in network intrusion detection. 

In their research, Zhang et al. [19] presented RANet, a 

model built upon group gating convolutional networks. 

Utilizing an overlapping approach in the final max-pooling 

layer, they carried out evaluations across five publicly 

available datasets. Their model demonstrated impressive 

accuracy rates across these datasets: 83.23% on NSL-KDD 

Test (+), 69.04% on NSL-KDD (21), 99.78% on 

KDDCUP99, 97.55% on Kyoto, and 96.73% on 

CICIDS2017 datasets 

Khan et al. [20] developed a two-stage deep learning 

(TSDL) model for efficient  detection of intrusion over 

networks. Combining stacked autoencoder architecture with 

a soft-max classifier, the model automatically extracts key 

features from unlabeled data, facilitating effective 

classification. Experimental results on KDD99 and UNSW-

NB15 datasets demonstrated superior performance 

compared to existing methods, achieving recognition rates 

of up to 99.996% and 89.134%, respectively. 

Huang et al. [21] developed a new lightweight hybrid neural 

network for classifying medical images, especially useful 

with limited training data. It combines a modified PCANet 

with a simplified DenseNet, overcoming limitations of the 

original PCANet and achieving accurate classification with 

fewer adjustable weights than traditional DenseNet. Tests 

on various datasets show our hybrid network outperforms 

popular models like ResNet , VGG, AlexNet and DenseNet 

in accuracy ,sensitivity, and specificity. Future work will 

focus on refining the PCANet and exploring new ways to 

combine features during training. 

Corin et al. [22] proposed a lightweight approach of 

Convolutional Neural Network for quick attack detection. 

Unlike other methods, it doesn't require threshold 

configuration or extensive feature engineering, making 

deployment easy. Their unique traffic preprocessing aids 

efficient DDoS attack detection. Evaluation shows LUCID 

performs as well as top methods, with consistent results 

across datasets. 

3. Methodology 

Over the past decade, advancements in technology, such as 

IoT and 5G networks, have transformed computer networks, 

facilitating extensive data exchange but also introducing 

vulnerabilities to attacks. In Wireless Sensor Networks 

(WSNs), feature extraction plays a crucial role in sensing 

and vindicating these threats. The proposed model combines 

DenseNet with an autoencoder for feature extraction in 

WSNs[23-24], offering several benefits which is depicted in 

Fig 1 : 

• DenseNet's dense connectivity efficiently extracts 

features from sensor data, capturing intricate patterns 

indicative of different attacks. 

• When combined with an autoencoder, DenseNet 

enhances representation learning by compressing data into 

a lower-dimensional space and extracting higher-level 

features. 

• Joint learning of hierarchical features enables the system 
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to learn compact representations and complex features, 

aiding in anomaly detection. 

• By leveraging DenseNet and autoencoder capabilities, the 

system can effectively identify anomalies or attacks within 

WSN data, even adapting to new attack patterns. 

• Autoencoders utilize unlabeled data for representation 

learning, beneficial when labeled attack data is limited, 

enabling the system to capture various attack scenarios. 

 

Fig.1. Proposed Architecture 

3.1. Dimensionality Reduction using Deep Auto Encoder  

Dimensionality reduction[27-30] is a crucial process aimed 

at decreasing the number of dimensions in a dataset, either 

by excluding less informative features (Feature Selection) 

or transforming the data into a lower-dimensional space 

(Feature Extraction). This reduction helps mitigate 

overfitting, where a model becomes overly tuned to training 

data and performs poorly on unseen real-world data. 

Autoencoders (AEs) are neural networks consisting of an 

encoder, a hidden unit, and a decoder, aiming to generate 

output resembling the input data through backpropagation. 

AEs primarily focus on feature extraction within the 

encoder architecture, enabling data transformation into a 

dimensionally reduced representation. Their ability to train 

on unlabeled data makes AEs [25-26]effective at identifying 

unknown attacks. The proposed approach leverages higher 

reconstruction loss for anomalous traffic flows, surpassing 

benchmark unsupervised algorithms in perceiving Denial-

of-Service (DoS) attacks according to numerical 

experiments. 

A deep autoencoder consists of two mirrored deep-belief 

networks, each with four to five shallow layers. One 

network encodes the data, while the other decodes it. These 

networks have more layers than a basic autoencoder, 

enabling them to capture complex features. Each layer is 

built using restricted Boltzmann machines, which are 

fundamental units in deep-belief networks. 

 

Fig.2. Deep AutoEncoder  

The mathematical construction of a deep autoencoder with 

a hidden layer is encapsulated by specifying the encoder 

function as   α , and the decoder function as   �̂� . 

The    encoding function α can be represented as , 

𝛼 = 𝑓(𝑊𝑥 + 𝑏)        (3.1) 

and the decoding function   �̂� can be represented as , 

 �̂� =𝑓′(𝑊′𝛼 +𝑏′)     (3.2) 

                                                                                

Where f and f ‘ are the nonlinear activation function , W   ϵ 

 𝑅  𝑙 𝑥 𝑚  and     𝑊′ϵ  𝑅 𝑚 𝑥 𝑙     are the weight matrices, b ϵ 

 𝑅  𝑙 and 𝑏′ ϵ  𝑅  𝑚  are the bias vectors and α ϵ  𝑅  𝑙  is the 

hidden layer output . 

The reconstruction error can be computed by providing a set 

of inputs {𝑥𝑖} 𝑛
𝑖 = 1

as, 

∑ ‖    𝑥�̂� − 𝑥𝑖‖
𝑛
𝑖=1

2  (3.3) 

From the Fig 2 represents the Deep Auto encoder 

architecture. The x1,x2 and x3 represent the input and  𝑥1̂ ,  

𝑥2̂  , 𝑥3̂ represents the output with two central nodes z1 and 

z2  which is arranged in a way symmetric in  three hidden 

layers. The deep autoencoder's purpose is to curtail the 

difference between output �̂� and input x. 

The reconstruction error function ∑ ‖    𝑥�̂� − 𝑥𝑖‖𝑛
𝑖=1

2 is 

minimized by using a deep autoencoder by learning the 

weight matrices W1,WT  and bias vector b1, 𝑏𝑇
1  to accomplish 

the self learning objective. Consequently, the goal of a deep 

autoencoder can be restated as the following optimization 

challenge. 

W1,𝑏1
𝑚𝑖𝑛,𝑊1

𝑇,𝑏1
𝑇 ∑ ‖    𝑥�̂� − 𝑥𝑖‖𝑛

𝑖=1
2   (3.4) 

3.2. Feature Extraction and Classification using Light 

Weight Densenet 

The decision to use the DenseNet framework instead of 

ResNet is mainly based on considerations of computational 

efficiency and addressing the vanishing gradient problem. 

While ResNet can address the vanishing gradient issue to 

some extent, its architecture becomes computationally 
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intensive as the network depth increases, resulting in 

exponential parameter growth.A Lightweight DenseNet 

architecture retains the benefits of DenseNet while reducing 

computational complexity and model size, making it ideal 

for resource-constrained environments like Wireless Sensor 

Networks (WSNs). The combination of learned 

representations from the autoencoder and hierarchical 

features from DenseNet aids in detecting deviations from 

normal patterns, indicating potential attacks or abnormal 

behavior. 

A dense cluster in DenseNets is made up of n cells with 

identical characteristics. Each cell receives an inhibitory 

spike train at a rate of x, determined by stochastic 

connections between the soma and cytosol. The activation 

likelihood of a cell, denoted as q, depends on the cluster size, 

specifically the number of cells it contains. To numerically 

determine q, prior studies' methodologies are employed to 

derive a solution in the following manner: 

 

 

with  

     

where  

p - The probability of repeated firing occurring when a cell 

attempts to fire. 

r - rate of cell firing 

The rate at which a cell fires is denoted by the symbol r, 

whereas excitatory and inhibitory spikes are denoted 

externally by the symbols + and -respectively. The main 

reason for using ζ(·) for vectors and matrices is to make the 

way they are written easier to understand. 

The basic structure of DenseNet is depicted in Fig 3, which 

includes dense blocks, transition layers, convolutional 

layers, and fully connected layers.  

The dense block shown in Fig.4 is made up of tightly 

connected dense units that have convolutional operations, 

Batch Normalization (BN), Rectified Linear Unit (ReLU), 

and other nonlinear mapping functions.. 

 

Fig.3. Basic Structure of DenseNet 

 

 

Fig.4. Dense Block and Transition Layer 

The Transition layer, placed amid adjacent dense blocks. It 

consists of a 1×1 convolution followed by a 2×2 average 

pooling operation. The main function of this layer is to 

compress the input from the dense block, retaining all mined 

feature information. This compression reduces the size and 

dimensionality of the feature maps, controlling the number 

of parameters within the dense block and preventing 

overfitting in the network. 

The Fig. 5 illustrates the concept of a simplified dense block, 

where the original dense block is replaced by several 

simplified dense blocks arranged sequentially. This 

substitution aims to decrease the number of dense units 

within each block. By employing multiple simplified dense 

blocks in succession, the original dense blocks are replaced, 

leading to a reduction in the output feature map dimensions. 

Despite this reduction, the process maintains feature reuse 

within the model architecture. 

 

 

Fig.5. Simplified Dense block for Light weight Densenet 

The Fig.6  illustrates the "one-time aggregation" strategy, 

where the outputs from all dense units in the dense block are 

aggregated towards the end, instead of the interconnected 

nature of pairs of dense units. To cut down on inference time 

and energy use, this lightweight network design technique 

focuses on two main factors: model size and Floating Point 

Operations (FLOPs). It also considers GPU computational 

efficiency and Memory Access Cost (MAC) as important 

factors. 

 

Fig.6. Simplified Dense block for Light weight Densenet 

Densely connected aggregations of intermediate features 

can indeed generate robust features with fewer parameters 

and activations. However, this approach can also result in 

significant memory access overheads. To address these 

challenges in the DenseNet detector architecture, Lee et al. 

[31] introduced a fast and efficient architecture called 

( )
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VoVNet. VoVNet incorporates the concept of "one-time 

aggregation" (OSA) to mitigate these issues. 

The Fig.7 illustrates the DenseNet utilizing the dense 

aggregation method, where all preceding features are 

aggregated at each subsequent layer. This results in an 

increase in the input channel size as the network progresses 

through its layers, despite only a few new outputs being 

generated.  

 

 

 

Fig.7. Dense Aggregation  Densenet 

In contrast, Fig .8 represents the One-Shot Aggregation used 

in VoVNet. This method aggregates or concatenates all 

features just once, in the last feature map. Unlike DenseNet's 

method, which leads to a linear increase in input channel 

size, the One-Shot Aggregation method ensures a constant 

input size throughout the network. By concatenating the 

features only in the final feature map, this approach enables 

the enlargement of the new output channel. 

 

 

Fig.8. One time aggregation of VoVNet 

3.3. Datasets and Feature Extraction  

The WSN-DS dataset[32] underwent preprocessing to 

generate 23 features representing individual sensor states 

and simulating five types of Denial of Service (DoS) 

attacks: Flooding, Blackhole, Normal, TDMA, and 

Grayhole. Tailored for intrusion detection, this Wireless 

Sensor Network (WSN) dataset enables the application of 

machine learning and deep learning techniques for DoS 

attack identification and categorization. It comprises 

365,788 records with 19 unique attributes. 

The IoTID20 dataset initially consists of 86 columns and 

625,783 rows, with each row associated with a specific 

network activity. Preprocessing focused on enhancing the 

accuracy of label, category, and sub-category features to 

improve classification precision. However, the primary 

focus of the work lies in binary classification of label 

features, distinguishing between normal and anomaly, while 

category features encompass five classifications: MITM 

attack , DoS attack , Scan attack, Mirai attack and  normal. 

4. Results and Discussion 

4.1. Hyperparameter Settings   

This study acknowledges several critical model 

hyperparameters that have a significant impact on the 

training process and the overall effectiveness of the 

developed model.  

Table 1 Hyperparameter Settings 

 

 

 

 

 

 

 

 

The parameters detailed in Table 1 cover crucial aspects 

such as activation function, epochs (number of training 

iterations), learning rate (controls weight updates), 

verbosity (level of output information during training), 

patience (stopping criterion for training), choice of 

optimization technique (algorithm for updating parameters), 

and selection of a loss function (measures disparity between 

predicted and actual values). Each of these hyperparameters 

plays a vital role in shaping the model's learning process and 

its ability to achieve optimal performance. 

4.2. Evaluation Metrics and Results  

In this proposed method, we assess and compare 

performance metrics such as F1-score, accuracy, recall and 

precision,to evaluate its effectiveness. 

Accuracy (ACC) gauges the proportion of correctly 

classified data samples. A higher accuracy suggests 

effective learning on a balanced test dataset. However, in 

situations with imbalanced test datasets, solely depending 

on accuracy can mislead about the model's performance. 

Figure 9 illustrates that the proposed Lightweight DenseNet 

121 exhibits superior accuracy compared to other deep 

learning models. 

 

Hyper parameter Value 

Epoch 10, 25 

Activation Function ReLU 

Loss Function Sparse Categorical 

Cross Entropy  

Optimization 

algorithm 

Adam 

Learning rate 0.001 

Verbose 1 
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Fig.9. Comparison of the overall prediction accuracy of the 

proposed Lightweight Densenet 

The ratio of properly predicted samples of a class to the total 

number of occurrences of the same class is estimated by 

recall, commonly referred to as the true positive rate.A 

machine learning model that performs well is indicated by a 

higher recall value between 0 and 1. According to Figure 10, 

the proposed Lightweight DenseNet 121 demonstrates 

superior recall compared to other deep learning models. 

Recall = TP/(TP + FN) 

 

Fig.10. Comparison of the of Recall value of the Proposed 

model with WSN-DS and IOTID20  Dataset   

By computing the ratio of successfully predicted samples to 

all predicted samples for a given class, precision evaluates 

the accuracy of correct predictions. To assess model 

performance, it is frequently assessed in conjunction with 

recall. However, a complete measure such as the F1-score is 

desirable, especially for imbalanced test datasets, when 

accuracy and recall clash. As illustrated in Figure 11, the 

suggested Lightweight DenseNet 121 outperforms other 

deep learning models in terms of precision. 

Precision = TP/(TP + FP) 

 

Fig.11. Comparison of the of Precision value of the 

Proposed model with WSN-DS and IOTID20  Dataset   

The precision versus recall trade-off is calculated using the 

F1-score. It is the harmonic mean of memory and precision 

.The Fig.12 shows that the proposed Lighweight Densenet 

121 has higher F1 Measure when compared to other deep 

learning models 

F1 Measure = 2 × (Precision × Recall)/(Precision + 

Recall) 

 

Fig.12. Comparison of the of F1-measure  value of the 

Proposed model with WSN-DS and IOTID20  Dataset   

The Autoencoder-Lightweight DenseNet model showed 

promising results in detecting attacks on the WSN dataset. 

It achieved a training accuracy of 99.4% after 10 epochs and 

99.7% after 25 epochs, using a learning rate of 0.001 and 

Relu activation function for binary classification. The 

model's computational efficiency was demonstrated with 

execution times of 805 seconds for 10 epochs and 1103 

seconds for 25 epochs.During the training phase, 

performance metrics were recorded after 10 epochs. About 

96.07% training accuracy and 99.44% validation accuracy 

were attained by the model. The training loss, indicating the 

difference between predicted and actual values during 

training, was 25.7%, while the validation loss, measuring 

performance on unseen data, was recorded at 7.01%.. 
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Fig.13. Model Accuracy with  10 Epochs 

 

Fig.14. Model Loss with  10 Epochs 

Overall, these metrics suggest a well-performing model, 

with relatively high accuracy and low losses on both training 

and validation sets after 10 epochs of training which is 

depicted in Fig. 13 and Fig. 14 . 

During the training of an intrusion detection model using the 

Autoencoder-Lightweight DenseNet architecture, certain 

performance metrics were achieved after 25 epochs. The 

reported metrics are as follows: Training Loss: 8.7%, 

Training Accuracy: 99.7%, Validation Loss: 12.11%, 

Validation Accuracy: 94.84%. These metrics were 

monitored and recorded across the 25 training epochs, as 

depicted in  Fig .15   and Fig.16. 

 

Fig.15. Model Accuracy with  25 Epochs 

 

Fig.16. Model Loss  with  25 Epochs 

5. Conclusion and Future Work 

In conclusion, this study conducted a comparative analysis 

of five prominent deep learning architectures for classifying 

Denial of Service (DoS) attacks in Wireless Sensor 

Networks (WSNs). Through evaluation using labeled 

instances from the WSN-DS and IOTID20 datasets, various 

metrics such as accuracy, precision, recall, F1-score, and 

computational efficiency were employed to assess the 

efficacy of these architectures for real-time WSN 

applications.The experimental results provided insights into 

the performance of each architecture in classifying DoS 

attacks, thereby aiding in the selection of optimal models for 

WSN security. The findings indicate that the Lightweight 

DenseNet architecture showed promising results, 

demonstrating high accuracy and efficiency in detecting 

DoS attacks in WSNs. 

For future work, further exploration and refinement of the 

Lightweight DenseNet architecture could be conducted to 

enhance its performance in detecting various types of DoS 

attacks. Additionally, extending the evaluation to include 

more diverse and challenging datasets, as well as real-world 

deployment scenarios, would provide a more 

comprehensive understanding of the architectures' 

capabilities and limitations. Moreover, investigating 

techniques for improving the computational efficiency of 

deep learning models in resource-constrained WSN 

environments would be beneficial for practical deployment. 

Overall, continued research in this area holds the potential 

to advance the development of robust and efficient solutions 

for securing Wireless Sensor Networks against DoS attacks. 

References 

[1]  Islam, Mohammad Nafis Ul & Fahmin, Ahmed & 

Hossain, Md Shohrab & Atiquzzaman, Mohammed.  

Denial-of-Service Attacks on Wireless Sensor 

Network and Defense Techniques. Wireless Personal 

Communications. 116. 1-29. 10.1007/s11277-020-

07776-3,2021. 

[2] Gavrić, Ž., & Simic, D.B. Overview of DOS attacks on 

wireless sensor networks and experimental results for 

simulation of interference attacks. Revista Ingenieria 

E Investigacion, 38, 130-138,2018. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1371–1379  |  1378 

[3] Stankovic, J.A., & Wood, A.D.  A Taxonomy for 

Denial-of-Service Attacks in Wireless Sensor 

Networks. Handbook of Sensor Networks,2004. 

[4] [4] Sarker, I. Deep Learning: A Comprehensive 

Overview on Techniques, Taxonomy, Applications 

and Research Directions. SN COMPUT. SCI. 2, 

420,2021. https://doi.org/10.1007/s42979-021-00815-

1 

[5] [5] Francesco Piccialli, Fabio Giampaolo, Edoardo 

Prezioso, Danilo Crisci, and Salvatore Cuomo. 

Predictive Analytics for Smart Parking: A Deep 

Learning Approach in Forecasting of IoT Data. ACM 

Trans. Internet Technol. 21, 3, Article 68 (August 

2021), 21 pages,2021. 

https://doi.org/10.1145/3412842 

[6] Mirsky, Y.; Doitshman, T.; Elovici, Y.; Shabtai, A. 

Kitsune An Ensemble of Autoencoders for Online 

Network Intrusion Detection.In Proceedings of the 

25th Annual Network and Distributed System Security 

Symposium, NDSS 2018, San Diego, CA, USA,18–21 

February 2018. 

[7] Zavrak, S.; ˙Iskefiyeli, M.(2020) Anomaly-Based 

Intrusion Detection From Network Flow Features 

Using Variational Autoencoder. IEEE Access 2020, 8, 

108346–108358. 

[8]  Huang, G., Liu, Z., Van Der Maaten, L. and 

Weinberger, K.Q. Densely Connected Convolutional 

Networks. Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Honolulu, 

21-26 July 2017, 4700-4708. 

https://doi.org/10.1109/CVPR.2017.243 

[9] Hemalatha J, Roseline SA, Geetha S, Kadry S, 

Damaševičius R. An Efficient DenseNet-Based Deep 

Learning Model for Malware Detection. Entropy 

(Basel). 2021 Mar 15;23(3):344. doi: 

10.3390/e23030344. PMID: 33804035; PMCID: 

PMC7998822,2021. 

[10] Rezende, E.; Ruppert, G.; Carvalho, T.; Ramos, F.; De 

Geus, P.Malicious software classification using 

transfer learning of resnet-50deep neural network. In 

Proceedings of the 2017 16th IEEE International 

Conference on Machine Learning and 

Applications(ICMLA), Cancun, Mexico, 18–21 

December 2017; pp. 1011–1014. 

[11] He, Yi. A New Lightweight DenseNet Based on Mix-

Structure Convolution. IOP Conference Series: 

Materials Science and Engineering.790,2020. 

[12] Jingdong Yang, Lei Zhang, Xinjun Tang, Man Han, 

CodnNet: A lightweight CNN architecture for 

detection of COVID-19 infection,Applied Soft 

Computing,Volume 130,109656,ISSN1568-4946 

2022. 

[13] Din, Sadia & Paul, Anand & Ahmad, Awais. 

Lightweight deep dense Demosaicking and Denoising 

using convolutional neural networks. Multimedia 

Tools and Applications. 79. 10.1007/s11042-020-

08908-4,2020. 

[14] Huang, L., Ren, K., Fan, C., and Deng, H., A Lite 

Asymmetric DenseNet for effective object detection 

based on convolutional neural networks (CNN), 

Optoelectronic Imaging and Multimedia Technology 

VI, vol. 11187,2019. doi:10.1117/12.2538755. 

[15] Muhammad Naveed, Fahim Arif, Syed Muhammad 

Usman, Aamir Anwar, Myriam Hadjouni, Hela 

Elmannai, Saddam Hussain, Syed Sajid Ullah, 

Fazlullah Umar, "A Deep Learning-Based Framework 

for Feature Extraction and Classification of Intrusion 

Detection in Networks", Wireless Communications 

and Mobile Computing, vol. 2022, Article ID 

2215852, 11 pages,. 

https://doi.org/10.1155/2022/2215852 

[16] Zhang, Z., Tang, Z., Wang, Y., Zhang, H., Yan, S., & 

Wang, M. Compressed densenet for lightweight 

character recognition. arXiv preprint 

arXiv:1912.07016,2019. 

[17] P. Wu and H. Guo, "LuNet: A Deep Neural Network 

for Network Intrusion Detection," 2019 IEEE 

Symposium Series on Computational Intelligence 

(SSCI), Xiamen, China, 2019, pp. 617-624, doi: 

10.1109/SSCI44817.2019.9003126. 

[18] F. Hussain, S. G. Abbas, M. Husnain, U. U. Fayyaz, F. 

Shahzad and G. A. Shah, IoT DoS and DDoS Attack 

Detection using ResNet, 2020 IEEE 23rd International 

Multitopic Conference (INMIC), Bahawalpur, 

Pakistan, 2020, pp. 1-6, doi: 

10.1109/INMIC50486.2020.9318216. 

[19] Zhang et al. Zhang X, Yang F, Hu Y, Tian Z, Liu W, 

Li Y, She W. RANet: network intrusion detection with 

group-gating convolutional neural network. Journal of 

Network and Computer Applications. 

2022;198(2):103266. doi: 10.1016/j.jnca.2021.103266 

[20]  F. A. Khan, A. Gumaei, A. Derhab and A. Hussain, A 

Novel Two-Stage Deep Learning Model for Efficient 

Network Intrusion Detection, in IEEE Access, vol. 7, 

pp. 30373-30385, 2019, doi: 

10.1109/ACCESS.2019.2899721. 

[21] Z. Huang, X. Zhu, M. Ding, and X. Zhang . Medical 

image classification using a light-weighted hybrid 

neural network based on PCANet and DenseNet, IEEE 

Access, vol. 8,pp. 24697–24712, 2020. 

https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1145/3412842


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2024, 12(21s), 1371–1379  |  1379 

[22] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. 

Martínez-del-Rincón and D. Siracusa,Lucid: A 

Practical, Lightweight Deep Learning Solution for 

DDoS Attack Detection, IEEE Transactions on 

Network and Service Management, vol. 17, no. 2, pp. 

876-889, June 2020, doi: 

10.1109/TNSM.2020.2971776. 

[23] Albahli S, Nazir T, Mehmood A, Irtaza A, Alkhalifah 

A, Albattah W.AEI-DNET: A Novel DenseNet Model 

with an Autoencoder for the Stock Market Predictions 

Using Stock Technical Indicators. Electronics. 

11(4):611,2022. 

https://doi.org/10.3390/electronics11040611 

[24] Pintelas E, Livieris IE, Pintelas PE. A Convolutional 

Autoencoder Topology for Classification in High-

Dimensional Noisy Image Datasets. Sensors (Basel). 

2021 Nov 20;21(22):7731. doi: 10.3390/s21227731. 

[25] Lopez-Martin, Manuel & Carro, Belén & Sanchez-

Esguevillas, Antonio & Lloret, Jaime. Conditional 

Variational Autoencoder for Prediction and Feature 

Recovery Applied to Intrusion Detection in IoT. 

Sensors. 2017.  

[26] Ieracitano, Cosimo & Adeel, Ahsan & Morabito, 

Francesco & Hussain, Amir. A Novel Statistical 

Analysis and Autoencoder Driven Intelligent Intrusion 

Detection Approach. Neurocomputing,2019. 387. 

10.1016/j.neucom.2019.11.016. 

[27] [27]Yasi Wang, Hongxun Yao, Sicheng Zhao,Auto-

encoder based dimensionality 

reduction,Neurocomputing,Volume 184,Pages232-

242,ISSN0925-2312,2016. 

https://doi.org/10.1016/j.neucom.2015.08.104. 

[28] R. K. Keser and B. U. Töreyin,Autoencoder Based 

Dimensionality Reduction of Feature Vectors for 

Object Recognition," 2019 15th International 

Conference on Signal-Image Technology & Internet-

Based Systems (SITIS), Sorrento, Italy, 2019, pp. 577-

584, doi: 10.1109/SITIS.2019.00097. 

[29] Zamparo, L., & Zhang, Z. Deep Autoencoders for 

Dimensionality Reduction of High-Content Screening 

Data. ArXiv, abs/1501.01348,2015. 

[30] Wang, J., He, H., & Prokhorov, D.V. A Folded Neural 

Network Autoencoder for Dimensionality Reduction. 

International Neural Network Society Winter 

Conference,2012. 

[31] Y. Lee, J. W. Hwang, S. Lee, Y. Bae, and J. Park,An 

Energy and GPU-Computation Efficient Backbone 

Network for Real-Time Object Detection,” 

Proceedings of the 2019 IEEE/CVF Conference on 

Computer Vision and Pattern Recognition Workshops 

(CVPRW), pp. 752–760, Long Beach,USA,2019. 

[32]  Almomani, I., Al-Kasasbeh, B. and Al-Akhras, M.,. 

WSN-DS: A dataset for intrusion detection systems in 

wireless sensor networks. Journal of Sensors,2016. 

 

https://doi.org/10.3390/electronics11040611

